Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 利用移動裝置進行室內快速建模之研究
The Study of Rapid Indoor Modeling Using Mobile Devices
作者 白軒宇
Pai, Hsuan-Yu
貢獻者 甯方璽
Ning, Fang-Shii
白軒宇
Pai, Hsuan-Yu
關鍵詞 光達
行動裝置
室內建模
低成本
Lidar
Mobile Devices
Indoor Modeling
Low-Cost
日期 2023
上傳時間 2-Aug-2023 13:40:54 (UTC+8)
摘要 隨著科技的日新月異,人們持有行動裝置的比例大幅增加,而各家智慧型手機及平板製造商也紛紛將不同種類之可測距鏡頭納入產品的配備清單中,如何藉由更簡易的儀器來達到室內三維建模水準已成為現今許多研究發展的目標。
在現今社會裡,人們對於室內模型的運用日益廣泛,其目的包括了室內工程
使用、商家進行產品演示等等,目前大多採行的方法有二,全測站 (Total Station)測量後人工繪出模型以及光達系統 (Lidar System)掃描獲得點雲圖資。此兩種方法雖然可以得到精度極高的成果,但存在下列兩大劣勢,一為價格昂貴,以光達系統而言,專業測量機型少則幾十萬,高階版本亦可達百萬,對於施測單位會是不可忽視的一筆開銷,二為測量人員的專業性,在操作這兩類儀器時,施測者必須具備一定的測量知識,同時必須熟稔儀器操作之方法及特定注意事項,對於測量單位來說可能導致人員調度上之困難。 因此本研究將以智慧型手機作為實驗裝置,利用配置於其上的光達相機進行室內建模精度之探討,同時輔以手持式光達作為對照組,檢視兩者精度差距,並發展快速且低成本之作業模式以智慧型裝置取代高價儀器進行相關之建模及測量工作。而由本研究最終成果認定目前行動裝置所配置之光達系統可達到公分級精度,且在總長約160公尺的大範圍場景中智慧型裝置約有80%的點雲與手持式光達差距落於0.1公尺內惟於測量任務中仍建議依照精度要求選取適當工具。
With the continuous advancement of technology, the rate of people possessing mobile devices has increased, smartphone and tablet manufacturers starting to equip their products with different kind of distance measuring cameras. How to obtain the same modeling data with a more simply technic has become the goal of various researchers.
Nowadays, the use of indoor model has expanded widely, while the purpose includes interior works, merchant demonstrating products, etc. Most of them are following two main methods. First is using the data gaining from total station, and then build a model artificially. Another is scanning with Lidar system to get the point cloud data. Although both methods can get a result with high precision, it remains following two disadvantage. One is that Lidar systems are too costly, for professional models could reach hundreds of thousands NTD, the higher-level model even cost over a million NTD, which is an expenditure can’t be ignored. Another is the professionalism of the measuring staff. When using these two kinds of instrument, they should have enough professional skills, also, be experienced with operation methods and precautions, which may lead to a difficulty in staff scheduling.
According to the reasons mentioned upon, this research will use smartphone equipped with Lidar camera as our instrument, conducting the discussion of the precision of indoor modeling. At the same time, use the Geo Slam as the control group, examining the difference in precision between mobile devices and professional instruments. After all, develop a rapid but low-cost operating pattern in modeling and measuring tasks by replacing high-priced instruments with mobile devices. According to the result, the precision of Lidar system equipped on mobile devices could reach cm level, also the difference between mobile device and handheld Lidar in wide area which length is about 160 meter will have roughly 80% point under 0.1 meter, but it’s recommended to choose devices based on the precision acquired by each task.
參考文獻 許弘任、林聖迪,2011,「主動截止電路控制之單光子崩潰二極體偵測器」,國立交通大學電子工程學系電子研究所碩士論文:台北
陳立璋、蕭介峰,2021,「不同載體光達輔助地籍測量之研究」,『中華民國地籍測量學會會刊』,40(2):19-43
趙智凡、潘偉庭、楊明德,2016,「應用多視立體及運動回復結構之三維場景重構」,『航測及遙測學刊』,20(2):129-137
楊鎮嘉、張智安,2021,「iPad Pro Lidar室內空間掃描精度分析」,第39屆測量及空間資訊研討會
Andújar, D., Calle, M., Fernández-Quintanilla, C., Ribeiro, Á., and Dorado, J, 2018, “Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry”, Sensors, 18: 1077.
Bauwens, S., Bartholomeus, H., Calders, K., AND Lejeune, P., 2016, “Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning”, Forests, 7: 127.
Desai, J., Liu, J., Hainje, R., Oleksy, R., Habib, A., AND Bullock, D., 2021, “Assessing Vehicle Profiling Accuracy of Handheld LiDAR Compared to Terrestrial Laser Scanning for Crash Scene Reconstruction”, Sensors, 21: 8076.
Díaz Vilariño, L., Tran, H., Frías, E., Balado FJ., Khoshelham, K., 2022, “3D Mapping of Indoor and Outdoor Environment Using Apple Smart Devices”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43B4: 303-308.
Elkhrachy, Ismail, 2020, “Modeling and Visualization of Three Dimensional Objects Using Low-Cost Terrestrial Photogrammetry”, International Journal of Architectural Heritage, 14: 1456-1467.
Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A., 2021, “Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology”, Remote Sens, 13: 3129.
Gunduz, M., Isikdag, U., and Basaraner, M., 2016, “a Review of Recent Research in Indoor Modelling & Mapping”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41B4: 289–294.
Łabędź, P., Skabek, K., Ozimek, P., Rola, D., Ozimek, A., Ostrowska, K., 2022, “Accuracy Verification of Surface Models of Architectural Objects from the iPad LiDAR in the Context of Photogrammetry Methods”. Sensors, 22: 8504.
Luetzenburg, G., Kroon, A., and Bjørk, A.A., 2021, “Evaluation of the Apple IPHONE 12 Pro LiDAR for an Application in Geosciences”, Sci Rep, 11: 22221.
Nicholas C.F., Nathan B., Julian B., 2012, “Plane of Best Fit:A Novel Method to Characterize the Three-Dimensionality of Molecules”, Journal of Chemical Information and Modeling, 52(10): 2516-2525.
Payton P.C., Kianna H.C., Audrey J.H., Shabnam J., and Jakov S.J., 2022, “Apple Iphone 13 Pro Lidar Accuracy Assessment For Engineering Applications”, Paper presented at the 2022: The Digital Reality of Tomorrow, University of New Brunswick, August 23-25.
Ramos, A., and Prieto, G., 2015, “3D Virtualization By Close Range Photogrammetry Indoor Gothic Church Apses. The Case Study Of Church Of SAN FRANCISCO In BETANZOS (LA CORUÑA, SPAIN)”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W4: 201-206.
Raj, T., Hashim, FH., Huddin, AB., Ibrahim, MF., and Hussain, A., 2020, “A Survey on LiDAR Scanning Mechanisms”, Electronics, 9: 741.
Roi Otero, Susana Lagüela, Iván Garrido and Pedro Ariasa, 2020, “Mobile indoor mapping technologies: A review”, Automation in Construction, 120.
Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F, 2022, “Apple LiDAR Sensor for 3D Surveying: Tests and Results in the Cultural Heritage Domain”, Remote Sens, 14: 4157.
Yang, S.W, and Wang, C.C., 2011, "On Solving Mirror Reflection in LIDAR Sensing", IEEE/ASME Transactions on Mechatronics, 16(2): 255-265.
CloudCompare (2016, April 22). Align. Retrieved October 10, 2022 from CloudCompare Organization Worldwide Web: https://www.CloudCompare.org/doc/wiki/index.php?title=Align
Counterpoint (2022, June 3). Infographic: Q1-2022 | Smartphone | Mobile Market Monitor. Retrieved October 2, 2022 from Counterpoint Web: https://www.counterpointresearch.com/infographic-q1-2022-smartphones/
IPHONE 14 PRO teardown:https://youtu.be/gAAOPvmwgRg
IPHONE Lidar System (2018). Major Apple Patents Reveal work on next-gen LiDAR Systems using VCSELs for 3D Sensing Systems and Headset. Retrieved September 15, 2022 from Patently Apple: https://www.patentlyapple.com/patently-apple/2018/11/major-apple-patents-reveal-work-on-next-gen-lidar-systems-using-vcsels-for-3d-sensing-systems-and-headset.html
Leica (2021). Leica RTC360 3D Laser Scanner. Retrieved October 12, 2022 from Leica Global Web: https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360
LineVision Inc.(2019). LineVision’s new generation of overhead line monitoring. Retrieved September 10, 2022 from LineVision Worldwide Web:https://www.linevisioninc.com/success-stories.
Pew Research Center (2019, February 5). Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally. Retrieved. Retrieved March 20, 2022 from Pew Research Center Web: https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/.
US Environmental Protection Agency (2009). Buildings and Their Impact on the Environment: A Statistical Summary. Retrieved September 13, 2022 from US Environmental Protection Agency Green Building Workgroup: https://archive.epa.gov/greenbuilding/web/pdf/gbstats.pdf.
Volvo Inc. (2021, June 24). Next generation pure electric Volvo comes with LiDAR technology and AI-driven super computer as standard to help save lives. Retrieved September 12, 2022 from Volvo Cars Global Newsroom:https://www.media.volvocars.com/global/en-gb/media/pressreleases/283443/next-generation-pure-electric-volvo-comes-with-lidar-technology-and-ai-driven-super-computer-as-stan
描述 碩士
國立政治大學
地政學系
110257030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110257030
資料類型 thesis
dc.contributor.advisor 甯方璽zh_TW
dc.contributor.advisor Ning, Fang-Shiien_US
dc.contributor.author (Authors) 白軒宇zh_TW
dc.contributor.author (Authors) Pai, Hsuan-Yuen_US
dc.creator (作者) 白軒宇zh_TW
dc.creator (作者) Pai, Hsuan-Yuen_US
dc.date (日期) 2023en_US
dc.date.accessioned 2-Aug-2023 13:40:54 (UTC+8)-
dc.date.available 2-Aug-2023 13:40:54 (UTC+8)-
dc.date.issued (上傳時間) 2-Aug-2023 13:40:54 (UTC+8)-
dc.identifier (Other Identifiers) G0110257030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146468-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 110257030zh_TW
dc.description.abstract (摘要) 隨著科技的日新月異,人們持有行動裝置的比例大幅增加,而各家智慧型手機及平板製造商也紛紛將不同種類之可測距鏡頭納入產品的配備清單中,如何藉由更簡易的儀器來達到室內三維建模水準已成為現今許多研究發展的目標。
在現今社會裡,人們對於室內模型的運用日益廣泛,其目的包括了室內工程
使用、商家進行產品演示等等,目前大多採行的方法有二,全測站 (Total Station)測量後人工繪出模型以及光達系統 (Lidar System)掃描獲得點雲圖資。此兩種方法雖然可以得到精度極高的成果,但存在下列兩大劣勢,一為價格昂貴,以光達系統而言,專業測量機型少則幾十萬,高階版本亦可達百萬,對於施測單位會是不可忽視的一筆開銷,二為測量人員的專業性,在操作這兩類儀器時,施測者必須具備一定的測量知識,同時必須熟稔儀器操作之方法及特定注意事項,對於測量單位來說可能導致人員調度上之困難。 因此本研究將以智慧型手機作為實驗裝置,利用配置於其上的光達相機進行室內建模精度之探討,同時輔以手持式光達作為對照組,檢視兩者精度差距,並發展快速且低成本之作業模式以智慧型裝置取代高價儀器進行相關之建模及測量工作。而由本研究最終成果認定目前行動裝置所配置之光達系統可達到公分級精度,且在總長約160公尺的大範圍場景中智慧型裝置約有80%的點雲與手持式光達差距落於0.1公尺內惟於測量任務中仍建議依照精度要求選取適當工具。
zh_TW
dc.description.abstract (摘要) With the continuous advancement of technology, the rate of people possessing mobile devices has increased, smartphone and tablet manufacturers starting to equip their products with different kind of distance measuring cameras. How to obtain the same modeling data with a more simply technic has become the goal of various researchers.
Nowadays, the use of indoor model has expanded widely, while the purpose includes interior works, merchant demonstrating products, etc. Most of them are following two main methods. First is using the data gaining from total station, and then build a model artificially. Another is scanning with Lidar system to get the point cloud data. Although both methods can get a result with high precision, it remains following two disadvantage. One is that Lidar systems are too costly, for professional models could reach hundreds of thousands NTD, the higher-level model even cost over a million NTD, which is an expenditure can’t be ignored. Another is the professionalism of the measuring staff. When using these two kinds of instrument, they should have enough professional skills, also, be experienced with operation methods and precautions, which may lead to a difficulty in staff scheduling.
According to the reasons mentioned upon, this research will use smartphone equipped with Lidar camera as our instrument, conducting the discussion of the precision of indoor modeling. At the same time, use the Geo Slam as the control group, examining the difference in precision between mobile devices and professional instruments. After all, develop a rapid but low-cost operating pattern in modeling and measuring tasks by replacing high-priced instruments with mobile devices. According to the result, the precision of Lidar system equipped on mobile devices could reach cm level, also the difference between mobile device and handheld Lidar in wide area which length is about 160 meter will have roughly 80% point under 0.1 meter, but it’s recommended to choose devices based on the precision acquired by each task.
en_US
dc.description.tableofcontents 謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構 5
第二章 文獻回顧 6
第一節 光達系統原理與差異 6
第二節 室內模型及建模方式 10
第三節 行動裝置測量精度 15
第三章 研究方法 22
第一節 研究範圍與工具 22
第二節 研究流程 29
第三節 研究方法與理論基礎 31
第四章 研究成果與分析 36
第一節 靜態成果分析 36
第二節 第二會議室成果分析 43
第三節 六樓走廊成果分析 50
第五章 結論與建議 59
第一節 結論 59
第二節 建議 62
參考文獻 63
zh_TW
dc.format.extent 5437437 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110257030en_US
dc.subject (關鍵詞) 光達zh_TW
dc.subject (關鍵詞) 行動裝置zh_TW
dc.subject (關鍵詞) 室內建模zh_TW
dc.subject (關鍵詞) 低成本zh_TW
dc.subject (關鍵詞) Lidaren_US
dc.subject (關鍵詞) Mobile Devicesen_US
dc.subject (關鍵詞) Indoor Modelingen_US
dc.subject (關鍵詞) Low-Costen_US
dc.title (題名) 利用移動裝置進行室內快速建模之研究zh_TW
dc.title (題名) The Study of Rapid Indoor Modeling Using Mobile Devicesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 許弘任、林聖迪,2011,「主動截止電路控制之單光子崩潰二極體偵測器」,國立交通大學電子工程學系電子研究所碩士論文:台北
陳立璋、蕭介峰,2021,「不同載體光達輔助地籍測量之研究」,『中華民國地籍測量學會會刊』,40(2):19-43
趙智凡、潘偉庭、楊明德,2016,「應用多視立體及運動回復結構之三維場景重構」,『航測及遙測學刊』,20(2):129-137
楊鎮嘉、張智安,2021,「iPad Pro Lidar室內空間掃描精度分析」,第39屆測量及空間資訊研討會
Andújar, D., Calle, M., Fernández-Quintanilla, C., Ribeiro, Á., and Dorado, J, 2018, “Three-Dimensional Modeling of Weed Plants Using Low-Cost Photogrammetry”, Sensors, 18: 1077.
Bauwens, S., Bartholomeus, H., Calders, K., AND Lejeune, P., 2016, “Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning”, Forests, 7: 127.
Desai, J., Liu, J., Hainje, R., Oleksy, R., Habib, A., AND Bullock, D., 2021, “Assessing Vehicle Profiling Accuracy of Handheld LiDAR Compared to Terrestrial Laser Scanning for Crash Scene Reconstruction”, Sensors, 21: 8076.
Díaz Vilariño, L., Tran, H., Frías, E., Balado FJ., Khoshelham, K., 2022, “3D Mapping of Indoor and Outdoor Environment Using Apple Smart Devices”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43B4: 303-308.
Elkhrachy, Ismail, 2020, “Modeling and Visualization of Three Dimensional Objects Using Low-Cost Terrestrial Photogrammetry”, International Journal of Architectural Heritage, 14: 1456-1467.
Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A., 2021, “Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology”, Remote Sens, 13: 3129.
Gunduz, M., Isikdag, U., and Basaraner, M., 2016, “a Review of Recent Research in Indoor Modelling & Mapping”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41B4: 289–294.
Łabędź, P., Skabek, K., Ozimek, P., Rola, D., Ozimek, A., Ostrowska, K., 2022, “Accuracy Verification of Surface Models of Architectural Objects from the iPad LiDAR in the Context of Photogrammetry Methods”. Sensors, 22: 8504.
Luetzenburg, G., Kroon, A., and Bjørk, A.A., 2021, “Evaluation of the Apple IPHONE 12 Pro LiDAR for an Application in Geosciences”, Sci Rep, 11: 22221.
Nicholas C.F., Nathan B., Julian B., 2012, “Plane of Best Fit:A Novel Method to Characterize the Three-Dimensionality of Molecules”, Journal of Chemical Information and Modeling, 52(10): 2516-2525.
Payton P.C., Kianna H.C., Audrey J.H., Shabnam J., and Jakov S.J., 2022, “Apple Iphone 13 Pro Lidar Accuracy Assessment For Engineering Applications”, Paper presented at the 2022: The Digital Reality of Tomorrow, University of New Brunswick, August 23-25.
Ramos, A., and Prieto, G., 2015, “3D Virtualization By Close Range Photogrammetry Indoor Gothic Church Apses. The Case Study Of Church Of SAN FRANCISCO In BETANZOS (LA CORUÑA, SPAIN)”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. XL-5/W4: 201-206.
Raj, T., Hashim, FH., Huddin, AB., Ibrahim, MF., and Hussain, A., 2020, “A Survey on LiDAR Scanning Mechanisms”, Electronics, 9: 741.
Roi Otero, Susana Lagüela, Iván Garrido and Pedro Ariasa, 2020, “Mobile indoor mapping technologies: A review”, Automation in Construction, 120.
Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F, 2022, “Apple LiDAR Sensor for 3D Surveying: Tests and Results in the Cultural Heritage Domain”, Remote Sens, 14: 4157.
Yang, S.W, and Wang, C.C., 2011, "On Solving Mirror Reflection in LIDAR Sensing", IEEE/ASME Transactions on Mechatronics, 16(2): 255-265.
CloudCompare (2016, April 22). Align. Retrieved October 10, 2022 from CloudCompare Organization Worldwide Web: https://www.CloudCompare.org/doc/wiki/index.php?title=Align
Counterpoint (2022, June 3). Infographic: Q1-2022 | Smartphone | Mobile Market Monitor. Retrieved October 2, 2022 from Counterpoint Web: https://www.counterpointresearch.com/infographic-q1-2022-smartphones/
IPHONE 14 PRO teardown:https://youtu.be/gAAOPvmwgRg
IPHONE Lidar System (2018). Major Apple Patents Reveal work on next-gen LiDAR Systems using VCSELs for 3D Sensing Systems and Headset. Retrieved September 15, 2022 from Patently Apple: https://www.patentlyapple.com/patently-apple/2018/11/major-apple-patents-reveal-work-on-next-gen-lidar-systems-using-vcsels-for-3d-sensing-systems-and-headset.html
Leica (2021). Leica RTC360 3D Laser Scanner. Retrieved October 12, 2022 from Leica Global Web: https://leica-geosystems.com/products/laser-scanners/scanners/leica-rtc360
LineVision Inc.(2019). LineVision’s new generation of overhead line monitoring. Retrieved September 10, 2022 from LineVision Worldwide Web:https://www.linevisioninc.com/success-stories.
Pew Research Center (2019, February 5). Smartphone Ownership Is Growing Rapidly Around the World, but Not Always Equally. Retrieved. Retrieved March 20, 2022 from Pew Research Center Web: https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/.
US Environmental Protection Agency (2009). Buildings and Their Impact on the Environment: A Statistical Summary. Retrieved September 13, 2022 from US Environmental Protection Agency Green Building Workgroup: https://archive.epa.gov/greenbuilding/web/pdf/gbstats.pdf.
Volvo Inc. (2021, June 24). Next generation pure electric Volvo comes with LiDAR technology and AI-driven super computer as standard to help save lives. Retrieved September 12, 2022 from Volvo Cars Global Newsroom:https://www.media.volvocars.com/global/en-gb/media/pressreleases/283443/next-generation-pure-electric-volvo-comes-with-lidar-technology-and-ai-driven-super-computer-as-stan
zh_TW