學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 基於移動平均和移動標準差的CORN專家切換策略
An CORN expert switching strategy based on moving averages and moving standard deviations
作者 黃旻宜
Huang, Min-Yi
貢獻者 黃子銘<br>鄭宇翔
Huang, Zhi-Min<br>ZHENG,YU-XIANG
黃旻宜
Huang, Min-Yi
關鍵詞 投資組合
相關係數學習無母數方法
移動標準差
移動平均值
交叉驗證
Portfolio selection
Correlation-driven Nonparametric Learning Approach
Moving standard deviation
Moving average
Cross-validation
日期 2023
上傳時間 2-Aug-2023 13:05:31 (UTC+8)
摘要 本研究著重於探討無母數學習的投資組合選擇方法,即Correlation-driven Nonparametric Learning Approach (CORN)。考慮到相關係數門檻與市場視窗選擇對策略表現的關鍵影響,我們提出了兩種策略的改進方法,包括新增辨識歷史相似資料的權重參數、基於移動平均和移動標準差視窗的專家切換策略,並基於定期交叉驗證選擇視窗組合。

實證研究顯示,新引進的權重參數對投資績效確實具有影響力,但過度依賴近期數據可能導致表現不佳。在固定視窗參數的情況下,切換策略可有效地提高累積績效,而且定期進行交叉驗證更能減少策略在某些參數上表現不佳的問題,進而提升模型的穩健性。然而,我們也必須指出,在面對整個市場下跌時,這些策略同時也承受相對較大的損失。因此,在進行投資決策時,我們需要綜合考慮各種因素,並對策略的優缺點做出謹慎評估。
This research explores the Correlation-driven Nonparametric Learning Approach for portfolio selection (CORN). Considering the significant impact of the correlation coefficient threshold and market window selection on strategy performance, we propose two improvements: introducing a new weight parameter for charactering time effect, and a switching strategy based on moving average and moving standard deviation windows with parameters selected using cross validation.

Empirical studies indicate that the new weight parameter impacts performance, but excessive weighting on recent historical data may result in worse performance. Under fixed window parameters, switching strategies effectively enhance cumulative performance. Applying cross-validation for parameter selection can help stabilize the performance of the strategy, increase the robustness of the model. However, during market slumps, these strategies have a higher risk of losses. Therefore, investment decision should be made carefully, taking into consideration of various factors and the pros and cons of the strategies.
參考文獻 Borodin, A., El-Yaniv, R., and Gogan, V. (2004). Can we learn to beat the best stock. Journal of Artificial Intelligence Research 21:579–594.

Cover, T. M. (1991). Universal portfolios. Mathematical finance, 1(1):1–29.

Gaivoronski, A. A. and Stella, F. (2000). Stochastic nonstationary optimization for finding universal portfolios. Annals of Operations Research, 100:165–188.

Györfi, L., Lugosi, G., and Udina, F. (2006). Nonparametric kernel-based sequential in- vestment strategies. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 16(2):337–357.

Györfi, L., Udina, F., and Walk, H. (2008). Nonparametric nearest neighbor based empir- ical portfolio selection strategies. 26(2):145–157.

Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1998). On-line portfolio selection using multiplicative updates. Mathematical Finance, 8(4):325–347.
Huang, D., Zhou, J., Li, B., Hoi, S. C., and Zhou, S. (2016). Robust median reversion strategy for online portfolio selection. IEEE Transactions on Knowledge and Data Engineering, 28(9):2480–2493.

Kelly, J. L. (1956). A new interpretation of information rate. the Bell system technical journal, 35(4):917–926.

Kozat, S. S. and Singer, A. C. (2007). Universal constant rebalanced portfolios with switching. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pages 1129–1132.

Li, B. and Hoi, S. C. (2014). Online portfolio selection: A survey. ACM Computing Surveys (CSUR), 46(3):1–36.

Li, B., Hoi, S. C., and Gopalkrishnan, V. (2011). CORN: Correlation-driven nonparametric learning approach for portfolio selection. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):1–29.

Li, B., Hoi, S. C., Sahoo, D., and Liu, Z.-Y. (2015). Moving average reversion strategy for on-line portfolio selection. Artificial Intelligence, 222:104–123.

Li, B., Hoi, S. C., Zhao, P., and Gopalkrishnan, V. (2013). Confidence weighted mean reversion strategy for online portfolio selection. ACM Transactions on Knowledge Dis- covery from Data (TKDD), 7(1):1–38.

Li, B., Zhao, P., Hoi, S. C., and Gopalkrishnan, V. (2012). PAMR: Passive aggressive mean reversion strategy for portfolio selection. Machine learning, 87:221–258.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

Vovk, V. and Watkins, C. (1998). Universal portfolio selection. In Proceedings of the
eleventh annual conference on Computational learning theory, pages 12–23.
描述 碩士
國立政治大學
統計學系
110354028
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110354028
資料類型 thesis
dc.contributor.advisor 黃子銘<br>鄭宇翔zh_TW
dc.contributor.advisor Huang, Zhi-Min<br>ZHENG,YU-XIANGen_US
dc.contributor.author (Authors) 黃旻宜zh_TW
dc.contributor.author (Authors) Huang, Min-Yien_US
dc.creator (作者) 黃旻宜zh_TW
dc.creator (作者) Huang, Min-Yien_US
dc.date (日期) 2023en_US
dc.date.accessioned 2-Aug-2023 13:05:31 (UTC+8)-
dc.date.available 2-Aug-2023 13:05:31 (UTC+8)-
dc.date.issued (上傳時間) 2-Aug-2023 13:05:31 (UTC+8)-
dc.identifier (Other Identifiers) G0110354028en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146312-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計學系zh_TW
dc.description (描述) 110354028zh_TW
dc.description.abstract (摘要) 本研究著重於探討無母數學習的投資組合選擇方法,即Correlation-driven Nonparametric Learning Approach (CORN)。考慮到相關係數門檻與市場視窗選擇對策略表現的關鍵影響,我們提出了兩種策略的改進方法,包括新增辨識歷史相似資料的權重參數、基於移動平均和移動標準差視窗的專家切換策略,並基於定期交叉驗證選擇視窗組合。

實證研究顯示,新引進的權重參數對投資績效確實具有影響力,但過度依賴近期數據可能導致表現不佳。在固定視窗參數的情況下,切換策略可有效地提高累積績效,而且定期進行交叉驗證更能減少策略在某些參數上表現不佳的問題,進而提升模型的穩健性。然而,我們也必須指出,在面對整個市場下跌時,這些策略同時也承受相對較大的損失。因此,在進行投資決策時,我們需要綜合考慮各種因素,並對策略的優缺點做出謹慎評估。
zh_TW
dc.description.abstract (摘要) This research explores the Correlation-driven Nonparametric Learning Approach for portfolio selection (CORN). Considering the significant impact of the correlation coefficient threshold and market window selection on strategy performance, we propose two improvements: introducing a new weight parameter for charactering time effect, and a switching strategy based on moving average and moving standard deviation windows with parameters selected using cross validation.

Empirical studies indicate that the new weight parameter impacts performance, but excessive weighting on recent historical data may result in worse performance. Under fixed window parameters, switching strategies effectively enhance cumulative performance. Applying cross-validation for parameter selection can help stabilize the performance of the strategy, increase the robustness of the model. However, during market slumps, these strategies have a higher risk of losses. Therefore, investment decision should be made carefully, taking into consideration of various factors and the pros and cons of the strategies.
en_US
dc.description.tableofcontents 摘要 i
Abstract ii
目次 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
第二章 問題設計 4
第三章 文獻回顧 6
第一節 Markowitz投資組合理論 6
第二節 線上投資組合選擇 6
2.1 基準Benchmarks 7
2.2 跟隨贏家Follow-the-Winner 8
2.3 跟隨輸家Follow-the-Loser 9
2.4 模型匹配方法Pattern-Matching Approaches 11
第四章 研究方法 13
第一節 研究動機 13
第二節 相關係數學習無母數投資組合 15
第三節 新增CORN歷史相似集的權重參數θ 16
第四節 以移動標準差和移動平均視窗的切換策略 17
第五節 交叉驗證選擇視窗組合的切換策略 19
第六節 演算法 20
6.1 固定移動標準差和移動平均的切換策略 20
6.2 交叉驗證選擇移動標準差和移動平均的切換策略 20
第五章 實證結果 23
第一節 資料來源 23
第二節 累積績效評估 24
2.1 原始 CORN 累積績效評估 25
2.2 CORN 新增θ累積績效評估 28
2.3 固定視窗組合之切換策略累積績效評估 31
2.4 交叉驗證篩選視窗組合之切換策略累積績效評估 38
第三節 風險指標評估 43
3.1 夏普比率 43
3.2 最大回撤率 46
第六章 結論與建議 49
參考文獻 51
zh_TW
dc.format.extent 3803364 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110354028en_US
dc.subject (關鍵詞) 投資組合zh_TW
dc.subject (關鍵詞) 相關係數學習無母數方法zh_TW
dc.subject (關鍵詞) 移動標準差zh_TW
dc.subject (關鍵詞) 移動平均值zh_TW
dc.subject (關鍵詞) 交叉驗證zh_TW
dc.subject (關鍵詞) Portfolio selectionen_US
dc.subject (關鍵詞) Correlation-driven Nonparametric Learning Approachen_US
dc.subject (關鍵詞) Moving standard deviationen_US
dc.subject (關鍵詞) Moving averageen_US
dc.subject (關鍵詞) Cross-validationen_US
dc.title (題名) 基於移動平均和移動標準差的CORN專家切換策略zh_TW
dc.title (題名) An CORN expert switching strategy based on moving averages and moving standard deviationsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Borodin, A., El-Yaniv, R., and Gogan, V. (2004). Can we learn to beat the best stock. Journal of Artificial Intelligence Research 21:579–594.

Cover, T. M. (1991). Universal portfolios. Mathematical finance, 1(1):1–29.

Gaivoronski, A. A. and Stella, F. (2000). Stochastic nonstationary optimization for finding universal portfolios. Annals of Operations Research, 100:165–188.

Györfi, L., Lugosi, G., and Udina, F. (2006). Nonparametric kernel-based sequential in- vestment strategies. Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics, 16(2):337–357.

Györfi, L., Udina, F., and Walk, H. (2008). Nonparametric nearest neighbor based empir- ical portfolio selection strategies. 26(2):145–157.

Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth, M. K. (1998). On-line portfolio selection using multiplicative updates. Mathematical Finance, 8(4):325–347.
Huang, D., Zhou, J., Li, B., Hoi, S. C., and Zhou, S. (2016). Robust median reversion strategy for online portfolio selection. IEEE Transactions on Knowledge and Data Engineering, 28(9):2480–2493.

Kelly, J. L. (1956). A new interpretation of information rate. the Bell system technical journal, 35(4):917–926.

Kozat, S. S. and Singer, A. C. (2007). Universal constant rebalanced portfolios with switching. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pages 1129–1132.

Li, B. and Hoi, S. C. (2014). Online portfolio selection: A survey. ACM Computing Surveys (CSUR), 46(3):1–36.

Li, B., Hoi, S. C., and Gopalkrishnan, V. (2011). CORN: Correlation-driven nonparametric learning approach for portfolio selection. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):1–29.

Li, B., Hoi, S. C., Sahoo, D., and Liu, Z.-Y. (2015). Moving average reversion strategy for on-line portfolio selection. Artificial Intelligence, 222:104–123.

Li, B., Hoi, S. C., Zhao, P., and Gopalkrishnan, V. (2013). Confidence weighted mean reversion strategy for online portfolio selection. ACM Transactions on Knowledge Dis- covery from Data (TKDD), 7(1):1–38.

Li, B., Zhao, P., Hoi, S. C., and Gopalkrishnan, V. (2012). PAMR: Passive aggressive mean reversion strategy for portfolio selection. Machine learning, 87:221–258.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77–91.

Vovk, V. and Watkins, C. (1998). Universal portfolio selection. In Proceedings of the
eleventh annual conference on Computational learning theory, pages 12–23.
zh_TW