學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 結合層級貝氏模型與後驗眾數於顧客購買時間間隔之研究
A Study on Customer Interpurchase Times by Incorporating Hierarchical Bayesian Models with Posterior Mode Estimation
作者 葉秉鈞
Yeh, Ping-Chun
貢獻者 翁久幸
葉秉鈞
Yeh, Ping-Chun
關鍵詞 購買間隔時間
廣義伽瑪分配
最大後驗估計
拉普拉斯近似
正規化
interpurchase times
generalized gamma distribution
maximum a posteriori
Laplace approximation
regularization
日期 2023
上傳時間 2-Aug-2023 13:05:17 (UTC+8)
摘要 馬可夫鏈蒙地卡羅法(Markov chain Monte Carlo,MCMC)在貝氏統計中是一種隨機化方法,在處理複雜函數時表現較好,但需要較長時間收斂。相對而言,貝氏統計中的拉普拉斯近似法較為快速,雖然對於後驗分配的估計較不精準,但在處理大規模資料上,使用這些方法仍是可考慮的選項。
關於顧客購買時間間隔的資料,過去的研究或使用最大概似估計,或使用層級貝氏模型並以MCMC方法進行估計。前者雖計算速度較快,但有過度擬合(overfitting)的情形。後者雖準確度較高,但以MCMC方法運算費時,在大規模資料較不適用。本論文考慮層級貝氏模型以避免過度擬合,再以最大後驗估計取代MCMC之估計,來處理較大比數的資料並提升預測率。
總結而言,本研究結合層級貝氏模型與最大後驗估計,應用於顧客購買時間間隔的問題。本研究的結果顯示,最大後驗估計相較於最大概似估計,雖計算時間稍長,但在AUC有得到提升;而最大後驗估計在計算量上遠低於MCMC,故較適合應用於大規模資料。
Markov chain Monte Carlo (MCMC) is a stochastic method in Bayesian statistics that performs well when dealing with complex functions but requires a longer convergence time. In contrast, several approximate methods in Bayesian statistics are faster but may have lower accuracy. However, these methods can still be considered when handling large-scale data. In previous studies on customers’ interpurchase times , researchers have either used maximum likelihood estimation or employed hierarchical Bayesian models with MCMC for estimation. The former method is faster in computation but prone to overfitting. The latter method offers higher accuracy but is time-consuming when using MCMC, making it less suitable for large-scale data. This paper considers hierarchical Bayesian models to avoid overfitting and replaces MCMC estimation with maximum a posteriori estimation to handle larger datasets and improve prediction accuracy. In summary, this study combines hierarchical Bayesian models with maximum a posteriori estimation for the problem of customers’ interpurchase times. The results show that, compared to maximum likelihood estimation, maximum a posteriori estimation has slightly longer computation time but yields improvements in AUC estimation. On the other hand, maximum a posteriori estimation has significantly lower computational requirements than MCMC, making it more suitable for large-scale data applications.
參考文獻 郭瑞祥、蔣明晃、陳薏棻、楊凱全,”應用層級被式理論於跨商品類別之顧客 購 買期間預測模型”,管理學報,2009 蔣宛蓉,”廣義伽馬分配於顧客購買時間模型之應用”,2020
Allenby, G. M., Leone, R. P., and Jen, L. (1999). A dynamic model of purchase timing with application to direct marketing. Journal of the American Statistical Association, 94(446), pages 365-374.
Cox, C., Chu, H., Schneider, M. F., and Munoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine, 26(23), pages 4352-4374.
Dadpay, A.,Soofi, E. S., and Soyer, R.(2007). Information measures for generalized gamma family. Journal of Econometrics, 138(2), pages 568~585.
Jiang, W. R., Chen, L . S., Weng, C. H .(2021). The Generalized Gamma Distribution with Application to the Modeling of Customer’s Purchase Times. Journal of the Chinese Statistical Association, 59(2021), 255-279.
Stacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.
描述 碩士
國立政治大學
統計學系
110354027
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110354027
資料類型 thesis
dc.contributor.advisor 翁久幸zh_TW
dc.contributor.author (Authors) 葉秉鈞zh_TW
dc.contributor.author (Authors) Yeh, Ping-Chunen_US
dc.creator (作者) 葉秉鈞zh_TW
dc.creator (作者) Yeh, Ping-Chunen_US
dc.date (日期) 2023en_US
dc.date.accessioned 2-Aug-2023 13:05:17 (UTC+8)-
dc.date.available 2-Aug-2023 13:05:17 (UTC+8)-
dc.date.issued (上傳時間) 2-Aug-2023 13:05:17 (UTC+8)-
dc.identifier (Other Identifiers) G0110354027en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146311-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 110354027zh_TW
dc.description.abstract (摘要) 馬可夫鏈蒙地卡羅法(Markov chain Monte Carlo,MCMC)在貝氏統計中是一種隨機化方法,在處理複雜函數時表現較好,但需要較長時間收斂。相對而言,貝氏統計中的拉普拉斯近似法較為快速,雖然對於後驗分配的估計較不精準,但在處理大規模資料上,使用這些方法仍是可考慮的選項。
關於顧客購買時間間隔的資料,過去的研究或使用最大概似估計,或使用層級貝氏模型並以MCMC方法進行估計。前者雖計算速度較快,但有過度擬合(overfitting)的情形。後者雖準確度較高,但以MCMC方法運算費時,在大規模資料較不適用。本論文考慮層級貝氏模型以避免過度擬合,再以最大後驗估計取代MCMC之估計,來處理較大比數的資料並提升預測率。
總結而言,本研究結合層級貝氏模型與最大後驗估計,應用於顧客購買時間間隔的問題。本研究的結果顯示,最大後驗估計相較於最大概似估計,雖計算時間稍長,但在AUC有得到提升;而最大後驗估計在計算量上遠低於MCMC,故較適合應用於大規模資料。
zh_TW
dc.description.abstract (摘要) Markov chain Monte Carlo (MCMC) is a stochastic method in Bayesian statistics that performs well when dealing with complex functions but requires a longer convergence time. In contrast, several approximate methods in Bayesian statistics are faster but may have lower accuracy. However, these methods can still be considered when handling large-scale data. In previous studies on customers’ interpurchase times , researchers have either used maximum likelihood estimation or employed hierarchical Bayesian models with MCMC for estimation. The former method is faster in computation but prone to overfitting. The latter method offers higher accuracy but is time-consuming when using MCMC, making it less suitable for large-scale data. This paper considers hierarchical Bayesian models to avoid overfitting and replaces MCMC estimation with maximum a posteriori estimation to handle larger datasets and improve prediction accuracy. In summary, this study combines hierarchical Bayesian models with maximum a posteriori estimation for the problem of customers’ interpurchase times. The results show that, compared to maximum likelihood estimation, maximum a posteriori estimation has slightly longer computation time but yields improvements in AUC estimation. On the other hand, maximum a posteriori estimation has significantly lower computational requirements than MCMC, making it more suitable for large-scale data applications.en_US
dc.description.tableofcontents 摘要 2
ABSTRACT 3
第一章 緒論與研究動機 6
第二章 文獻回顧 7
第一節 廣義伽瑪分配-機率密度函數與危險函數 7
第二節 廣義伽瑪分配-參數估計方法 8
第三節 層級貝氏模型 11
第三章 研究方法 12
第一節 常用正規化方法介紹 12
第二節 MCMC方法介紹 15
第三節 層級貝氏模型搭配最大後驗估計法 16
第四章 研究結果 19
第一節 資料說明 19
第二節 層級貝氏法搭配最大後驗估計之結果 20
第五章 結論與建議 33
參考文獻 34
zh_TW
dc.format.extent 1811796 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110354027en_US
dc.subject (關鍵詞) 購買間隔時間zh_TW
dc.subject (關鍵詞) 廣義伽瑪分配zh_TW
dc.subject (關鍵詞) 最大後驗估計zh_TW
dc.subject (關鍵詞) 拉普拉斯近似zh_TW
dc.subject (關鍵詞) 正規化zh_TW
dc.subject (關鍵詞) interpurchase timesen_US
dc.subject (關鍵詞) generalized gamma distributionen_US
dc.subject (關鍵詞) maximum a posteriorien_US
dc.subject (關鍵詞) Laplace approximationen_US
dc.subject (關鍵詞) regularizationen_US
dc.title (題名) 結合層級貝氏模型與後驗眾數於顧客購買時間間隔之研究zh_TW
dc.title (題名) A Study on Customer Interpurchase Times by Incorporating Hierarchical Bayesian Models with Posterior Mode Estimationen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 郭瑞祥、蔣明晃、陳薏棻、楊凱全,”應用層級被式理論於跨商品類別之顧客 購 買期間預測模型”,管理學報,2009 蔣宛蓉,”廣義伽馬分配於顧客購買時間模型之應用”,2020
Allenby, G. M., Leone, R. P., and Jen, L. (1999). A dynamic model of purchase timing with application to direct marketing. Journal of the American Statistical Association, 94(446), pages 365-374.
Cox, C., Chu, H., Schneider, M. F., and Munoz, A. (2007). Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Statistics in Medicine, 26(23), pages 4352-4374.
Dadpay, A.,Soofi, E. S., and Soyer, R.(2007). Information measures for generalized gamma family. Journal of Econometrics, 138(2), pages 568~585.
Jiang, W. R., Chen, L . S., Weng, C. H .(2021). The Generalized Gamma Distribution with Application to the Modeling of Customer’s Purchase Times. Journal of the Chinese Statistical Association, 59(2021), 255-279.
Stacy, E. W. (1962). A Generalization of the Gamma Distribution. The Annals of Mathematical Statistics, 33(3), 1187–1192.
zh_TW