學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 應用深度學習於不同時期真正射影像自動偵測建物變遷
Applying deep learning to automatically detect building changes from true orthoimages in different periods
作者 許家彰
Hsu, Chia-Chang
貢獻者 邱式鴻
Chio, Shih-Hong
許家彰
Hsu, Chia-Chang
關鍵詞 建物辨識
建物變遷
深度學習
數值表面模型
數值高度模型
Building recognition
Building change detection
Deep learning
Digital surface model
Digital height model
日期 2023
上傳時間 2-Aug-2023 13:40:27 (UTC+8)
摘要 都市建物變遷是影響都市發展的一項重要因素,都市規劃者如何有效與快速地瞭解都市環境中建物變遷便顯得格外重要。但目前大部分的建物監測作業仍依賴大量人力來進行影像辨識,不只耗時且相當費力,如果能發展一套有效的自動化影像建物變遷偵測技術,不僅節省大量時間,也能有效降低人力成本。
本研究選擇臺北市社子島為試驗區,研究如何應用深度學習於不同時期航拍真正射影像自動偵測建物變遷。研究流程分為兩階段,第一階段使用不同時期航空彩色真正射影像,執行深度學習MS-FCN模型建物辨識研究,訓練過程中除使用真正射影像之外,亦加入數值地表模型以及數值地表模型與數值高程模型相減而得之數值高度模型,並比較三種不同型態輸入資料對於模型辨識建物精度之影響。
第二階段以深度學習U-net模型建物變遷偵測,此階段使用前後期地形圖中建物生成之影像套疊作為訓練資料,前期地形圖中建物生成之影像與後期模型辨識之建物成果套疊做為測試資料,由於在比較兩期真正射影像間相同位置之建物變遷時,可能因兩期真正射影像使用不同成像設備而導致兩期真正射影像有些許的對位誤差,所以在模型訓練過程中,會將後期地形圖中建物生成之影像隨機移動1個pixel,藉此模擬兩期真正射影像之對位誤差,完成能抵抗對位誤差之建物變遷偵測深度學習模型。
綜上所述,本研究將應用深度學習探討數值表面模型與數值高度模型之高程資訊於航空真正射影像自動辨識建物之助益,並利用辨識成果執行前後期建物變遷偵測,期待建立一套應用於都市建物變遷偵測之深度學習方法。在建物辨識階段,研究成果顯示相比僅利用真實正射影像,加入數值表面模型與數值高度模型之高程資訊能提升模型建物辨識能力,加入數值表面模型與數值高度模型的F1-score能達87.16%與87.65%。在建物變遷偵測階段,訓練能抵抗對位誤差之深度學習模型,其F1-score約為71.63%,根據成果顯示應用深度學習搭配高解析度真正射影像協助建物變遷偵測作業有其可行性。
The change of urban buildings is an important factor influencing urban development. It is particularly important for urban planners to efficiently and quickly understand building changes in the urban environment. However, most building monitoring operations still rely heavily on manual image recognition, which is not only time-consuming but also labor-intensive. Developing an effective automated image-based building change detection technology can not only save a lot of time but also significantly reduce labor costs.
This study selects Shezi Island in Taipei City as the experimental area to investigate the application of deep learning in automatically detecting building changes in aerial true orthoimages at different time periods. The research process were divided into two stages. In the first stage, different time period aerial color orthoimages were used to conduct deep learning MS-FCN model building recognition research. In addition to using orthoimages in the training process, digital surface model (DSM) and digital height model (DHM) obtained by subtracting digital elevation model from digital surface model were also included. The three different types of input data were compared to assess their impact on the model`s accuracy in recognizing buildings.
In the second stage, a deep learning U-net model was used for building change detection. In this stage, the images overlay generated by the buildings in the pre- and post- topographic maps were used as training data, and the images generated from the buildings in the pre-period topographic map and the results of the building recognition by the model in the post-period were overlaid as test data. Since there may be slight registration errors between the two orthoimages due to the use of different imaging devices, when comparing the building changes at the same location between the two time periods, the images generated from buildings in the post-period topographic map were randomly shifted one pixel during the model training process to simulate the registration error between the two orthoimages. This completed the building change detection deep learning model that can resist registration errors.
In summary, this study aims to apply deep learning to describe and discuss the benefits of using elevation information from digital surface models and digital height models in the automatic recognition of buildings in aerial orthoimages. The study also aims to use the recognition results to detect building changes between different periods, with the goal of establishing a deep learning method for detecting urban building changes. The results of the building recognition stage show that adding elevation information from digital surface models and digital height models can improve the model`s building recognition ability compared to using only the aerial orthoimages. The F1-scores achieved by adding digital surface models and digital height models are 87.16% and 87.65%, respectively. In the building change detection stage, the deep learning model trained to resist registration errors achieve an F1-score of approximately 71.63%. The results demonstrate the feasibility of using deep learning in combination with high-resolution aerial orthoimages to assist in building change detection operations.
參考文獻 楊靈峰,2003,「以現有正射影像與DTM資料解算外方位參數」,國立成功大學測量與空間學系碩士論文:臺南市。
徐金煌、張國楨,2015,「以Pix4Dmapper進行UAV影像之空間資料產製」,『中國土木水利工程學刊』,27(3),241-246。
蕭震洋、安軒霈、陳俊愷、饒見有、陳樹群,2015,「應用UAV量化台東金崙溪河川型態演變及致災特性」,『中國土木水利工程學刊』,27(3),213-222。
林宏軒、李肇棠、江滄明,2018,「深度學習的訓練資料準備與平台之演進發展」,『電腦與通訊』,(174):5-21。
張智安、傅于洳,2022,「應用深度學習於航照正射影像之房屋偵測」,『航遙及航測學刊』,26(4),209-220。
Aggarwal, C and Reddy, C. 2013, Data Clustering: Algorithms and Applications, Chapman and Hall/CRC.
Blaschke, T., Lang, S. and Hay, G., 2008, “Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications” Springer Science and Business Media LLC.
Blaschke, T., 2010, “Object based image analysis for remote sensing” ISPRS Journal of Photogrammetry and Remote Sensing, 65(1):2-16.
Bengio, Y., Goodfellow, I. and Courville, A., 2015, “Deep Learning”, Cambridge: MIT Press.
Bovolo, F. and Bruzzone, L., 2007, “A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain” IEEE Transactions on Geoscience and Remote Sensing, 45(1):218-236.
Butt, A., Shabbir, S., Ahmad. S. S. and Aziz, N., 2015, “Land use change mapping and analysis using Remote Sensing and GIS: A case of simly watershed, Islambad, Pakistan” The Egyptian Journal of Remote Sensing and Space Science, 18(2):251-259.
Buyukdemircioglu, M., Can, R., Kocaman, S. and Kada, M., 2022, “ DEEP LEARNING BASED BUILDING FOOTPRINT EXTRACTION FROM VERY HIGH RESOLUTION TRUE ORTHOPHOTOS AND NDSM” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2-2022:211-218.
Chen, G., G. J. Hay, L. M. Carvalho. and M. A. Wulder., 2012, “Object-based change detection” International Journal of Remote Sensing, 33(14):4434-4457.
Chen, Q. and Chen, Y., 2016, “Multi-Feature Object-Based Change Detection Using Self-Adaptive Weight Change Vector Analysis” Remote Sensing, 8(7):549.
Chen, Q., Chen, Y. and Jiang, W., 2016, “Genetic Particle Swarm Optimization-Base Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection” Sensors, 16(8):1024.
Chen, H., Li, W. and Shi, Z., 2022, “Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images” IEEE Transactions on Geoscience and Remote Sensing, 60:1-16.
Cheng, G. and Han, J., 2016, “A Survey on Object Detection in Optical Remote Sensing Images” ISPRS Journal of Photogrammetry and Remote Sensing, 117:11-28.
Deng, J. S., Wang, K., Deng, Y. H. and Qi, G. J., 2008, “PCA-based land-use change detection and analysis using multitemporal and multisensory satellite data” International Journal of Remote Sensing, 29(16):4823-4838.
Diego, A.J.Q. and Jose, S., 2020, “Automatic Building Change Detection on Aerial Images using Convolutional Neural Networks and Handcrafted Features” International Journal of Advanced Computer Science and Applications, 11(6).
Ding, Q., Shao, Z., Huang, X. and Altan, O., 2021, “DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images” International Journal of Applied Earth Observation and Geoinformation, 105:102591.
Duchi, J., Hazan, E., and Singer, Y., 2011, “Adaptive subgradient methods for online learning and stochastic optimization” Journal of machine learning research, 12(7): 2121-2159.
Duro, D.C., Franklin, S.E. and Dube, M.G., 2013, “Hybrid Object-based Change Detection and Hierarchical Image Segmentation for Thematic Map Updating” Photogrammetric Engineering & Remote Sensing, 79(3):259-268
Duan, M., Li, K., Yang, C. and Li, K., 2018, “A hybrid deep learning CNN-ELM for age and gender classification” Neurocomputing, 275:448-461.
Dwyer, J.L., Sayler, K.L. and Zylstra, G.J., 1996, “Landsat Pathfinder Data Sets for Landscape Change Analysis” International Geoscience and Remote Sensing Symposium, 1:547-550.
Frueh, C. and Zakhor, A., 2003, “Constructing 3d city models by merging ground-based and airborne views” In Proceeding of CVPR, 2:II-562-9.
Gao, F., Liu, X., Dong, J., Zhong, G. and Jian, M., 2017, “Change Detection in SAR Images Based on Deep Semi-NMF and SVD Networks”, Remote Sensing, 9(5):435.
Glorot, X., Bordes, A. and Bengio, Y., 2011, “Deep Sparse Rectifier Neural Networks” In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 15:315-323.
Guerin, C., Binet, R. and Pierrot-Deseilligny, M., 2014, “Automatic detection of elevation changes by differential DSM analysis: Application to urban areas” Applied Earth Observations and Remote Sensing, 7(10):4020-4037.
Hay, G.J. and Castilla, G., 2008, “Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline” Object-Based Image Analysis, 75-89.
Hebb, D. O., 1949, “The Organization of Behavior A NEUROPSYCHOLOGICAL THEORY”, The American Journal of Psychology, 63(4):633
He, K., Zhang, X., Ren, S. and Sun, J., 2016, “Deep Residual Learning for Image Recognition” In Proceedings of CVPR, 770-778.
He, D., Yang, X., Liang, C., Zhou, Z., G.Ororbia, A., Kifer, D. and Giles, C.Lee., 2017, “Multi-scake FCN with Cascaded Instance Aware Segmentation for Arbitrary Oriented Word Spotting in The Wild” In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 474-483.
Hinton, G., 2012, Lecture 6d: a separate, adaptive learning rate for each connection, Slides of Lecture Neural Networks for Machine Learning.
Hussain, M., Chen, D., Cheng, A., Wei, H. and Stanley, D., 2013, “Change detection from remotely sensed images: From pixel-based to object-based approaches” ISPRS Journal of Photogrammetry and Remote Sensing, 80:91-106.
Huang, J., Zhang, Zhang, X., Xin, Q., Sun, Y. and Zhang, P., 2019, “Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network” ISPRS Journal of Photogrammetry and Remote Sensing, 151:91-105.
Hu, Z., Zhang, J. and Ge, Y., 2021, “Handling Vanishing Gradient Problem Using Artificial Derivative” IEEE Access, 9:22371-22377.
Im, J. and Jensen, J.R., 2005, “A change detection model based on neighborhood correlation image analysis and decision tree classification” Remote Sensing of Environment, 99(3):326-340.
Javed, A., Jung, S., Lee, W. H. and Han, Y., 2020, “Object-Based Building Change Detection by Fusing Pixel-Level Change Detection Results Generated from Morphological Building Index” Remote Sensing, 12(18):29-52.
Ji, S., Shen, Y., Lu, M. and Zhang, Y., 2019, “Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples” Remote Sens, 11(11):1343.
Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. and Tang, P. T. P., 2016, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima” arXiv 2016, arXiv:1609.04836.
Kingma, D. P. and Ba, J., 2015, “Adam: A method for stochastic optimization” 2015ICLR (Poster).
Krizhevsky, A., Sutskever, I. and Hinton, G., 2012, “ImageNet Classification with Deep Convolutional Neural Networks” Communications of the ACM, 60(6):84-90.
Kirillov, A., He, K., Girshick, R., Rother, C. and Dollar, P., 2019, “Panoptic Segmentation” In Proceedings of CVPR, 9396-9405.
Kyurkchiev, N. and Markov, S., 2017, “SIGMOID FUNCTIONS: SOME APPROXIMATION, AND MODELLING ASPECTS” Mathematics and Computers in Simulation, 133:223-234.
LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998, “Gradient-based learning applied to document recognition” Proceedings of the IEEE, 86(11): 2278-2324.
LeCun, Y., Bengio, Y. and Hinton, G., 2015, “Deep learning” Nature, 521(7553): 436-444.
Linke, J., McDermid, G.J., Pape, A., McLane, A.J., Laskin, D.N., Hall-Beyer, M. and Franklin, S.E., 2009a, “The influence of patch-delineation mismatches on multi-temporal landscape pattern analysis” Landscape Ecology, 24(2):157-170.
Linke, J., McDermid, G.J., Pape, A., McLane, A.J., Laskin, D.N., Hall-Beyer, M. and Franklin, S.E., 2009b, “A Disturbance-Inventory Framework for Flexible and Reliable Landscape Monitoring” Photogrammetric Engineering & Remote Sensing, 75(8):981-995.
Liu, D. and Xia, F., 2010, “Assessing object-based classification: advantages and limitations” Remote Sensing Letters, 1(4):187-194.
Li, X., Cheng, X., Chen, W., Chen, G. and Liu, S., 2015, “Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms” Remote Sensing, 7(8):9705-9726.
Lin, T. Y., Goyal, P., Girshick, R., He, K. and Dollár, P., 2017, “Focal Loss for Dense Object Detection” In Computer Vision and Pattern Recognition.
Liu, L., Jia, Z., Yang. and Kasabov, N., 2019, “SAR Image Change Detection Based on Mathematical Morphology and the K-Means Clustering Algorithm” Proceedings of the IEEE, 7:43970-43978.
Liu, Y., Pang, C., Zhan, Z., Zhang, X. and Yang, X., 2019, “Building change detection for remote sensing images using a dual task constrained deep Siamese convolutional network model” IEEE Geoscience and Remote Sensing Letter, 18(5):811-815.
Lowe, D. G., 2004, “Distinctive Image Features from Scale-Invariant Keypoints” International Journal of Computer Vision, 60(2): 91-110.
Long, J., Shelhamer, E. and Darrell, T., 2015, “Fully Convolutional Networks for Semantic Segmentation” In CVPR.
Lyu, X., Hao, M. and Shi, W., 2020, “Building Change Detection Using a Shape Context Similarity Model for LiDAR Data”, ISPRS International Journal of Geo-information, 9(11):678.
Manfreda, S., Dvorak, P., Mullerova, J., Herban, S., Vuono, P., Jestel, J. A. and Perk, M., 2019, “Assessing the Accuracy of Digital Surface Models Derived from Optical Imagery Acquired with Unmanned Aerial Systems” Drones, 3(1):15.
Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M. and Stilla U., 2016, “SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS. ISPRS Annals of the Photogrammetry” Remote Sensing and Spatial Information Sciences, III(3):473-480.
Maltezos, E., Ioannidis, C., Doulamis, A. and Doulamis, K., 2018, “Building Change Detection Using Semantic Segmentation on Analogue Aerial Photos” FIG Congress, Istanbul, Turkey, May 3.
Makuti, S., Nex, F. and Yang, M. Y., 2018, “MULTI-CLASSIFICATION AND CHANGE DETECTION USING UAV IMAGES” The international Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 42(2):651-658.
Marcos, D., Volpi, M., Kellenberger, B. and Tuia, D., 2018, “Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models” ISPRS Journal of Photogrammetry and Remote Sensing, 145:96-107..
Masters, D. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612.
McCulloch, W. and Pitt, W., 1943, “A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY” Ideas That Created the Future, 79-88.
McDermid, G., Linke, J., Pape, A., Laskin, D., McLane, A. and Franklin, S., 2008, “Object-based approaches to change analysis and thematic map update Challenges and limitations” Canadian Journal of Remote Sensing, 34(5):462-466.
Mo, D., Lin, H., Li, J., Sun, H., Zhang, Z. and Xiong, Y., 2008, “A SVM-based change detection method from bi-temporal remote sensing images in forest area” First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008), 209-212.
Niemeyer, I., Marpu, P.R. and Nussbaum, S., 2008, “Change detection using object features” Object Based Image Analysis, 185-201.
Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., Mcdonagh, S., Hammerla, N.Y., Kainz, B., Glocker, B. and Rueckert, D., 2018, “Attention U-Net: Learning Where to Look for the Pancreas” Computer Vision and Pattern Recognition, arXiv:1804.03999
Özyeşil, O., Voroninski, V., Basri, R. and Singer, A., 2017, “A Survey of Structure from Motion” Acta Numerica, 26:305-364.
Polyak, B. T., 1964, “Some methods of speeding up the convergence of iteration methods” USSR Computational Mathematics and Mathematical Physics, 4(5): 1-17
Ronneberger, O., Fischer, P. and Brox, T., 2015, “U-Net: Convolutional Networks for Biomedical Image Segmentation” Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 9351: 234-241.
Rosenblatt, F., 1958, “The perceptron: A probabilistic model for information storage and organization in the brain” Psychological Review, 65(6): 386-408.
Rumelhart, D., Hinton, G. and Williams, R., 1986, “Learning representations by back-propagating errors” Nature, 323(6088):533-536.
Salaün, Y., Marlet, R. and Monasse, P., 2017, “Line-based Robust SfM with Little Image Overlap” In Proceeding of 3D Vision (3DV), 195-204.
Shorten, C. and Khoshgoftaar., 2019, “A survey on Image Data Augmentation for Deep Learning” Journal of Big Data, 6(1).
Simonyan., K. and Zisserman, A., 2015, “Very Deep Convolutional Networks for Large-Scale Image Recognition” arXiv preprint arXiv:1409.1556.
Snavely, N., Seitz, S. M., and Szeliski, R., 2006, “Photo tourism: Exploring photo collections in 3D” ACM Transactions on Graphics (TOG),25(3): 835-846
Steinkraus, D. and Simard, I., 2005, “Using GPUs for Machine Learning Algorithms” Eighth International Conference on Document Analysis and Recognition (ICDAR`05), 1115-1120.
Sun, H., Zhou, W., Zhang, Y., Cai, C. and Chen, Q., 2019, “Integrating spectral and textural attributes to measure magnitude in object-based change vector analysis” International Journal of Remote Sensing, 40(15):5749-5764.
Sun, X., Zhao, W., Maretto, R. and Persello, C., 2021, “Building Polygon Extraction from Aerial Images and Digital Surface Models with a Frame Field Learning Framework” Remote Sensing, 13(22):4700.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2014, “Going Deeper with Convolutions” In Proceedings of CVPR, 1-9.
Tan, H.H. and Lim, K. H., 2019, “Vanishing Gradient Mitigation with Deep Learning Neural Network Optimization” Conference on Smart Computing & Communications (ICSCC), 1-4.
Tao, A., Sapra, K. and Catanzaro, B., 2020, “HIERARCHICAL MULTI-SCALE ATTENTION FOR SEMANTIC SEGMENTATION” Computer Vision and Pattern Recognition, arXiv:2005.10821.
Tola, E., Lepetit, V. and Fua, P., 2010, “DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815-830.
Tomljenovic, I., Tiede, D. and Blaschke, T., 2016, “A Building extraction pproach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm” International Journal of Applied Earth Observation and Geoinformation, 52:137-148.
Wang, X., Liu, S., Du, P., Liang, H., Xia, J. and Li, Y., 2018, “Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning” Remote Sensing, 10(2):276.
Wang, R., Chen, J.W., Jiao, L. and Wang, M., 2019, “How Can Despeckling and Structural Features Benefit to Change Detection on Bitemporal SAR Images?” Remote Sensing, 11(4):421.
Wang, Y., Zorzi, S. and Bittner, K., 2021, “Machine-learned 3D Building Vectorization from Satellite Imagery”, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1072-1081.
Westoby, M.J., Brasington, J., Galsser, N.F., Hambrey, M.J. and Reynold, J.M., 2012, “Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications” Geomorphology, 179:300-31W4.
Wolf, P., Dewitt, B. and Wilkinson, B., 2000, Elements of Photogrammetry with Applications in GIS, McGraw-Hill Education.
Wulder, M.A., Ortlepp, S.M., White, J.C., Coops, N.C. and Coggins, S.B., 2008, “Monitoring tree-level insect population dynamics with multi-scale and multisource remote sensing”, Journal of Spatial Science, 53(1):49-61.
Xu, N., Huang, D., Song, S., Ling, X., Strasbaugh, C., Yilmaz, A., Sezen, H. and Qin, R., 2021, “A volumetric change detection framework using UAV oblique photogrammetry – a case study of ultra-high-resolution monitoring of progressive building collapse” International Journal of Digital Earth, 14(11): 1-16.
Yan, H., 2022, “Automated Building Extraction from Remote Sensing Imagery Using Deep Learning” Unpublished doctoral dissertation, University of Calgary, Canada.
You, Y., Cao, J. and Zhou, W., 2020, “A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios” Remote Sensing, 12(15):2460.
Zeng, D. and Zhu, M., 2018, “Background Subtraction Using Multiscale Fully Convolutional Network” IEEE Access, 6:16010-16021.
Zerrouki, N., Harrou, F., Sun, Y. and Hocini, L., 2019, “A Machine Learning-based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements” IEEE Sensors Journal, 19(14):5843-5850.
Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., 2017, “Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources” IEEE Geoscience and Remote Sensing Magazine, 5(4):8-36.
Zhang, Y., Peng, D. and Huang, X., 2018, “Object-Based Change Detection for VHR Images Based on Multiscale Uncertainty Analysis” IEEE Geoscience and Remote Sensing Letters, 15(1):13-17.
Zhang, J., Pan, B., Zhang, Y., Liu, L. and Zheng, X., 2022, “Building Change Detection in Remote Sensing Images Based on Dual Multi-Scale Attention” Remote Sensing, 14(21):5405
Zhu, X. and Toutin, T., 2011, “Object-oriented Interpretation and Classification with Airborne LiDAR 3D Data, In Proceeding of Image and Data Fusion, 1-4.
Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., 2017, “Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources” IEEE Geoscience and Remote Sensing Magazine, 5(4):8-36.
Zhao, Z., 2020, Multi-level Fusion Network for 3D Object Detection from Camera and LiDAR Data, Department of Electric Engineering, University of Michigan-Dearborn, Michigan.
描述 碩士
國立政治大學
地政學系
110257028
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110257028
資料類型 thesis
dc.contributor.advisor 邱式鴻zh_TW
dc.contributor.advisor Chio, Shih-Hongen_US
dc.contributor.author (Authors) 許家彰zh_TW
dc.contributor.author (Authors) Hsu, Chia-Changen_US
dc.creator (作者) 許家彰zh_TW
dc.creator (作者) Hsu, Chia-Changen_US
dc.date (日期) 2023en_US
dc.date.accessioned 2-Aug-2023 13:40:27 (UTC+8)-
dc.date.available 2-Aug-2023 13:40:27 (UTC+8)-
dc.date.issued (上傳時間) 2-Aug-2023 13:40:27 (UTC+8)-
dc.identifier (Other Identifiers) G0110257028en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146466-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 110257028zh_TW
dc.description.abstract (摘要) 都市建物變遷是影響都市發展的一項重要因素,都市規劃者如何有效與快速地瞭解都市環境中建物變遷便顯得格外重要。但目前大部分的建物監測作業仍依賴大量人力來進行影像辨識,不只耗時且相當費力,如果能發展一套有效的自動化影像建物變遷偵測技術,不僅節省大量時間,也能有效降低人力成本。
本研究選擇臺北市社子島為試驗區,研究如何應用深度學習於不同時期航拍真正射影像自動偵測建物變遷。研究流程分為兩階段,第一階段使用不同時期航空彩色真正射影像,執行深度學習MS-FCN模型建物辨識研究,訓練過程中除使用真正射影像之外,亦加入數值地表模型以及數值地表模型與數值高程模型相減而得之數值高度模型,並比較三種不同型態輸入資料對於模型辨識建物精度之影響。
第二階段以深度學習U-net模型建物變遷偵測,此階段使用前後期地形圖中建物生成之影像套疊作為訓練資料,前期地形圖中建物生成之影像與後期模型辨識之建物成果套疊做為測試資料,由於在比較兩期真正射影像間相同位置之建物變遷時,可能因兩期真正射影像使用不同成像設備而導致兩期真正射影像有些許的對位誤差,所以在模型訓練過程中,會將後期地形圖中建物生成之影像隨機移動1個pixel,藉此模擬兩期真正射影像之對位誤差,完成能抵抗對位誤差之建物變遷偵測深度學習模型。
綜上所述,本研究將應用深度學習探討數值表面模型與數值高度模型之高程資訊於航空真正射影像自動辨識建物之助益,並利用辨識成果執行前後期建物變遷偵測,期待建立一套應用於都市建物變遷偵測之深度學習方法。在建物辨識階段,研究成果顯示相比僅利用真實正射影像,加入數值表面模型與數值高度模型之高程資訊能提升模型建物辨識能力,加入數值表面模型與數值高度模型的F1-score能達87.16%與87.65%。在建物變遷偵測階段,訓練能抵抗對位誤差之深度學習模型,其F1-score約為71.63%,根據成果顯示應用深度學習搭配高解析度真正射影像協助建物變遷偵測作業有其可行性。
zh_TW
dc.description.abstract (摘要) The change of urban buildings is an important factor influencing urban development. It is particularly important for urban planners to efficiently and quickly understand building changes in the urban environment. However, most building monitoring operations still rely heavily on manual image recognition, which is not only time-consuming but also labor-intensive. Developing an effective automated image-based building change detection technology can not only save a lot of time but also significantly reduce labor costs.
This study selects Shezi Island in Taipei City as the experimental area to investigate the application of deep learning in automatically detecting building changes in aerial true orthoimages at different time periods. The research process were divided into two stages. In the first stage, different time period aerial color orthoimages were used to conduct deep learning MS-FCN model building recognition research. In addition to using orthoimages in the training process, digital surface model (DSM) and digital height model (DHM) obtained by subtracting digital elevation model from digital surface model were also included. The three different types of input data were compared to assess their impact on the model`s accuracy in recognizing buildings.
In the second stage, a deep learning U-net model was used for building change detection. In this stage, the images overlay generated by the buildings in the pre- and post- topographic maps were used as training data, and the images generated from the buildings in the pre-period topographic map and the results of the building recognition by the model in the post-period were overlaid as test data. Since there may be slight registration errors between the two orthoimages due to the use of different imaging devices, when comparing the building changes at the same location between the two time periods, the images generated from buildings in the post-period topographic map were randomly shifted one pixel during the model training process to simulate the registration error between the two orthoimages. This completed the building change detection deep learning model that can resist registration errors.
In summary, this study aims to apply deep learning to describe and discuss the benefits of using elevation information from digital surface models and digital height models in the automatic recognition of buildings in aerial orthoimages. The study also aims to use the recognition results to detect building changes between different periods, with the goal of establishing a deep learning method for detecting urban building changes. The results of the building recognition stage show that adding elevation information from digital surface models and digital height models can improve the model`s building recognition ability compared to using only the aerial orthoimages. The F1-scores achieved by adding digital surface models and digital height models are 87.16% and 87.65%, respectively. In the building change detection stage, the deep learning model trained to resist registration errors achieve an F1-score of approximately 71.63%. The results demonstrate the feasibility of using deep learning in combination with high-resolution aerial orthoimages to assist in building change detection operations.
en_US
dc.description.tableofcontents 謝誌 I
摘要 II
Abstract IV
圖目錄 VII
表目錄 X
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 研究架構 6
第二章 文獻回顧 7
第一節 以物件為基礎之變遷偵測方法及原理 7
第二節 影像萃取變遷資訊之方法 16
第三節 深度學習 23
第三章 研究方法 35
第一節 研究區域 35
第二節 研究資料與處理軟體 36
第三節、研究流程 44
第四節、研究方法與理論基礎 47
第四章 實驗成果分析與討論 59
第一節 實驗資料 59
第二節 深度學習網路訓練 65
第五章 結論與建議 79
第一節 結論 79
第二節 建議 81
參考文獻 83
zh_TW
dc.format.extent 6274609 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110257028en_US
dc.subject (關鍵詞) 建物辨識zh_TW
dc.subject (關鍵詞) 建物變遷zh_TW
dc.subject (關鍵詞) 深度學習zh_TW
dc.subject (關鍵詞) 數值表面模型zh_TW
dc.subject (關鍵詞) 數值高度模型zh_TW
dc.subject (關鍵詞) Building recognitionen_US
dc.subject (關鍵詞) Building change detectionen_US
dc.subject (關鍵詞) Deep learningen_US
dc.subject (關鍵詞) Digital surface modelen_US
dc.subject (關鍵詞) Digital height modelen_US
dc.title (題名) 應用深度學習於不同時期真正射影像自動偵測建物變遷zh_TW
dc.title (題名) Applying deep learning to automatically detect building changes from true orthoimages in different periodsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 楊靈峰,2003,「以現有正射影像與DTM資料解算外方位參數」,國立成功大學測量與空間學系碩士論文:臺南市。
徐金煌、張國楨,2015,「以Pix4Dmapper進行UAV影像之空間資料產製」,『中國土木水利工程學刊』,27(3),241-246。
蕭震洋、安軒霈、陳俊愷、饒見有、陳樹群,2015,「應用UAV量化台東金崙溪河川型態演變及致災特性」,『中國土木水利工程學刊』,27(3),213-222。
林宏軒、李肇棠、江滄明,2018,「深度學習的訓練資料準備與平台之演進發展」,『電腦與通訊』,(174):5-21。
張智安、傅于洳,2022,「應用深度學習於航照正射影像之房屋偵測」,『航遙及航測學刊』,26(4),209-220。
Aggarwal, C and Reddy, C. 2013, Data Clustering: Algorithms and Applications, Chapman and Hall/CRC.
Blaschke, T., Lang, S. and Hay, G., 2008, “Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications” Springer Science and Business Media LLC.
Blaschke, T., 2010, “Object based image analysis for remote sensing” ISPRS Journal of Photogrammetry and Remote Sensing, 65(1):2-16.
Bengio, Y., Goodfellow, I. and Courville, A., 2015, “Deep Learning”, Cambridge: MIT Press.
Bovolo, F. and Bruzzone, L., 2007, “A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain” IEEE Transactions on Geoscience and Remote Sensing, 45(1):218-236.
Butt, A., Shabbir, S., Ahmad. S. S. and Aziz, N., 2015, “Land use change mapping and analysis using Remote Sensing and GIS: A case of simly watershed, Islambad, Pakistan” The Egyptian Journal of Remote Sensing and Space Science, 18(2):251-259.
Buyukdemircioglu, M., Can, R., Kocaman, S. and Kada, M., 2022, “ DEEP LEARNING BASED BUILDING FOOTPRINT EXTRACTION FROM VERY HIGH RESOLUTION TRUE ORTHOPHOTOS AND NDSM” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2-2022:211-218.
Chen, G., G. J. Hay, L. M. Carvalho. and M. A. Wulder., 2012, “Object-based change detection” International Journal of Remote Sensing, 33(14):4434-4457.
Chen, Q. and Chen, Y., 2016, “Multi-Feature Object-Based Change Detection Using Self-Adaptive Weight Change Vector Analysis” Remote Sensing, 8(7):549.
Chen, Q., Chen, Y. and Jiang, W., 2016, “Genetic Particle Swarm Optimization-Base Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection” Sensors, 16(8):1024.
Chen, H., Li, W. and Shi, Z., 2022, “Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images” IEEE Transactions on Geoscience and Remote Sensing, 60:1-16.
Cheng, G. and Han, J., 2016, “A Survey on Object Detection in Optical Remote Sensing Images” ISPRS Journal of Photogrammetry and Remote Sensing, 117:11-28.
Deng, J. S., Wang, K., Deng, Y. H. and Qi, G. J., 2008, “PCA-based land-use change detection and analysis using multitemporal and multisensory satellite data” International Journal of Remote Sensing, 29(16):4823-4838.
Diego, A.J.Q. and Jose, S., 2020, “Automatic Building Change Detection on Aerial Images using Convolutional Neural Networks and Handcrafted Features” International Journal of Advanced Computer Science and Applications, 11(6).
Ding, Q., Shao, Z., Huang, X. and Altan, O., 2021, “DSA-Net: A novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images” International Journal of Applied Earth Observation and Geoinformation, 105:102591.
Duchi, J., Hazan, E., and Singer, Y., 2011, “Adaptive subgradient methods for online learning and stochastic optimization” Journal of machine learning research, 12(7): 2121-2159.
Duro, D.C., Franklin, S.E. and Dube, M.G., 2013, “Hybrid Object-based Change Detection and Hierarchical Image Segmentation for Thematic Map Updating” Photogrammetric Engineering & Remote Sensing, 79(3):259-268
Duan, M., Li, K., Yang, C. and Li, K., 2018, “A hybrid deep learning CNN-ELM for age and gender classification” Neurocomputing, 275:448-461.
Dwyer, J.L., Sayler, K.L. and Zylstra, G.J., 1996, “Landsat Pathfinder Data Sets for Landscape Change Analysis” International Geoscience and Remote Sensing Symposium, 1:547-550.
Frueh, C. and Zakhor, A., 2003, “Constructing 3d city models by merging ground-based and airborne views” In Proceeding of CVPR, 2:II-562-9.
Gao, F., Liu, X., Dong, J., Zhong, G. and Jian, M., 2017, “Change Detection in SAR Images Based on Deep Semi-NMF and SVD Networks”, Remote Sensing, 9(5):435.
Glorot, X., Bordes, A. and Bengio, Y., 2011, “Deep Sparse Rectifier Neural Networks” In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 15:315-323.
Guerin, C., Binet, R. and Pierrot-Deseilligny, M., 2014, “Automatic detection of elevation changes by differential DSM analysis: Application to urban areas” Applied Earth Observations and Remote Sensing, 7(10):4020-4037.
Hay, G.J. and Castilla, G., 2008, “Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline” Object-Based Image Analysis, 75-89.
Hebb, D. O., 1949, “The Organization of Behavior A NEUROPSYCHOLOGICAL THEORY”, The American Journal of Psychology, 63(4):633
He, K., Zhang, X., Ren, S. and Sun, J., 2016, “Deep Residual Learning for Image Recognition” In Proceedings of CVPR, 770-778.
He, D., Yang, X., Liang, C., Zhou, Z., G.Ororbia, A., Kifer, D. and Giles, C.Lee., 2017, “Multi-scake FCN with Cascaded Instance Aware Segmentation for Arbitrary Oriented Word Spotting in The Wild” In Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 474-483.
Hinton, G., 2012, Lecture 6d: a separate, adaptive learning rate for each connection, Slides of Lecture Neural Networks for Machine Learning.
Hussain, M., Chen, D., Cheng, A., Wei, H. and Stanley, D., 2013, “Change detection from remotely sensed images: From pixel-based to object-based approaches” ISPRS Journal of Photogrammetry and Remote Sensing, 80:91-106.
Huang, J., Zhang, Zhang, X., Xin, Q., Sun, Y. and Zhang, P., 2019, “Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network” ISPRS Journal of Photogrammetry and Remote Sensing, 151:91-105.
Hu, Z., Zhang, J. and Ge, Y., 2021, “Handling Vanishing Gradient Problem Using Artificial Derivative” IEEE Access, 9:22371-22377.
Im, J. and Jensen, J.R., 2005, “A change detection model based on neighborhood correlation image analysis and decision tree classification” Remote Sensing of Environment, 99(3):326-340.
Javed, A., Jung, S., Lee, W. H. and Han, Y., 2020, “Object-Based Building Change Detection by Fusing Pixel-Level Change Detection Results Generated from Morphological Building Index” Remote Sensing, 12(18):29-52.
Ji, S., Shen, Y., Lu, M. and Zhang, Y., 2019, “Building instance change detection from large-scale aerial images using convolutional neural networks and simulated samples” Remote Sens, 11(11):1343.
Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. and Tang, P. T. P., 2016, “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima” arXiv 2016, arXiv:1609.04836.
Kingma, D. P. and Ba, J., 2015, “Adam: A method for stochastic optimization” 2015ICLR (Poster).
Krizhevsky, A., Sutskever, I. and Hinton, G., 2012, “ImageNet Classification with Deep Convolutional Neural Networks” Communications of the ACM, 60(6):84-90.
Kirillov, A., He, K., Girshick, R., Rother, C. and Dollar, P., 2019, “Panoptic Segmentation” In Proceedings of CVPR, 9396-9405.
Kyurkchiev, N. and Markov, S., 2017, “SIGMOID FUNCTIONS: SOME APPROXIMATION, AND MODELLING ASPECTS” Mathematics and Computers in Simulation, 133:223-234.
LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P., 1998, “Gradient-based learning applied to document recognition” Proceedings of the IEEE, 86(11): 2278-2324.
LeCun, Y., Bengio, Y. and Hinton, G., 2015, “Deep learning” Nature, 521(7553): 436-444.
Linke, J., McDermid, G.J., Pape, A., McLane, A.J., Laskin, D.N., Hall-Beyer, M. and Franklin, S.E., 2009a, “The influence of patch-delineation mismatches on multi-temporal landscape pattern analysis” Landscape Ecology, 24(2):157-170.
Linke, J., McDermid, G.J., Pape, A., McLane, A.J., Laskin, D.N., Hall-Beyer, M. and Franklin, S.E., 2009b, “A Disturbance-Inventory Framework for Flexible and Reliable Landscape Monitoring” Photogrammetric Engineering & Remote Sensing, 75(8):981-995.
Liu, D. and Xia, F., 2010, “Assessing object-based classification: advantages and limitations” Remote Sensing Letters, 1(4):187-194.
Li, X., Cheng, X., Chen, W., Chen, G. and Liu, S., 2015, “Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms” Remote Sensing, 7(8):9705-9726.
Lin, T. Y., Goyal, P., Girshick, R., He, K. and Dollár, P., 2017, “Focal Loss for Dense Object Detection” In Computer Vision and Pattern Recognition.
Liu, L., Jia, Z., Yang. and Kasabov, N., 2019, “SAR Image Change Detection Based on Mathematical Morphology and the K-Means Clustering Algorithm” Proceedings of the IEEE, 7:43970-43978.
Liu, Y., Pang, C., Zhan, Z., Zhang, X. and Yang, X., 2019, “Building change detection for remote sensing images using a dual task constrained deep Siamese convolutional network model” IEEE Geoscience and Remote Sensing Letter, 18(5):811-815.
Lowe, D. G., 2004, “Distinctive Image Features from Scale-Invariant Keypoints” International Journal of Computer Vision, 60(2): 91-110.
Long, J., Shelhamer, E. and Darrell, T., 2015, “Fully Convolutional Networks for Semantic Segmentation” In CVPR.
Lyu, X., Hao, M. and Shi, W., 2020, “Building Change Detection Using a Shape Context Similarity Model for LiDAR Data”, ISPRS International Journal of Geo-information, 9(11):678.
Manfreda, S., Dvorak, P., Mullerova, J., Herban, S., Vuono, P., Jestel, J. A. and Perk, M., 2019, “Assessing the Accuracy of Digital Surface Models Derived from Optical Imagery Acquired with Unmanned Aerial Systems” Drones, 3(1):15.
Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M. and Stilla U., 2016, “SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS. ISPRS Annals of the Photogrammetry” Remote Sensing and Spatial Information Sciences, III(3):473-480.
Maltezos, E., Ioannidis, C., Doulamis, A. and Doulamis, K., 2018, “Building Change Detection Using Semantic Segmentation on Analogue Aerial Photos” FIG Congress, Istanbul, Turkey, May 3.
Makuti, S., Nex, F. and Yang, M. Y., 2018, “MULTI-CLASSIFICATION AND CHANGE DETECTION USING UAV IMAGES” The international Archives of Photogrammetry, Remote Sensing and Spatial Information Science, 42(2):651-658.
Marcos, D., Volpi, M., Kellenberger, B. and Tuia, D., 2018, “Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models” ISPRS Journal of Photogrammetry and Remote Sensing, 145:96-107..
Masters, D. (2018). Revisiting small batch training for deep neural networks. arXiv preprint arXiv:1804.07612.
McCulloch, W. and Pitt, W., 1943, “A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY” Ideas That Created the Future, 79-88.
McDermid, G., Linke, J., Pape, A., Laskin, D., McLane, A. and Franklin, S., 2008, “Object-based approaches to change analysis and thematic map update Challenges and limitations” Canadian Journal of Remote Sensing, 34(5):462-466.
Mo, D., Lin, H., Li, J., Sun, H., Zhang, Z. and Xiong, Y., 2008, “A SVM-based change detection method from bi-temporal remote sensing images in forest area” First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008), 209-212.
Niemeyer, I., Marpu, P.R. and Nussbaum, S., 2008, “Change detection using object features” Object Based Image Analysis, 185-201.
Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., Mori, K., Mcdonagh, S., Hammerla, N.Y., Kainz, B., Glocker, B. and Rueckert, D., 2018, “Attention U-Net: Learning Where to Look for the Pancreas” Computer Vision and Pattern Recognition, arXiv:1804.03999
Özyeşil, O., Voroninski, V., Basri, R. and Singer, A., 2017, “A Survey of Structure from Motion” Acta Numerica, 26:305-364.
Polyak, B. T., 1964, “Some methods of speeding up the convergence of iteration methods” USSR Computational Mathematics and Mathematical Physics, 4(5): 1-17
Ronneberger, O., Fischer, P. and Brox, T., 2015, “U-Net: Convolutional Networks for Biomedical Image Segmentation” Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 9351: 234-241.
Rosenblatt, F., 1958, “The perceptron: A probabilistic model for information storage and organization in the brain” Psychological Review, 65(6): 386-408.
Rumelhart, D., Hinton, G. and Williams, R., 1986, “Learning representations by back-propagating errors” Nature, 323(6088):533-536.
Salaün, Y., Marlet, R. and Monasse, P., 2017, “Line-based Robust SfM with Little Image Overlap” In Proceeding of 3D Vision (3DV), 195-204.
Shorten, C. and Khoshgoftaar., 2019, “A survey on Image Data Augmentation for Deep Learning” Journal of Big Data, 6(1).
Simonyan., K. and Zisserman, A., 2015, “Very Deep Convolutional Networks for Large-Scale Image Recognition” arXiv preprint arXiv:1409.1556.
Snavely, N., Seitz, S. M., and Szeliski, R., 2006, “Photo tourism: Exploring photo collections in 3D” ACM Transactions on Graphics (TOG),25(3): 835-846
Steinkraus, D. and Simard, I., 2005, “Using GPUs for Machine Learning Algorithms” Eighth International Conference on Document Analysis and Recognition (ICDAR`05), 1115-1120.
Sun, H., Zhou, W., Zhang, Y., Cai, C. and Chen, Q., 2019, “Integrating spectral and textural attributes to measure magnitude in object-based change vector analysis” International Journal of Remote Sensing, 40(15):5749-5764.
Sun, X., Zhao, W., Maretto, R. and Persello, C., 2021, “Building Polygon Extraction from Aerial Images and Digital Surface Models with a Frame Field Learning Framework” Remote Sensing, 13(22):4700.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2014, “Going Deeper with Convolutions” In Proceedings of CVPR, 1-9.
Tan, H.H. and Lim, K. H., 2019, “Vanishing Gradient Mitigation with Deep Learning Neural Network Optimization” Conference on Smart Computing & Communications (ICSCC), 1-4.
Tao, A., Sapra, K. and Catanzaro, B., 2020, “HIERARCHICAL MULTI-SCALE ATTENTION FOR SEMANTIC SEGMENTATION” Computer Vision and Pattern Recognition, arXiv:2005.10821.
Tola, E., Lepetit, V. and Fua, P., 2010, “DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815-830.
Tomljenovic, I., Tiede, D. and Blaschke, T., 2016, “A Building extraction pproach for Airborne Laser Scanner data utilizing the Object Based Image Analysis paradigm” International Journal of Applied Earth Observation and Geoinformation, 52:137-148.
Wang, X., Liu, S., Du, P., Liang, H., Xia, J. and Li, Y., 2018, “Object-Based Change Detection in Urban Areas from High Spatial Resolution Images Based on Multiple Features and Ensemble Learning” Remote Sensing, 10(2):276.
Wang, R., Chen, J.W., Jiao, L. and Wang, M., 2019, “How Can Despeckling and Structural Features Benefit to Change Detection on Bitemporal SAR Images?” Remote Sensing, 11(4):421.
Wang, Y., Zorzi, S. and Bittner, K., 2021, “Machine-learned 3D Building Vectorization from Satellite Imagery”, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1072-1081.
Westoby, M.J., Brasington, J., Galsser, N.F., Hambrey, M.J. and Reynold, J.M., 2012, “Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications” Geomorphology, 179:300-31W4.
Wolf, P., Dewitt, B. and Wilkinson, B., 2000, Elements of Photogrammetry with Applications in GIS, McGraw-Hill Education.
Wulder, M.A., Ortlepp, S.M., White, J.C., Coops, N.C. and Coggins, S.B., 2008, “Monitoring tree-level insect population dynamics with multi-scale and multisource remote sensing”, Journal of Spatial Science, 53(1):49-61.
Xu, N., Huang, D., Song, S., Ling, X., Strasbaugh, C., Yilmaz, A., Sezen, H. and Qin, R., 2021, “A volumetric change detection framework using UAV oblique photogrammetry – a case study of ultra-high-resolution monitoring of progressive building collapse” International Journal of Digital Earth, 14(11): 1-16.
Yan, H., 2022, “Automated Building Extraction from Remote Sensing Imagery Using Deep Learning” Unpublished doctoral dissertation, University of Calgary, Canada.
You, Y., Cao, J. and Zhou, W., 2020, “A Survey of Change Detection Methods Based on Remote Sensing Images for Multi-Source and Multi-Objective Scenarios” Remote Sensing, 12(15):2460.
Zeng, D. and Zhu, M., 2018, “Background Subtraction Using Multiscale Fully Convolutional Network” IEEE Access, 6:16010-16021.
Zerrouki, N., Harrou, F., Sun, Y. and Hocini, L., 2019, “A Machine Learning-based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements” IEEE Sensors Journal, 19(14):5843-5850.
Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., 2017, “Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources” IEEE Geoscience and Remote Sensing Magazine, 5(4):8-36.
Zhang, Y., Peng, D. and Huang, X., 2018, “Object-Based Change Detection for VHR Images Based on Multiscale Uncertainty Analysis” IEEE Geoscience and Remote Sensing Letters, 15(1):13-17.
Zhang, J., Pan, B., Zhang, Y., Liu, L. and Zheng, X., 2022, “Building Change Detection in Remote Sensing Images Based on Dual Multi-Scale Attention” Remote Sensing, 14(21):5405
Zhu, X. and Toutin, T., 2011, “Object-oriented Interpretation and Classification with Airborne LiDAR 3D Data, In Proceeding of Image and Data Fusion, 1-4.
Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., 2017, “Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources” IEEE Geoscience and Remote Sensing Magazine, 5(4):8-36.
Zhao, Z., 2020, Multi-level Fusion Network for 3D Object Detection from Camera and LiDAR Data, Department of Electric Engineering, University of Michigan-Dearborn, Michigan.
zh_TW