學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 基於深度學習的自動化山崩地圖判讀研究:模型訓練與後處理方法
Automated Landslide Map Interpretation Based on Deep Learning: Model Training and Post-Processing Methods
作者 曾子玲
Zeng, Zi-Ling
貢獻者 林士淵
Lin, Shih-Yuan
曾子玲
Zeng, Zi-Ling
關鍵詞 山崩目錄
自動化圈繪
深度學習
後處理
日期 2023
上傳時間 2-Aug-2023 13:40:14 (UTC+8)
摘要 山崩這項天然災害於多山環境且降雨量高的臺灣影響甚大,而建置山崩目錄的工作能夠協助進行山崩災害的風險評估,並有效減災。然而,臺灣目前的山崩目錄建置工作缺乏一定的判釋標準,山崩的識別來自多方專家人工進行判釋,因此若能快速準確且合理地進行山崩判釋,即自動化圈繪山崩,相較於傳統手動方法,將能快速識別山崩區域,減少人工判讀的工作量,並能提供山崩目錄建置以及山崩災害管理一個更高效的方法。
本研究選擇南投縣作為透過深度學習的自動化山崩地圖判讀的研究區域。首先,選擇不同年份和月份的衛星影像,建立各年Unet山崩判釋模型,為模擬專家人工判釋過程,訓練模型使用了衛星影像的RBG值、遙測相關指標(如NDVI和NDWI)及地形因素(如TWI、坡度、數值高程模型)作為特徵。接著,進行模型的後處理,分為三階段進行調整:第一節段是設定二元門檻值,選擇產生較佳的F1-score的門檻值作為每個模型的相應門檻值;第二階段是使用集成模型,將各年份模型判釋成果結合起來生成最終的判釋成果;第三階段是僅選擇較佳精度的模型作為集成模型的參考,以提高整體判釋的準確性。綜合以上的後處理調整與方法,本研究完成穩定性高、可靠性高的自動化山崩地圖判釋模型。
本研究成果亦呈現模型對於山崩面積大小的精度影響,透過面積遮罩的方式探討模型的準確性及誤判性。在三階段的後處理調整及方法應用,模型於三年的山崩預測精度F1-score為58.61%、58.69%、59.84%,接近60%的穩定判釋能力。
參考文獻 1. 林彥廷, 顏筱穎, 張乃軒, 林宏明, 韓仁毓, 楊國鑫, et al. 應用AI學習技術於坡地崩塌預測分析-以高雄市小林村為例. 土木水利. 2021;48(2):48-55. doi: 10.6653/MoCICHE.202104_48(2).0007.
2. Azmoon B, Biniyaz A, Liu Z. Use of High-Resolution Multi-Temporal DEM Data for Landslide Detection. Geosciences. 2022;12(10):378.
3. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(12):2481-95. doi: 10.1109/TPAMI.2016.2644615.
4. Bajracharya B, Bajracharya S. LANDSLIDE MAPPING OF THE EVEREST REGION USING HIGH RESOLUTION SATELLITE IMAGES AND 3D VISUALIZATION. 2008.
5. Bernat Gazibara S, Krkač M, Mihalić Arbanas S. Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia). Journal of Maps. 2019;15(2):773-9. doi: 10.1080/17445647.2019.1671906.
6. Borghuis AM, Chang K, Lee HY. Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery. International Journal of Remote Sensing. 2007;28(8):1843-56. doi: 10.1080/01431160600935638.
7. Cascini L, Fornaro G, Peduto D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing. 2009;64(6):598-611. doi: https://doi.org/10.1016/j.isprsjprs.2009.05.003.
8. Chen H, He Y, Zhang L, Yao S, Yang W, Fang Y, et al. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. International Journal of Digital Earth. 2023;16(1):552-77. doi: 10.1080/17538947.2023.2177359.
9. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille A. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. CoRR arXiv. 2014.
10. Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. 2017.
11. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision – ECCV 2018. Cham: Springer International Publishing; 2018. p. 833-51.
12. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(4):834-48. doi: 10.1109/TPAMI.2017.2699184.
13. Cruden D, Varnes D. Landslides: Investigation and Mitigation. 1996.
14. Czuchlewski K, Weissel J, Kim Y. Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research. 2003;108. doi: 10.1029/2003JF000037.
15. Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR Interferometry. Geoscience and Remote Sensing, IEEE Transactions on. 2000;38:2202-12. doi: 10.1109/36.868878.
16. Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, et al. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology. 2011;129(1):59-70. doi: https://doi.org/10.1016/j.geomorph.2011.01.013.
17. Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research. 1989;94:9183-91.
18. Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sensing. 2019;11(2):196.
19. Ghorbanzadeh O, Crivellari A, Ghamisi P, Shahabi H, Blaschke T. A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan). Scientific Reports. 2021;11(1):14629. doi: 10.1038/s41598-021-94190-9.
20. Ghorbanzadeh O, Shahabi H, Crivellari A, Homayouni S, Blaschke T, Ghamisi P. Landslide detection using deep learning and object-based image analysis. Landslides. 2022;19(4):929-39. doi: 10.1007/s10346-021-01843-x.
21. Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV)2015. p. 1440-8.
22. Girshick R, Donahue J, Darrell T, Malik J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition2014. p. 580-7.
23. Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, et al. Analysis of Ground Deformation Detected Using the SBAS-DInSAR Technique in Umbria, Central Italy. Pure and Applied Geophysics. 2009;166(8):1425-59. doi: 10.1007/s00024-009-0491-4.
24. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews. 2012;112(1):42-66. doi: https://doi.org/10.1016/j.earscirev.2012.02.001.
25. Haeberlin Y, Turberg P, Retiere A, Senegas O, Parriaux A. VALIDATION OF SPOT-5 SATELLITE IMAGERY FOR GEOLOGICAL HAZARD IDENTIFICATION AND RISK ASSESSMENT FOR LANDSLIDES , MUD AND DEBRIS FLOWS IN MATAGALPA , NICARAGUA. 2004.
26. He K, Zhang X, Ren S, Sun J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2014;37. doi: 10.1109/TPAMI.2015.2389824.
27. Iverson R. Iverson, R.M.: Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897-1910. Water Resources Research - WATER RESOUR RES. 2000;36. doi: 10.1029/2000WR900090.
28. Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, et al. Use of LIDAR in landslide investigations: a review. Natural Hazards. 2012;61(1):5-28. doi: 10.1007/s11069-010-9634-2.
29. Ji S, Yu D, Shen C, Li W, Xu Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides. 2020;17(6):1337-52. doi: 10.1007/s10346-020-01353-2.
30. Kanungo DP, Arora MK, Sarkar S, Gupta RP. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology. 2006;85(3):347-66. doi: https://doi.org/10.1016/j.enggeo.2006.03.004.
31. Lary DJ, Alavi AH, Gandomi AH, Walker AL. Machine learning in geosciences and remote sensing. Geoscience Frontiers. 2016;7(1):3-10. doi: https://doi.org/10.1016/j.gsf.2015.07.003.
32. Lauknes TR, Piyush Shanker A, Dehls JF, Zebker HA, Henderson IHC, Larsen Y. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment. 2010;114(9):2097-109. doi: https://doi.org/10.1016/j.rse.2010.04.015.
33. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. doi: 10.1038/nature14539.
34. Lei T, Zhang Y, Lv Z, Li S, Liu S, Nandi AK. Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters. 2019;16(6):982-6. doi: 10.1109/LGRS.2018.2889307.
35. Li L, Qin Z, Zhang Q. Landslide Recognition Based on the Improved U-net. 2021 4th International Conference on Computer Science and Software Engineering (CSSE 2021). 2021.
36. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid Networks for Object Detection. 2016.
37. Liu J-K, Wong C-C, Huang J-H, Yang M-J. LANDSLIDE-ENHANCEMENT IMAGES FOR THE STUDY OF TORRENTIAL-RAINFALL LANDSLIDES. 2002.
38. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: Single Shot MultiBox Detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision – ECCV 2016. Cham: Springer International Publishing; 2016. p. 21-37.
39. Lu P, Stumpf A, Kerle N, Casagli N. Object-Oriented Change Detection for Landslide Rapid Mapping. IEEE Geoscience and Remote Sensing Letters. 2011;8(4):701-5. doi: 10.1109/LGRS.2010.2101045.
40. Ma Z, Mei G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Science Reviews. 2021;223:103858. doi: https://doi.org/10.1016/j.earscirev.2021.103858.
41. Marcelino EV, Formaggio AR, Maeda EE. Landslide inventory using image fusion techniques in Brazil. International Journal of Applied Earth Observation and Geoinformation. 2009;11(3):181-91. doi: https://doi.org/10.1016/j.jag.2009.01.003.
42. Martha TR, Babu Govindharaj K, Vinod Kumar K. Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim, India using very high resolution satellite data. Geoscience Frontiers. 2015;6(6):793-805. doi: https://doi.org/10.1016/j.gsf.2013.12.011.
43. Martha TR, Kamala P, Jose J, Vinod Kumar K, Jai Sankar G. Identification of new Landslides from High Resolution Satellite Data Covering a Large Area Using Object-Based Change Detection Methods. Journal of the Indian Society of Remote Sensing. 2016;44(4):515-24. doi: 10.1007/s12524-015-0532-7.
44. Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology. 2010;116(1):24-36. doi: https://doi.org/10.1016/j.geomorph.2009.10.004.
45. Milletari F, Navab N, Ahmadi S-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). 2016:565-71.
46. Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment. 2011;115(7):1743-57. doi: https://doi.org/10.1016/j.rse.2011.03.006.
47. Moosavi V, Talebi A, Shirmohammadi B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology. 2014;204:646-56. doi: https://doi.org/10.1016/j.geomorph.2013.09.012.
48. Nava L, Bhuyan K, Meena SR, Monserrat O, Catani F. Rapid Mapping of Landslides on SAR Data by Attention U-Net. Remote Sensing. 2022;14(6):1449.
49. Park N-W, Chi K-H. Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. International Journal of Remote Sensing - INT J REMOTE SENS. 2008;29:247-64. doi: 10.1080/01431160701227661.
50. Prakash N, Manconi A, Loew S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sensing. 2020;12(3):346.
51. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. A review of statistically-based landslide susceptibility models. Earth-Science Reviews. 2018;180:60-91. doi: https://doi.org/10.1016/j.earscirev.2018.03.001.
52. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015;39. doi: 10.1109/TPAMI.2016.2577031.
53. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234-41.
54. Santangelo M, Cardinali M, Rossi M, Mondini AC, Guzzetti F. Remote landslide mapping using a laser rangefinder binocular and GPS. Nat Hazards Earth Syst Sci. 2010;10(12):2539-46. doi: 10.5194/nhess-10-2539-2010.
55. Schulz WH. Landslides mapped using LIDAR imagery, Seattle, Washington. 2004.
56. Shahabi H, Rahimzad M, Ghorbanzadeh O, Piralilou ST, Blaschke T, Homayouni S, et al. Rapid Mapping of Landslides from Sentinel-2 Data Using Unsupervised Deep Learning. 2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS)2022. p. 17-20.
57. Shahabi H, Rahimzad M, Tavakkoli Piralilou S, Ghorbanzadeh O, Homayouni S, Blaschke T, et al. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery. Remote Sensing. 2021 doi: 10.3390/rs13224698.
58. Shaikh SH, Saeed K, Chaki N. Moving Object Detection Approaches, Challenges and Object Tracking. In: Shaikh SH, Saeed K, Chaki N, editors. Moving Object Detection Using Background Subtraction. Cham: Springer International Publishing; 2014. p. 5-14.
59. Shi W, Zhang M, Ke H, Fang X, Zhan Z, Chen S. Landslide Recognition by Deep Convolutional Neural Network and Change Detection. IEEE Transactions on Geoscience and Remote Sensing. 2021;59(6):4654-72. doi: 10.1109/TGRS.2020.3015826.
60. Stumpf A, Kerle N. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment. 2011;115(10):2564-77. doi: https://doi.org/10.1016/j.rse.2011.05.013.
61. Tyagi A, Kamal Tiwari R, James N. A review on spatial, temporal and magnitude prediction of landslide hazard. Journal of Asian Earth Sciences: X. 2022;7:100099. doi: https://doi.org/10.1016/j.jaesx.2022.100099.
62. Wang H, Zhang L, Yin K, Luo H, Li J. Landslide identification using machine learning. Geoscience Frontiers. 2021;12(1):351-64. doi: https://doi.org/10.1016/j.gsf.2020.02.012.
63. Wolff Moine M, Puissant A, Malet JP. Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. 2009.
64. Yang S, Wang Y, Wang P, Mu J, Jiao S, Zhao X, et al. Automatic Identification of Landslides Based on Deep Learning. Applied Sciences. 2022;12(16):8153.
65. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2017. p. 6230-9.
66. Zhao ZQ, Zheng P, Xu ST, Wu X. Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(11):3212-32. doi: 10.1109/TNNLS.2018.2876865.
67. Zhiqiang W, Jun L. A review of object detection based on convolutional neural network. 2017 36th Chinese Control Conference (CCC)2017. p. 11104-9.
68. Zou Z, Shi Z, Guo Y, Ye J. Object Detection in 20 Years: A Survey. 2019.
描述 碩士
國立政治大學
地政學系
110257027
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110257027
資料類型 thesis
dc.contributor.advisor 林士淵zh_TW
dc.contributor.advisor Lin, Shih-Yuanen_US
dc.contributor.author (Authors) 曾子玲zh_TW
dc.contributor.author (Authors) Zeng, Zi-Lingen_US
dc.creator (作者) 曾子玲zh_TW
dc.creator (作者) Zeng, Zi-Lingen_US
dc.date (日期) 2023en_US
dc.date.accessioned 2-Aug-2023 13:40:14 (UTC+8)-
dc.date.available 2-Aug-2023 13:40:14 (UTC+8)-
dc.date.issued (上傳時間) 2-Aug-2023 13:40:14 (UTC+8)-
dc.identifier (Other Identifiers) G0110257027en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146465-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 110257027zh_TW
dc.description.abstract (摘要) 山崩這項天然災害於多山環境且降雨量高的臺灣影響甚大,而建置山崩目錄的工作能夠協助進行山崩災害的風險評估,並有效減災。然而,臺灣目前的山崩目錄建置工作缺乏一定的判釋標準,山崩的識別來自多方專家人工進行判釋,因此若能快速準確且合理地進行山崩判釋,即自動化圈繪山崩,相較於傳統手動方法,將能快速識別山崩區域,減少人工判讀的工作量,並能提供山崩目錄建置以及山崩災害管理一個更高效的方法。
本研究選擇南投縣作為透過深度學習的自動化山崩地圖判讀的研究區域。首先,選擇不同年份和月份的衛星影像,建立各年Unet山崩判釋模型,為模擬專家人工判釋過程,訓練模型使用了衛星影像的RBG值、遙測相關指標(如NDVI和NDWI)及地形因素(如TWI、坡度、數值高程模型)作為特徵。接著,進行模型的後處理,分為三階段進行調整:第一節段是設定二元門檻值,選擇產生較佳的F1-score的門檻值作為每個模型的相應門檻值;第二階段是使用集成模型,將各年份模型判釋成果結合起來生成最終的判釋成果;第三階段是僅選擇較佳精度的模型作為集成模型的參考,以提高整體判釋的準確性。綜合以上的後處理調整與方法,本研究完成穩定性高、可靠性高的自動化山崩地圖判釋模型。
本研究成果亦呈現模型對於山崩面積大小的精度影響,透過面積遮罩的方式探討模型的準確性及誤判性。在三階段的後處理調整及方法應用,模型於三年的山崩預測精度F1-score為58.61%、58.69%、59.84%,接近60%的穩定判釋能力。
zh_TW
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構 5
第二章 文獻回顧 6
第一節 傳統遙測偵測山崩 6
第二節 遙測偵測山崩新發展 11
第三節 文獻回顧小結 24
第三章 研究方法 26
第一節 研究區域 26
第二節 研究資料及工具 27
第三節 研究設計與理論基礎 32
第四章 實驗成果與分析 43
第一節 深度學習模型精度評估 43
第二節 模型測試成果與後處理分析 47
第五章 基於實驗成果的近一步探究 56
第六章 結論 61
參考文獻 63
zh_TW
dc.format.extent 3701977 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110257027en_US
dc.subject (關鍵詞) 山崩目錄zh_TW
dc.subject (關鍵詞) 自動化圈繪zh_TW
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) 後處理zh_TW
dc.title (題名) 基於深度學習的自動化山崩地圖判讀研究:模型訓練與後處理方法zh_TW
dc.title (題名) Automated Landslide Map Interpretation Based on Deep Learning: Model Training and Post-Processing Methodsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1. 林彥廷, 顏筱穎, 張乃軒, 林宏明, 韓仁毓, 楊國鑫, et al. 應用AI學習技術於坡地崩塌預測分析-以高雄市小林村為例. 土木水利. 2021;48(2):48-55. doi: 10.6653/MoCICHE.202104_48(2).0007.
2. Azmoon B, Biniyaz A, Liu Z. Use of High-Resolution Multi-Temporal DEM Data for Landslide Detection. Geosciences. 2022;12(10):378.
3. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(12):2481-95. doi: 10.1109/TPAMI.2016.2644615.
4. Bajracharya B, Bajracharya S. LANDSLIDE MAPPING OF THE EVEREST REGION USING HIGH RESOLUTION SATELLITE IMAGES AND 3D VISUALIZATION. 2008.
5. Bernat Gazibara S, Krkač M, Mihalić Arbanas S. Landslide inventory mapping using LiDAR data in the City of Zagreb (Croatia). Journal of Maps. 2019;15(2):773-9. doi: 10.1080/17445647.2019.1671906.
6. Borghuis AM, Chang K, Lee HY. Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery. International Journal of Remote Sensing. 2007;28(8):1843-56. doi: 10.1080/01431160600935638.
7. Cascini L, Fornaro G, Peduto D. Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing. 2009;64(6):598-611. doi: https://doi.org/10.1016/j.isprsjprs.2009.05.003.
8. Chen H, He Y, Zhang L, Yao S, Yang W, Fang Y, et al. A landslide extraction method of channel attention mechanism U-Net network based on Sentinel-2A remote sensing images. International Journal of Digital Earth. 2023;16(1):552-77. doi: 10.1080/17538947.2023.2177359.
9. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille A. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. CoRR arXiv. 2014.
10. Chen L-C, Papandreou G, Schroff F, Adam H. Rethinking Atrous Convolution for Semantic Image Segmentation. 2017.
11. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer Vision – ECCV 2018. Cham: Springer International Publishing; 2018. p. 833-51.
12. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(4):834-48. doi: 10.1109/TPAMI.2017.2699184.
13. Cruden D, Varnes D. Landslides: Investigation and Mitigation. 1996.
14. Czuchlewski K, Weissel J, Kim Y. Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research. 2003;108. doi: 10.1029/2003JF000037.
15. Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR Interferometry. Geoscience and Remote Sensing, IEEE Transactions on. 2000;38:2202-12. doi: 10.1109/36.868878.
16. Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini AC, Santurri L, et al. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology. 2011;129(1):59-70. doi: https://doi.org/10.1016/j.geomorph.2011.01.013.
17. Gabriel AK, Goldstein RM, Zebker HA. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research. 1989;94:9183-91.
18. Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sensing. 2019;11(2):196.
19. Ghorbanzadeh O, Crivellari A, Ghamisi P, Shahabi H, Blaschke T. A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan). Scientific Reports. 2021;11(1):14629. doi: 10.1038/s41598-021-94190-9.
20. Ghorbanzadeh O, Shahabi H, Crivellari A, Homayouni S, Blaschke T, Ghamisi P. Landslide detection using deep learning and object-based image analysis. Landslides. 2022;19(4):929-39. doi: 10.1007/s10346-021-01843-x.
21. Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV)2015. p. 1440-8.
22. Girshick R, Donahue J, Darrell T, Malik J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition2014. p. 580-7.
23. Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, et al. Analysis of Ground Deformation Detected Using the SBAS-DInSAR Technique in Umbria, Central Italy. Pure and Applied Geophysics. 2009;166(8):1425-59. doi: 10.1007/s00024-009-0491-4.
24. Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K-T. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews. 2012;112(1):42-66. doi: https://doi.org/10.1016/j.earscirev.2012.02.001.
25. Haeberlin Y, Turberg P, Retiere A, Senegas O, Parriaux A. VALIDATION OF SPOT-5 SATELLITE IMAGERY FOR GEOLOGICAL HAZARD IDENTIFICATION AND RISK ASSESSMENT FOR LANDSLIDES , MUD AND DEBRIS FLOWS IN MATAGALPA , NICARAGUA. 2004.
26. He K, Zhang X, Ren S, Sun J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2014;37. doi: 10.1109/TPAMI.2015.2389824.
27. Iverson R. Iverson, R.M.: Landslide triggering by rain infiltration. Water Resour. Res. 36, 1897-1910. Water Resources Research - WATER RESOUR RES. 2000;36. doi: 10.1029/2000WR900090.
28. Jaboyedoff M, Oppikofer T, Abellán A, Derron M-H, Loye A, Metzger R, et al. Use of LIDAR in landslide investigations: a review. Natural Hazards. 2012;61(1):5-28. doi: 10.1007/s11069-010-9634-2.
29. Ji S, Yu D, Shen C, Li W, Xu Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides. 2020;17(6):1337-52. doi: 10.1007/s10346-020-01353-2.
30. Kanungo DP, Arora MK, Sarkar S, Gupta RP. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology. 2006;85(3):347-66. doi: https://doi.org/10.1016/j.enggeo.2006.03.004.
31. Lary DJ, Alavi AH, Gandomi AH, Walker AL. Machine learning in geosciences and remote sensing. Geoscience Frontiers. 2016;7(1):3-10. doi: https://doi.org/10.1016/j.gsf.2015.07.003.
32. Lauknes TR, Piyush Shanker A, Dehls JF, Zebker HA, Henderson IHC, Larsen Y. Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment. 2010;114(9):2097-109. doi: https://doi.org/10.1016/j.rse.2010.04.015.
33. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. doi: 10.1038/nature14539.
34. Lei T, Zhang Y, Lv Z, Li S, Liu S, Nandi AK. Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters. 2019;16(6):982-6. doi: 10.1109/LGRS.2018.2889307.
35. Li L, Qin Z, Zhang Q. Landslide Recognition Based on the Improved U-net. 2021 4th International Conference on Computer Science and Software Engineering (CSSE 2021). 2021.
36. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature Pyramid Networks for Object Detection. 2016.
37. Liu J-K, Wong C-C, Huang J-H, Yang M-J. LANDSLIDE-ENHANCEMENT IMAGES FOR THE STUDY OF TORRENTIAL-RAINFALL LANDSLIDES. 2002.
38. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: Single Shot MultiBox Detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer Vision – ECCV 2016. Cham: Springer International Publishing; 2016. p. 21-37.
39. Lu P, Stumpf A, Kerle N, Casagli N. Object-Oriented Change Detection for Landslide Rapid Mapping. IEEE Geoscience and Remote Sensing Letters. 2011;8(4):701-5. doi: 10.1109/LGRS.2010.2101045.
40. Ma Z, Mei G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Science Reviews. 2021;223:103858. doi: https://doi.org/10.1016/j.earscirev.2021.103858.
41. Marcelino EV, Formaggio AR, Maeda EE. Landslide inventory using image fusion techniques in Brazil. International Journal of Applied Earth Observation and Geoinformation. 2009;11(3):181-91. doi: https://doi.org/10.1016/j.jag.2009.01.003.
42. Martha TR, Babu Govindharaj K, Vinod Kumar K. Damage and geological assessment of the 18 September 2011 Mw 6.9 earthquake in Sikkim, India using very high resolution satellite data. Geoscience Frontiers. 2015;6(6):793-805. doi: https://doi.org/10.1016/j.gsf.2013.12.011.
43. Martha TR, Kamala P, Jose J, Vinod Kumar K, Jai Sankar G. Identification of new Landslides from High Resolution Satellite Data Covering a Large Area Using Object-Based Change Detection Methods. Journal of the Indian Society of Remote Sensing. 2016;44(4):515-24. doi: 10.1007/s12524-015-0532-7.
44. Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology. 2010;116(1):24-36. doi: https://doi.org/10.1016/j.geomorph.2009.10.004.
45. Milletari F, Navab N, Ahmadi S-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). 2016:565-71.
46. Mondini AC, Guzzetti F, Reichenbach P, Rossi M, Cardinali M, Ardizzone F. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment. 2011;115(7):1743-57. doi: https://doi.org/10.1016/j.rse.2011.03.006.
47. Moosavi V, Talebi A, Shirmohammadi B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology. 2014;204:646-56. doi: https://doi.org/10.1016/j.geomorph.2013.09.012.
48. Nava L, Bhuyan K, Meena SR, Monserrat O, Catani F. Rapid Mapping of Landslides on SAR Data by Attention U-Net. Remote Sensing. 2022;14(6):1449.
49. Park N-W, Chi K-H. Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. International Journal of Remote Sensing - INT J REMOTE SENS. 2008;29:247-64. doi: 10.1080/01431160701227661.
50. Prakash N, Manconi A, Loew S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sensing. 2020;12(3):346.
51. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. A review of statistically-based landslide susceptibility models. Earth-Science Reviews. 2018;180:60-91. doi: https://doi.org/10.1016/j.earscirev.2018.03.001.
52. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015;39. doi: 10.1109/TPAMI.2016.2577031.
53. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234-41.
54. Santangelo M, Cardinali M, Rossi M, Mondini AC, Guzzetti F. Remote landslide mapping using a laser rangefinder binocular and GPS. Nat Hazards Earth Syst Sci. 2010;10(12):2539-46. doi: 10.5194/nhess-10-2539-2010.
55. Schulz WH. Landslides mapped using LIDAR imagery, Seattle, Washington. 2004.
56. Shahabi H, Rahimzad M, Ghorbanzadeh O, Piralilou ST, Blaschke T, Homayouni S, et al. Rapid Mapping of Landslides from Sentinel-2 Data Using Unsupervised Deep Learning. 2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS)2022. p. 17-20.
57. Shahabi H, Rahimzad M, Tavakkoli Piralilou S, Ghorbanzadeh O, Homayouni S, Blaschke T, et al. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery. Remote Sensing. 2021 doi: 10.3390/rs13224698.
58. Shaikh SH, Saeed K, Chaki N. Moving Object Detection Approaches, Challenges and Object Tracking. In: Shaikh SH, Saeed K, Chaki N, editors. Moving Object Detection Using Background Subtraction. Cham: Springer International Publishing; 2014. p. 5-14.
59. Shi W, Zhang M, Ke H, Fang X, Zhan Z, Chen S. Landslide Recognition by Deep Convolutional Neural Network and Change Detection. IEEE Transactions on Geoscience and Remote Sensing. 2021;59(6):4654-72. doi: 10.1109/TGRS.2020.3015826.
60. Stumpf A, Kerle N. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment. 2011;115(10):2564-77. doi: https://doi.org/10.1016/j.rse.2011.05.013.
61. Tyagi A, Kamal Tiwari R, James N. A review on spatial, temporal and magnitude prediction of landslide hazard. Journal of Asian Earth Sciences: X. 2022;7:100099. doi: https://doi.org/10.1016/j.jaesx.2022.100099.
62. Wang H, Zhang L, Yin K, Luo H, Li J. Landslide identification using machine learning. Geoscience Frontiers. 2021;12(1):351-64. doi: https://doi.org/10.1016/j.gsf.2020.02.012.
63. Wolff Moine M, Puissant A, Malet JP. Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Haute-Provence, France). Landslide Processes: From Geomorphological Mapping to Dynamic Modelling. 2009.
64. Yang S, Wang Y, Wang P, Mu J, Jiao S, Zhao X, et al. Automatic Identification of Landslides Based on Deep Learning. Applied Sciences. 2022;12(16):8153.
65. Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid Scene Parsing Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)2017. p. 6230-9.
66. Zhao ZQ, Zheng P, Xu ST, Wu X. Object Detection With Deep Learning: A Review. IEEE Transactions on Neural Networks and Learning Systems. 2019;30(11):3212-32. doi: 10.1109/TNNLS.2018.2876865.
67. Zhiqiang W, Jun L. A review of object detection based on convolutional neural network. 2017 36th Chinese Control Conference (CCC)2017. p. 11104-9.
68. Zou Z, Shi Z, Guo Y, Ye J. Object Detection in 20 Years: A Survey. 2019.
zh_TW