Publications-Theses
Article View/Open
Publication Export
-
題名 YouTube 線上影音廣告的數據分析與決策
Data analysis and decision-making of YouTube video advertising作者 蔡璞玥
Tsai, Pu Yueh貢獻者 蘇蘅
Su, Herng
蔡璞玥
Tsai, Pu Yueh關鍵詞 YouTube
科技接受模式
線上影音廣告
YouTube 演算法
廣告數據
廣告策略
YouTube
Technology acceptance model
Online video ads
YouTube algorithm
Ads data
Ads strategy日期 2022 上傳時間 5-Oct-2022 09:12:57 (UTC+8) 摘要 YouTube 每個月有二十億活躍使用者,是目前全球最多使用者的網路影音平台,YouYube 廣告與消費者溝通的重要性與日俱增,因此有必要探討與理解廣告主購買 YouTube 廣告的意圖、決策過程與效果評估。由於 YouTube 廣告以社群平台傳遞為主的創新和科技特色,本研究採深度訪談法,訪問四位不同數位行銷專業的廣告主,探討並分析廣告主在擴展科技接收模式的程序學習任務中,如何接受及採納 YouTube 與 Google 的使用者數據,如何解讀為消費者偏好,加上自身產業經驗及合作團隊的配合,認知 YouTube 廣告的價值及廣告策略。本研究發現以科技接受模式觀察廣告主的感知易用性,發現 YouTube 演算法和多元數據工具,提供多數廣告主更豐富、客製化的訊息分析,有助對其產品消費者和服務對象的快速深入理解;值得注意的是,廣告主感知 YouTube 和Google 資訊數據的有用性,當廣告主使用相關工具及資訊系統時,認為可以帶來工作績效的提升,評估廣告效果。研究發現,受訪者感知易用性越高,使用態度越積極。他們感知易用性越高,其感知有用性也相對增加。受訪的廣告主如果具有相當的社群平台科技認知以及豐富的使用經驗,更能強化在決策中對於 YouTube 科技及數據分析的好感以及有用性,對於新興串流廣告發展採用演算法以及客製化消費者的洞察具有市場應用價值;而 Google提供的數位數據工具,也適合強化廣告主在廣告決策中的過程應用及修正,對於廣告效果的達成,增加了信任感和靈活度。
With two billion monthly active users, YouTube is currently the world`s largest user of online video and audio Platform, the importance of YouTube advertising and communication with their customers is increasing nowadays. It is necessary to explore and understand the advertiser`s intention to purchase YouTube advertising, their decision-making process and how they perceive YouTube advertising value.The study aims on how advertisers accept YouTube technological changes and have also made changes in advertisements related to the Technology Acceptance Model. Due to the creative and technological features of YouTube advertising, this research adopts the in-depth interview method, interviewing four advertisers with different digital marketing experiences, to discuss how much digital information they need working on decision-making.This study has found that most advertisers agreed that they could save time and effort when utilizing YouTube data and tools. Advertisers also believe that it would improve ads performance and comprehend the effects of perceived usefulness. The research confirms that the advertisers accept and adopt the user data of YouTube and Google, can take advantage of the data provided by apps and platforms, thus making online advertising more effectively used. The factors that affect YouTube advertising value and its effect on purchasing intention are thoroughly examined. The more credible and usefulness of the YouTube statistics perceived by the advertisers, the more positive they intend to purchase YouTube ads. Both the convenience and informativeness of YouTube data can influence advertisers’ decision-making intention and action. The YouTube algorithms and multiple digital tools can provide most advertisers with rich and customized information analyses that can help them target customers quickly and improve work performance. This highlights algorithms and digital tools will bring more positive effects to streaming advertising.These digital data provided by Google are also suitable for enhancing the process application and correction of advertisers in advertising decision-making, which increases the confidence and flexibility for the advertising effects.參考文獻 中文文獻李美華(2013)。《以再現與產製觀點探討網路媒體與客家文化》。客家委員會補助大學校院發展客家機構計畫。新竹市:交通大學。范麗娟(2004)。〈深度訪談〉,《質性研究》。台北市:心理。陳正芬譯(2014)。《演算法統治世界》。臺北:行人。(原書Steiner, C. [2012]. Automate This: How Algorithms Came to Rule Our World. New York: Portfolio.)陳向明(2002)。《社會科學質的研究》。臺北:五南。陳百齡(2005)。〈想像的群眾?真實的商品?—閱聽人圖像之組織形構分析〉,《圖書與資訊》,51: 頁35-48。陳亭羽、田季芳(2008)。〈網路廣告效果衡量指標之探討〉, 《管理與系統》,15(2): 177-208。陳春富(2008)。〈想像的群眾?真實的商品?—閱聽人圖像之組織形構分析〉,《廣播與電視》,28: 頁71-94。張玉佩(2005)。〈從媒體影像觀照自己:觀展/表演典範之初探〉。《新聞學研究》,82: 41-85。張玉佩(2011)。〈線上遊戲之閱聽人愉悅經驗探〉。《中華傳播學刊》,19: 61-95。張芬芬(2010)。〈質性資料分析的五步驟: 在抽象階梯上爬升〉。《初等教育學刊》, 35: 87-120。張卿卿(2016)。〈線上影音接收,傳散與產製上傳行為探討:多元動機之觀點〉。中華傳播學刊,30: 61-107。高淑清(2008)。《質性研究的18堂課-首航初探之旅》,高雄:麗文文化。萬文隆(2004)。〈深度訪談在質性研究中的應用〉,《生活科技教育月刊》,37(4):17-23。潘淑滿(2004)。《質性研究:理論與應用》。台北:心理出版社。劉欣飴(2009)。〈以社會能供性觀點探討資訊科技認知對合作意願影響之研究〉,《資訊社會研究》,16:89-135。蔡蕙如(2020)。〈串流媒體時代下的閱聽人商品觀點再檢視:以傳播政治經濟學觀點分析 Netflix 追劇勞動〉,《中華傳播學刊》,37:83-112。蘇蘅(2019)。《傳播研究方法新論》。臺北:雙葉書廊。英文文獻Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888.Atkinson, M., & Kydd, C. (1997). Individual characteristics associated with World Wide Web use: an empirical study of playfulness and motivation. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 28(2), 53-62.Bodgan, R. C., & Biklen, S. K. (1982). Qualitative Research For Education: An Introduction to Theory and Method. Boston: Ally & Bacon.Bryant, L.V., (2020). The YouTube Algorithm and the Alt-Right Filter Bubble. Open Information Science, 4(1), 85–90.Bucher, T. (2012). Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. New Media & Society, 14(7), 1164-1180.Burgess, S., Sellitto, C., Cox, C. and Buultjens, J. (2009) User-generated content (UGC) in tourism: benefits and concerns of online consumers. 17th European Conference on Information System, Verona.Carlson, J. R. , & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of Management Journal, 42(3): 153-170.Chau, C. (2010). YouTube as a participatory culture. New directions for youth development, 2010(128), 65-74.Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 191-198.Daft, R. L., & Lengel, R. H. (1984). Information richness: A new approach to managerial behavior and organizational design, Research in Organizational Behavior, 6, 191–233.Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32(5), 554–571.Davenport, T. H., & Beck, J. C. (2001). The attention economy. Ubiquity,2001(May), 1-es.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1002.Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & Sampath,D. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp.293-296).Derlega, V., J., Metts, S., Petronio, S. & Margulis, S. T. (1993). Self-disclosure. Sage Publications.De Marchi, L. (2018). How do YouTube algorithms calculate value? An analysis of the production of value for digital music videos using the social logic of the derivative, MATRIZes 12(2), 193-216.Duffett, R., Petroșanu, D. M., Negricea, I. C., & Edu, T. (2019). Effect of YouTube marketing communication on converting brand liking into preference among millennials regarding brands in general and sustainable offers in particular. Evidence from South Africa and Romania. Sustainability, 11(3), 604.Figueiredo, F., Almeida, J. M., Gonçalves, M. A., & Benevenuto, F. (2014). On the dynamics of social media popularity: A YouTube case study. ACM Transactions on Internet Technology (TOIT), 14(4), 1-23.Fuchs, C. (2008). Internet and society: Social theory in the information age. London, UK: Routledge.Galbraith, J. R. (1974). Organization design: An information processing view.Interfaces, 4(3), 28-36.Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA:Houghton Mifflin Company.Godfrey, A., Seiders, K., & Voss, G. B. (2011). Enough is enough! The fine line in executing multichannel relational communication. Journal of Marketing, 75(4),94-109.Goffman E. (1959). The presentation of self in everyday life. New York: Anchor.Ha, L., & James, E., L. (1998). Interactivity reexamined: A baseline analysis of early business websites. Journal of Broadcasting & Electronic Media, 42(4), 457-474.Haridakis, P., & Hanson, G. (2009). Social Interaction and Co-Viewing with YouTube: Blending Mass Communication Reception and Social Connection.Journal of Broadcasting & Electronic Media, 53, 317-335.Heeter, C. (2000). Interactivity in the context of designed experiences. Journal of Interactive Advertising, 1(1), 3-14Ishii, K., Lyons, M. M., & Carr, S. A. (2019). Revisiting media richness theory for today and future. Human Behavior and Emerging Technologies, 1(2), 124-131.Iskandar, M., & Iskandar, B. P. (2012). Crossing through the information barrier.Journal of Business and Management, 1, 384-388.Iye R, Okuhara T, Okada H, Yokota R, Kiuchi T. (2021). A Content Analysis of Video Advertisements for Dietary Supplements in Japan. Healthcare, 9(6): 742.https://doi.org/10.3390/healthcare9060742Heeter, C. (2000). Interactivity in the context of designed experiences. Journal of interactive advertising, 1(1), 3-14.Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68.Huh, J., & Malthouse, E. C. (2020). Advancing computational advertising:Conceptualization of the field and future directions. Journal of Advertising, 49(4), 367-376.Kim, S.-T., & Lee, Y.-H. (2006). New functions of Internet mediated agenda-setting:Agenda-rippling and reversed agenda-setting. Korean. Journal of Journalism and Communication Studies, 50(3), 175-205.Kosterich, A., & Napoli, P. M. (2016). Reconfiguring the audience commodity: The institutionalization of social TV analytics as a market information regime.Television & New Media, 17(3), 254-271.Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: An extension of the Technology Acceptance Model. Computers & Education, 61, 193-208.Lobato, R. (2019). Netflix nations: The geography of digital distribution. New York, NY: New York University.Manetti, G.; Bellucci, M. (2016), The use of social media for engaging stakeholders in sustainability reporting. Account. Audit. Account. J. 2016, 29, 985-1011. doi:10.1108/AAAJ-08-2014-1797.Martin, H., Saifuddin A., Jaeho C., Billy L., & Jonathan, L. (2018). Communicating with Algorithms: A Transfer Entropy Analysis of Emotions-based Escapes from Online Echo Chambers, Communication Methods and Measures, 12(4),260-275.Meehan, E. (1990). Why we don`t count: The commodity audience. Logics of television: Essays in cultural criticism, 117-137.Miles, J. (2014). YouTube marketing power: How to use video to find more prospects, launch your products, and reach a massive audience. McGraw Hill Professional.Miller, K. (2012). Playing along: Digital games, YouTube, and virtual performance.Oxford University Press.Mir, I. A. (2017). Users on Social Network Sites—Flight from Reality and Its Effects on Acceptance of Social Network Advertising: A Gratification Perspective. Journal of Creative Communications, 12(2), 98-121.Moat, H. S., Preis, T., Olivola, C. Y., Liu, C. and Chater, N. (2014). Using big data to predict collective behavior in the real world, Behavioral and Brain Sciences,37(1), 92-93.Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.Mubarak, K., Hilal, M. I. M., (2019) Effect of YouTube usage and marketing communication on brand preference. Journal of Marketing, 4(1); 20-27.Nance, W. D., & Straub, D. W. (1996). An investigation of task/technology fit and information technology choices in knowledge work. Journal of Information Technology Management, 7, 1-14.Napoli, P. M. (2011). Audience evolution: New technologies and the transformation of media audiences. Columbia University Press.Neuman, W. R., Guggenheim, L., Jang, S. M., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication. 64, 193-214.Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal‐directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1-2), 3-16.O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2015).Down the (white) rabbit hole: The extreme right and online recommender systems. Social Science Computer Review, 33(4), 459-478.Papasolomou, I., & Melanthiou, Y. (2012) Social Media: Marketing Public Relations’ New Best Friend. Journal of Promotion Management, 18 (3),319-328.Pashkevich, M., Dorai-Raj, S., Kellar, M., & Zigmond, D. (2012). Empowering online advertisements by empowering viewers with the right to choose the relativeeffectiveness of skippable video advertisements on YouTube. Journal of Advertising Research, 52, 451-457.Roberts, K. K. (2010). Privacy and perceptions: How Facebook advertising affects its users. The Elon Journal of Undergraduate Research in Communications,1(1), 24-34.Shao, G. (2009). Understanding the appeal of user-generated media: A uses and gratification perspective. Internet Research, 19(1), 7-25.Song, J. H., & Zinkhan, G. M. (2008). Determinants of perceived web site interactivity. Journal of marketing, 72(2), 99-113.Sukoco, B. M., & Wu, W. Y. (2011). The effects of advergames on consumer telepresence and attitudes: A comparison of products with search and experience attributes. Expert Systems with Applications, 38(6), 7396-7406.Trevino, L. K., Lengel, R. H., & Daft, R. L. (1987). Media symbolism, media richness, and media choice in organizations: a symbolic interactionist perspective. Communication Research, 14(5), 553-574.Tufekci, Z. (2018). YouTube, the great radicalizer. The New York Times, 10(3),2018.Tutty, L. M., Rothery, M. A., & Grinnell, R. M. (1996). Qualitative research for social workers: Phases, steps, & tasks. Allyn and Bacon.Vakratsas, D., & Ambler, T. (1999). How advertising works: what do we really know?. Journal of marketing, 63(1), 26-43.van Dijk, A. (2009). Society and discourse: How social contexts influence text and talk. Cambridge: Cambridge University Press.Walker, J. D., Killip, D. E., & Fuller, J. L. (1985). The significance of the admission interview in predicting students` performance in dental school. Journal ofMedical Education.Wen, T. J., Chuan, C. H., Yang, J., & Tsai, W. S. (2022). Predicting Advertising Persuasiveness: A Decision Tree Method for Understanding Emotional (In) Congruence of Ad Placement on YouTube. Journal of Current IssuesResearch in Advertising, 43(2), 200-218.Wheeless, L. R. & Grotz, J. (1977). The measurement of trust and its relationship to self-disclosure. Human Communication Research, 3(3), 250-257.White, M., Wijaya, M., & Epston, D. (1990). Narrative means to therapeutic ends.WW Norton & Company.Yoo, C. Y. (2007). Implicit memory measures for web advertising effectiveness. Journalism & Mass Communication Quarterly, 84(1), 7-23.Zhang, K. & Katona, Z. (2011). Contextual Advertising. Marketing Science, 31(6),980-994.網站部分Paige Cooper (2021.06.21)。〈How Does the YouTube Algorithm Work in 2021? The Complete Guide〉,《Hootsuite》,取自https://blog.hootsuite.com/how-the-youtube-algorithm-works/ 描述 碩士
國立政治大學
傳播學院碩士在職專班
106941010資料來源 http://thesis.lib.nccu.edu.tw/record/#G0106941010 資料類型 thesis dc.contributor.advisor 蘇蘅 zh_TW dc.contributor.advisor Su, Herng en_US dc.contributor.author (Authors) 蔡璞玥 zh_TW dc.contributor.author (Authors) Tsai, Pu Yueh en_US dc.creator (作者) 蔡璞玥 zh_TW dc.creator (作者) Tsai, Pu Yueh en_US dc.date (日期) 2022 en_US dc.date.accessioned 5-Oct-2022 09:12:57 (UTC+8) - dc.date.available 5-Oct-2022 09:12:57 (UTC+8) - dc.date.issued (上傳時間) 5-Oct-2022 09:12:57 (UTC+8) - dc.identifier (Other Identifiers) G0106941010 en_US dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/142116 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 傳播學院碩士在職專班 zh_TW dc.description (描述) 106941010 zh_TW dc.description.abstract (摘要) YouTube 每個月有二十億活躍使用者,是目前全球最多使用者的網路影音平台,YouYube 廣告與消費者溝通的重要性與日俱增,因此有必要探討與理解廣告主購買 YouTube 廣告的意圖、決策過程與效果評估。由於 YouTube 廣告以社群平台傳遞為主的創新和科技特色,本研究採深度訪談法,訪問四位不同數位行銷專業的廣告主,探討並分析廣告主在擴展科技接收模式的程序學習任務中,如何接受及採納 YouTube 與 Google 的使用者數據,如何解讀為消費者偏好,加上自身產業經驗及合作團隊的配合,認知 YouTube 廣告的價值及廣告策略。本研究發現以科技接受模式觀察廣告主的感知易用性,發現 YouTube 演算法和多元數據工具,提供多數廣告主更豐富、客製化的訊息分析,有助對其產品消費者和服務對象的快速深入理解;值得注意的是,廣告主感知 YouTube 和Google 資訊數據的有用性,當廣告主使用相關工具及資訊系統時,認為可以帶來工作績效的提升,評估廣告效果。研究發現,受訪者感知易用性越高,使用態度越積極。他們感知易用性越高,其感知有用性也相對增加。受訪的廣告主如果具有相當的社群平台科技認知以及豐富的使用經驗,更能強化在決策中對於 YouTube 科技及數據分析的好感以及有用性,對於新興串流廣告發展採用演算法以及客製化消費者的洞察具有市場應用價值;而 Google提供的數位數據工具,也適合強化廣告主在廣告決策中的過程應用及修正,對於廣告效果的達成,增加了信任感和靈活度。 zh_TW dc.description.abstract (摘要) With two billion monthly active users, YouTube is currently the world`s largest user of online video and audio Platform, the importance of YouTube advertising and communication with their customers is increasing nowadays. It is necessary to explore and understand the advertiser`s intention to purchase YouTube advertising, their decision-making process and how they perceive YouTube advertising value.The study aims on how advertisers accept YouTube technological changes and have also made changes in advertisements related to the Technology Acceptance Model. Due to the creative and technological features of YouTube advertising, this research adopts the in-depth interview method, interviewing four advertisers with different digital marketing experiences, to discuss how much digital information they need working on decision-making.This study has found that most advertisers agreed that they could save time and effort when utilizing YouTube data and tools. Advertisers also believe that it would improve ads performance and comprehend the effects of perceived usefulness. The research confirms that the advertisers accept and adopt the user data of YouTube and Google, can take advantage of the data provided by apps and platforms, thus making online advertising more effectively used. The factors that affect YouTube advertising value and its effect on purchasing intention are thoroughly examined. The more credible and usefulness of the YouTube statistics perceived by the advertisers, the more positive they intend to purchase YouTube ads. Both the convenience and informativeness of YouTube data can influence advertisers’ decision-making intention and action. The YouTube algorithms and multiple digital tools can provide most advertisers with rich and customized information analyses that can help them target customers quickly and improve work performance. This highlights algorithms and digital tools will bring more positive effects to streaming advertising.These digital data provided by Google are also suitable for enhancing the process application and correction of advertisers in advertising decision-making, which increases the confidence and flexibility for the advertising effects. en_US dc.description.tableofcontents 第一章 緒論 1第一節 研究背景 2第二節 YouTube 演算法數據搜集與運作 6第三節 YouTube 廣告的優勢與限制 10第四節 研究目的 12第二章 文獻探討 13第一節 YouTube 發展背景和進化 13第二節 YouTube 演算法建構的世界 19第三節 YouTube 廣告形式與應用情境 27第四節 廣告主衡量 YouTube 廣告效果的理論與實務 38第五節 研究問題 54第三章 研究方法 55第一節 質性研究方法 55第二節 研究設計 58第三節 研究執行 66第四節 深訪資料處理 71第四章 研究資料分析 72第一節 廣告主擁有的 YouTube 數據使用方式 72第二節 廣告主對 YouTube 數據的認知、態度及評價 77第三節 廣告主採用 YouTube 數據做廣告決策的考量 81第四節 廣告主監控與衡量 YouTube 影音廣告的成效 85第五節 廣告主自主補強 YouTube 影音廣告的不足 92第五章 研究結論與建議 102第一節 研究發現與討論 102第二節 研究限制 106第三節 未來研究建議 108參考文獻 110附錄:名詞解釋 117一、YouTube 名詞解釋 117二、Google 廣告名詞解釋 118 zh_TW dc.format.extent 36648555 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0106941010 en_US dc.subject (關鍵詞) YouTube zh_TW dc.subject (關鍵詞) 科技接受模式 zh_TW dc.subject (關鍵詞) 線上影音廣告 zh_TW dc.subject (關鍵詞) YouTube 演算法 zh_TW dc.subject (關鍵詞) 廣告數據 zh_TW dc.subject (關鍵詞) 廣告策略 zh_TW dc.subject (關鍵詞) YouTube en_US dc.subject (關鍵詞) Technology acceptance model en_US dc.subject (關鍵詞) Online video ads en_US dc.subject (關鍵詞) YouTube algorithm en_US dc.subject (關鍵詞) Ads data en_US dc.subject (關鍵詞) Ads strategy en_US dc.title (題名) YouTube 線上影音廣告的數據分析與決策 zh_TW dc.title (題名) Data analysis and decision-making of YouTube video advertising en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 中文文獻李美華(2013)。《以再現與產製觀點探討網路媒體與客家文化》。客家委員會補助大學校院發展客家機構計畫。新竹市:交通大學。范麗娟(2004)。〈深度訪談〉,《質性研究》。台北市:心理。陳正芬譯(2014)。《演算法統治世界》。臺北:行人。(原書Steiner, C. [2012]. Automate This: How Algorithms Came to Rule Our World. New York: Portfolio.)陳向明(2002)。《社會科學質的研究》。臺北:五南。陳百齡(2005)。〈想像的群眾?真實的商品?—閱聽人圖像之組織形構分析〉,《圖書與資訊》,51: 頁35-48。陳亭羽、田季芳(2008)。〈網路廣告效果衡量指標之探討〉, 《管理與系統》,15(2): 177-208。陳春富(2008)。〈想像的群眾?真實的商品?—閱聽人圖像之組織形構分析〉,《廣播與電視》,28: 頁71-94。張玉佩(2005)。〈從媒體影像觀照自己:觀展/表演典範之初探〉。《新聞學研究》,82: 41-85。張玉佩(2011)。〈線上遊戲之閱聽人愉悅經驗探〉。《中華傳播學刊》,19: 61-95。張芬芬(2010)。〈質性資料分析的五步驟: 在抽象階梯上爬升〉。《初等教育學刊》, 35: 87-120。張卿卿(2016)。〈線上影音接收,傳散與產製上傳行為探討:多元動機之觀點〉。中華傳播學刊,30: 61-107。高淑清(2008)。《質性研究的18堂課-首航初探之旅》,高雄:麗文文化。萬文隆(2004)。〈深度訪談在質性研究中的應用〉,《生活科技教育月刊》,37(4):17-23。潘淑滿(2004)。《質性研究:理論與應用》。台北:心理出版社。劉欣飴(2009)。〈以社會能供性觀點探討資訊科技認知對合作意願影響之研究〉,《資訊社會研究》,16:89-135。蔡蕙如(2020)。〈串流媒體時代下的閱聽人商品觀點再檢視:以傳播政治經濟學觀點分析 Netflix 追劇勞動〉,《中華傳播學刊》,37:83-112。蘇蘅(2019)。《傳播研究方法新論》。臺北:雙葉書廊。英文文獻Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.Ajzen, I., & Fishbein, M. (1977). Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychological bulletin, 84(5), 888.Atkinson, M., & Kydd, C. (1997). Individual characteristics associated with World Wide Web use: an empirical study of playfulness and motivation. ACM SIGMIS Database: the DATABASE for Advances in Information Systems, 28(2), 53-62.Bodgan, R. C., & Biklen, S. K. (1982). Qualitative Research For Education: An Introduction to Theory and Method. Boston: Ally & Bacon.Bryant, L.V., (2020). The YouTube Algorithm and the Alt-Right Filter Bubble. Open Information Science, 4(1), 85–90.Bucher, T. (2012). Want to be on the top? Algorithmic power and the threat of invisibility on Facebook. New Media & Society, 14(7), 1164-1180.Burgess, S., Sellitto, C., Cox, C. and Buultjens, J. (2009) User-generated content (UGC) in tourism: benefits and concerns of online consumers. 17th European Conference on Information System, Verona.Carlson, J. R. , & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of Management Journal, 42(3): 153-170.Chau, C. (2010). YouTube as a participatory culture. New directions for youth development, 2010(128), 65-74.Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 191-198.Daft, R. L., & Lengel, R. H. (1984). Information richness: A new approach to managerial behavior and organizational design, Research in Organizational Behavior, 6, 191–233.Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32(5), 554–571.Davenport, T. H., & Beck, J. C. (2001). The attention economy. Ubiquity,2001(May), 1-es.Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1002.Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & Sampath,D. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp.293-296).Derlega, V., J., Metts, S., Petronio, S. & Margulis, S. T. (1993). Self-disclosure. Sage Publications.De Marchi, L. (2018). How do YouTube algorithms calculate value? An analysis of the production of value for digital music videos using the social logic of the derivative, MATRIZes 12(2), 193-216.Duffett, R., Petroșanu, D. M., Negricea, I. C., & Edu, T. (2019). Effect of YouTube marketing communication on converting brand liking into preference among millennials regarding brands in general and sustainable offers in particular. Evidence from South Africa and Romania. Sustainability, 11(3), 604.Figueiredo, F., Almeida, J. M., Gonçalves, M. A., & Benevenuto, F. (2014). On the dynamics of social media popularity: A YouTube case study. ACM Transactions on Internet Technology (TOIT), 14(4), 1-23.Fuchs, C. (2008). Internet and society: Social theory in the information age. London, UK: Routledge.Galbraith, J. R. (1974). Organization design: An information processing view.Interfaces, 4(3), 28-36.Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA:Houghton Mifflin Company.Godfrey, A., Seiders, K., & Voss, G. B. (2011). Enough is enough! The fine line in executing multichannel relational communication. Journal of Marketing, 75(4),94-109.Goffman E. (1959). The presentation of self in everyday life. New York: Anchor.Ha, L., & James, E., L. (1998). Interactivity reexamined: A baseline analysis of early business websites. Journal of Broadcasting & Electronic Media, 42(4), 457-474.Haridakis, P., & Hanson, G. (2009). Social Interaction and Co-Viewing with YouTube: Blending Mass Communication Reception and Social Connection.Journal of Broadcasting & Electronic Media, 53, 317-335.Heeter, C. (2000). Interactivity in the context of designed experiences. Journal of Interactive Advertising, 1(1), 3-14Ishii, K., Lyons, M. M., & Carr, S. A. (2019). Revisiting media richness theory for today and future. Human Behavior and Emerging Technologies, 1(2), 124-131.Iskandar, M., & Iskandar, B. P. (2012). Crossing through the information barrier.Journal of Business and Management, 1, 384-388.Iye R, Okuhara T, Okada H, Yokota R, Kiuchi T. (2021). A Content Analysis of Video Advertisements for Dietary Supplements in Japan. Healthcare, 9(6): 742.https://doi.org/10.3390/healthcare9060742Heeter, C. (2000). Interactivity in the context of designed experiences. Journal of interactive advertising, 1(1), 3-14.Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of marketing, 60(3), 50-68.Huh, J., & Malthouse, E. C. (2020). Advancing computational advertising:Conceptualization of the field and future directions. Journal of Advertising, 49(4), 367-376.Kim, S.-T., & Lee, Y.-H. (2006). New functions of Internet mediated agenda-setting:Agenda-rippling and reversed agenda-setting. Korean. Journal of Journalism and Communication Studies, 50(3), 175-205.Kosterich, A., & Napoli, P. M. (2016). Reconfiguring the audience commodity: The institutionalization of social TV analytics as a market information regime.Television & New Media, 17(3), 254-271.Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning: An extension of the Technology Acceptance Model. Computers & Education, 61, 193-208.Lobato, R. (2019). Netflix nations: The geography of digital distribution. New York, NY: New York University.Manetti, G.; Bellucci, M. (2016), The use of social media for engaging stakeholders in sustainability reporting. Account. Audit. Account. J. 2016, 29, 985-1011. doi:10.1108/AAAJ-08-2014-1797.Martin, H., Saifuddin A., Jaeho C., Billy L., & Jonathan, L. (2018). Communicating with Algorithms: A Transfer Entropy Analysis of Emotions-based Escapes from Online Echo Chambers, Communication Methods and Measures, 12(4),260-275.Meehan, E. (1990). Why we don`t count: The commodity audience. Logics of television: Essays in cultural criticism, 117-137.Miles, J. (2014). YouTube marketing power: How to use video to find more prospects, launch your products, and reach a massive audience. McGraw Hill Professional.Miller, K. (2012). Playing along: Digital games, YouTube, and virtual performance.Oxford University Press.Mir, I. A. (2017). Users on Social Network Sites—Flight from Reality and Its Effects on Acceptance of Social Network Advertising: A Gratification Perspective. Journal of Creative Communications, 12(2), 98-121.Moat, H. S., Preis, T., Olivola, C. Y., Liu, C. and Chater, N. (2014). Using big data to predict collective behavior in the real world, Behavioral and Brain Sciences,37(1), 92-93.Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.Mubarak, K., Hilal, M. I. M., (2019) Effect of YouTube usage and marketing communication on brand preference. Journal of Marketing, 4(1); 20-27.Nance, W. D., & Straub, D. W. (1996). An investigation of task/technology fit and information technology choices in knowledge work. Journal of Information Technology Management, 7, 1-14.Napoli, P. M. (2011). Audience evolution: New technologies and the transformation of media audiences. Columbia University Press.Neuman, W. R., Guggenheim, L., Jang, S. M., & Bae, S. Y. (2014). The dynamics of public attention: Agenda-setting theory meets big data. Journal of Communication. 64, 193-214.Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal‐directed and experiential activities on online flow experiences. Journal of consumer psychology, 13(1-2), 3-16.O’Callaghan, D., Greene, D., Conway, M., Carthy, J., & Cunningham, P. (2015).Down the (white) rabbit hole: The extreme right and online recommender systems. Social Science Computer Review, 33(4), 459-478.Papasolomou, I., & Melanthiou, Y. (2012) Social Media: Marketing Public Relations’ New Best Friend. Journal of Promotion Management, 18 (3),319-328.Pashkevich, M., Dorai-Raj, S., Kellar, M., & Zigmond, D. (2012). Empowering online advertisements by empowering viewers with the right to choose the relativeeffectiveness of skippable video advertisements on YouTube. Journal of Advertising Research, 52, 451-457.Roberts, K. K. (2010). Privacy and perceptions: How Facebook advertising affects its users. The Elon Journal of Undergraduate Research in Communications,1(1), 24-34.Shao, G. (2009). Understanding the appeal of user-generated media: A uses and gratification perspective. Internet Research, 19(1), 7-25.Song, J. H., & Zinkhan, G. M. (2008). Determinants of perceived web site interactivity. Journal of marketing, 72(2), 99-113.Sukoco, B. M., & Wu, W. Y. (2011). The effects of advergames on consumer telepresence and attitudes: A comparison of products with search and experience attributes. Expert Systems with Applications, 38(6), 7396-7406.Trevino, L. K., Lengel, R. H., & Daft, R. L. (1987). Media symbolism, media richness, and media choice in organizations: a symbolic interactionist perspective. Communication Research, 14(5), 553-574.Tufekci, Z. (2018). YouTube, the great radicalizer. The New York Times, 10(3),2018.Tutty, L. M., Rothery, M. A., & Grinnell, R. M. (1996). Qualitative research for social workers: Phases, steps, & tasks. Allyn and Bacon.Vakratsas, D., & Ambler, T. (1999). How advertising works: what do we really know?. Journal of marketing, 63(1), 26-43.van Dijk, A. (2009). Society and discourse: How social contexts influence text and talk. Cambridge: Cambridge University Press.Walker, J. D., Killip, D. E., & Fuller, J. L. (1985). The significance of the admission interview in predicting students` performance in dental school. Journal ofMedical Education.Wen, T. J., Chuan, C. H., Yang, J., & Tsai, W. S. (2022). Predicting Advertising Persuasiveness: A Decision Tree Method for Understanding Emotional (In) Congruence of Ad Placement on YouTube. Journal of Current IssuesResearch in Advertising, 43(2), 200-218.Wheeless, L. R. & Grotz, J. (1977). The measurement of trust and its relationship to self-disclosure. Human Communication Research, 3(3), 250-257.White, M., Wijaya, M., & Epston, D. (1990). Narrative means to therapeutic ends.WW Norton & Company.Yoo, C. Y. (2007). Implicit memory measures for web advertising effectiveness. Journalism & Mass Communication Quarterly, 84(1), 7-23.Zhang, K. & Katona, Z. (2011). Contextual Advertising. Marketing Science, 31(6),980-994.網站部分Paige Cooper (2021.06.21)。〈How Does the YouTube Algorithm Work in 2021? The Complete Guide〉,《Hootsuite》,取自https://blog.hootsuite.com/how-the-youtube-algorithm-works/ zh_TW dc.identifier.doi (DOI) 10.6814/NCCU202201591 en_US