學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 在嚴重遮蔽環境下估計差分系統偏差的BDS-3/GPS/Galileo/BDS-2/GLONASS/QZSS即時動態定位及初步分析
BDS-3/GPS/Galileo/BDS-2/GLONASS/QZSS real-time kinematic positioning with the estimation of differential inter-system biases and initial assessment under severely-constrained observational environments
作者 胡家維
Hu, Jia-Wei
貢獻者 儲豐宥
Chu, Feng-Yu
胡家維
Hu, Jia-Wei
關鍵詞 差分系統間偏差(differential inter-system biases, DISBs)
北斗三號(BDS-3)
即時動態定位(real-time kinematic, RTK)
Differential inter-system biases
BDS-3
Real-time kinematic
日期 2023
上傳時間 1-Sep-2023 15:16:52 (UTC+8)
摘要 即時動態(real time kinematic, RTK)定位可提供公分級的定位成果且已廣泛地應用於導航工程上。可用衛星數量對RTK來說相當重要,然而在遮蔽的觀測環境下可用衛星數量會因遮蔽效應而降低。星系間重疊頻率的差分系統間偏差(differential inter-system biases, DISBs)具有在時間上的穩定性,所以我們可以藉由率定星系間重疊頻率所構成的DISBs來增加RTK模型的多餘觀測數並降低遮蔽效應的影響,其數學模型稱作DISB-fixed模型。
目前,台灣上空可追蹤到六星系,包含GPS、Galileo、北斗二號(BDS-2)、GLONASS、QZSS以及最新的北斗三號(BDS-3)。一方面,當結合使用這六星系時,我們將可獲得大量可用衛星數量;另一方面,BDS-3比BDS-2額外多了兩個新頻率,B1C、B2a,其可分別與GPS的L1、L5和Galileo的E1、E5a以及QZSS的L1、L5頻率重疊。因此結合此六星系的DISB-fixed模型將可以有效地幫助RTK定位於嚴重遮蔽的觀測環境,例如都會區以及森林區。雖然我們可預期結合此六星的DISB-fixed模型可以挑戰嚴重遮蔽觀測環境,但是結合此六星系的DISB-fixed模型的優勢以及其可能會面臨到的問題尚未被目前文章所討論。
有鑑於此,本研究建立出一個能夠處理六星系多頻的DISB-fixed模型,並評估此模型針對其DISBs估計所需之收斂時間,以及分析在嚴重遮蔽的觀測條件(例如:截仰角>55°)下的RTK效能並討論潛在的問題。成果指出,在理想觀測條件下,電碼與相位DISBs的變化可在10分鐘內可分別收斂低於0.3公尺與0.02週期內。另外,在嚴重遮蔽的觀測條件下,本研究發現結合六星系後雖然依然可獲得相當高的求解性,但是由於嚴重遮蔽的觀測條件造成之不良的衛星幾何,使得單頻情況的週波值求解(ambiguity resolution, AR)效能明顯地劣於使用雙頻情況。這說明了在嚴重遮蔽環境下,除了衛星數目之外,使用多頻率的觀測量也是重要考量項目之一。
Real-time kinematic (RTK) positioning provides centimeter-level positioning accuracy and is widely used in navigation engineering. The number of available satellites is crucial for RTK, but it decreases in obstructed observation environments due to shadowing effects. Differential inter-system biases (DISBs), which are stable over time, can be used to increase the number of redundancy in the RTK model and reduce the impact of shadowing effects. This mathematical model is known as the DISB-fixed model. Currently, six satellite constellations can be tracked in Taiwan, including GPS, Galileo, BeiDou Navigation Satellite System (BDS-2), GLONASS, QZSS, and the latest BeiDou-3 (BDS-3). On one hand, combining these six constellations allows for a large number of available satellites. On the other hand, BDS-3 has two additional frequencies, B1C and B2a, which overlap with GPS`s L1 and L5, Galileo`s E1 and E5a, and QZSS`s L1 and L5 frequencies, respectively. Therefore, the DISB-fixed model combining these six constellations can effectively assist RTK positioning in severely obstructed observation environments such as urban and forest areas. Although we can anticipate that the DISB-fixed model with these six constellations can address severe shadowing conditions, the advantages of combining these constellations and the potential challenges it may face have not been discussed in previous studies. In this research, we establish a DISB-fixed model capable of handling multi-frequency observations from the six constellations and evaluate the convergence time required for DISBs estimation in this model. We also analyze the RTK performance under severely-obstructed conditions (e.g., elevation angles greater than 55°) and discuss potential issues. The results indicate that under ideal observation conditions, the variations in code and phase DISBs converge within 0.3 meters and 0.02 cycles, respectively, within 10 minutes. Furthermore, under severely-obstructed conditions, although the SP remains relatively high when combining the six constellations, the poor satellite geometry results in significantly poorer ambiguity resolution (AR) performance compared to single-frequency cases. This demonstrates that, in addition to the number of satellites, the use of multi-frequency observations is also an important consideration in severely-obstructed environments.
參考文獻 Odolinski, R., Teunissen, P.J.G. and Odijk, D., 2015, “Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK”, GPS Solut(19): 151–163.
Shi, J., Ouyang, C., Huang, Y. and Peng, W., 2020, “Assessment of BDS-3 global positioning service: ephemeris, SPP, PPP, RTK, and new signal”, GPS Solut (24): 81.
Tu, R., Hong, J., Zhang, P., Zhang, R., Fan, L., Liu, J. and Lu X., 2019, “Multiple GNSS inter-system biases in precise time transfer”, Measurement Science and Technology (30): 11.
Mi, X., Sheng, C., El-Mowafy, A. and Zhang, B., 2021, “Characteristics of receiver-related biases between BDS-3 and BDS-2 for fve frequencies including inter-system biases, diferential code biases, and diferential phase biases”, GPS Solut (25): 113.
Verhagen, S. and Teunissen, P.J.G., 2013 “The ratio test for future GNSS ambiguity resolution”, GPS Solut (17): 535–548.
Mi, X., Zhang, B. and Yuan, Y., 2019, “Multi-GNSS inter-system biases: estimability analysis and impact on RTK positioning”, GPS Solut (23): 81.
63
Li, W., Zhu, S. and Ming, Z., 2021, “Estimation of Inter-System Biases between BDS-3/GPS/Galileo and Its Application in RTK Positioning”, Remote Sensing(13): 3507.
Teunissen, P.J.G., Odolinski, R. and Odijk, D., 2014, “Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles”, J Geod(88): 335–350.
Chen, G., Li, B., Zhang, Z. and Liu, T., 2022, “Integer ambiguity resolution and precise positioning for tight integration of BDS-3, GPS, GALILEO, and QZSS overlapping frequencies signals”, GPS Solut (26): 26.
Gao, W., Meng, X., Gao, C., Pan, S. and Wang, D., 2018, “Combined GPS and BDS for single-frequency continuous RTK positioning through real-time estimation of differential inter-system biases”, GPS Solut (22): 20.
Yang, M., Chu, F.Y. and Lin, C.Y., 2018, “GNSS Ambiguity Resolution in Kinematic Positioning: Benefits of Satellite Availability and Sampling Rate”, Journal of Aeronautics, Astronautics and Aviation(50): 187–204.
Mi, X., Zhang, B. and Yuan, Y., 2019, “Multi-GNSS inter-system biases: estimability analysis and impact on RTK positioning”, GPS Solut (23): 81.
Odijk, D. and Teunissen, P.J.G., 2013, “Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution”, GPS Solut (17): 521–533.
64

Kaloop, M., Yigit, C., El-Mowafy, A., Bezcioglu, M., Dindar, A. and Hu, J., 2020, “Evaluation of Multi-GNSS High-rate Relative Positioning for Monitoring Dynamic Structural Movements in the Urban Environment”, Journal of Geomatics, Natural Hazards and Risk(11): 2239–2262.
Gao, W., Gao, C., Pan, S., Meng, X. and Xia. Y., 2017, “Inter-System Differencing between GPS and BDS for Medium-Baseline RTK Positioning”, Remote Sensing(9): 948.
Kubo, N., Tokura, H. and Pullen, S., 2018, “Mixed GPS–BeiDou RTK with inter-systems bias estimation aided by CSAC”, GPS Solut (22): 5.
Wu, M., Liu , W., Wang, W. and Zhang, X., 2019, “Differential Inter-System Biases Estimation and Initial Assessment of Instantaneous Tightly Combined RTK with BDS-3, GPS, and Galileo”, Remote Sensing(12): 1430.
Zhao, W., Chen, H., Gao, Y., Jiang, W. and Liu, X., 2020, “Evaluation of Inter- System Bias between BDS-2 and BDS-3 Satellites and Its Impact on Precise Point Positioning”, Remote Sensing(12): 2185.
Odijk, D., Nadarajah, N., Zaminpardaz, S. and Teunissen, P.J.G., 2017, “GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application”, GPS Solut (21): 439–450.
Yang, Y., Gao, W., Guo, S., Mao, Y. and Yang, Y., 2019, “Introduction to BeiDou-3 navigation satellite system”, Navigation(66): 7–18.
65

Lu, M., Li, W., Yao, Z. and Cui, X., 2019, “Overview of BDS III new signals”, Navigation(66): 19–35.
Zhang, X., Wu, M., Liu, W., Li, X., Yu, S., Lv, C. and Wickert, J., 2017, “Initial assessment of the COMPASS/BeiDou-3:New-generation navigation signals”, Journal of Geodesy(91): 1225–1240.
Li, X., Xie, W., Huang, J., Ma, T., Zhang, X. and Yuan, Y., 2019, “Estimation and analysis of differential code biases for BDS3/BDS2 using iGMAS and MGEX observations”, Journal of Geodesy(93): 419–435.
Sui, X., Shi, C. and Xu, A., 2019, “The Stability of GPS/BDS inter-system biases at the receiver end and its effect on ambiguity resolution”, Geomatics and Information Science of Wuhan University(43): 175–182.
Wu, M., Zhang, X., Liu, W., Wu, R., Zhang, R., Le, Y. and Wu, Y., 2019, “Influencing factors of differential inter-system bias and performance assessment of tightly combined GPS, Galileo, and QZSS relative positioning for short baseline”, Journal of Geodesy(72): 965–986.
Odolinski, R., Teunissen, P.J.G., and Odijk, D., 2013, “An analysis of combined COMPASS/BeiDou-2 and GPS single- and multiple-frequency RTK positioning” Proceedings of the ION 2013 Pacific PNT Meeting(4): 69–90.
Mi, X., Zhang, B., Yuan, Y. and Luo, X., 2019, “Characteristics of GPS, BDS2, BDS3 and Galileo inter-system biases and their influence on RTK positioning” Measurement Science and Technology (31): 015009.
描述 碩士
國立政治大學
地政學系
110257031
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110257031
資料類型 thesis
dc.contributor.advisor 儲豐宥zh_TW
dc.contributor.advisor Chu, Feng-Yuen_US
dc.contributor.author (Authors) 胡家維zh_TW
dc.contributor.author (Authors) Hu, Jia-Weien_US
dc.creator (作者) 胡家維zh_TW
dc.creator (作者) Hu, Jia-Weien_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-Sep-2023 15:16:52 (UTC+8)-
dc.date.available 1-Sep-2023 15:16:52 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 15:16:52 (UTC+8)-
dc.identifier (Other Identifiers) G0110257031en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/146998-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 地政學系zh_TW
dc.description (描述) 110257031zh_TW
dc.description.abstract (摘要) 即時動態(real time kinematic, RTK)定位可提供公分級的定位成果且已廣泛地應用於導航工程上。可用衛星數量對RTK來說相當重要,然而在遮蔽的觀測環境下可用衛星數量會因遮蔽效應而降低。星系間重疊頻率的差分系統間偏差(differential inter-system biases, DISBs)具有在時間上的穩定性,所以我們可以藉由率定星系間重疊頻率所構成的DISBs來增加RTK模型的多餘觀測數並降低遮蔽效應的影響,其數學模型稱作DISB-fixed模型。
目前,台灣上空可追蹤到六星系,包含GPS、Galileo、北斗二號(BDS-2)、GLONASS、QZSS以及最新的北斗三號(BDS-3)。一方面,當結合使用這六星系時,我們將可獲得大量可用衛星數量;另一方面,BDS-3比BDS-2額外多了兩個新頻率,B1C、B2a,其可分別與GPS的L1、L5和Galileo的E1、E5a以及QZSS的L1、L5頻率重疊。因此結合此六星系的DISB-fixed模型將可以有效地幫助RTK定位於嚴重遮蔽的觀測環境,例如都會區以及森林區。雖然我們可預期結合此六星的DISB-fixed模型可以挑戰嚴重遮蔽觀測環境,但是結合此六星系的DISB-fixed模型的優勢以及其可能會面臨到的問題尚未被目前文章所討論。
有鑑於此,本研究建立出一個能夠處理六星系多頻的DISB-fixed模型,並評估此模型針對其DISBs估計所需之收斂時間,以及分析在嚴重遮蔽的觀測條件(例如:截仰角>55°)下的RTK效能並討論潛在的問題。成果指出,在理想觀測條件下,電碼與相位DISBs的變化可在10分鐘內可分別收斂低於0.3公尺與0.02週期內。另外,在嚴重遮蔽的觀測條件下,本研究發現結合六星系後雖然依然可獲得相當高的求解性,但是由於嚴重遮蔽的觀測條件造成之不良的衛星幾何,使得單頻情況的週波值求解(ambiguity resolution, AR)效能明顯地劣於使用雙頻情況。這說明了在嚴重遮蔽環境下,除了衛星數目之外,使用多頻率的觀測量也是重要考量項目之一。
zh_TW
dc.description.abstract (摘要) Real-time kinematic (RTK) positioning provides centimeter-level positioning accuracy and is widely used in navigation engineering. The number of available satellites is crucial for RTK, but it decreases in obstructed observation environments due to shadowing effects. Differential inter-system biases (DISBs), which are stable over time, can be used to increase the number of redundancy in the RTK model and reduce the impact of shadowing effects. This mathematical model is known as the DISB-fixed model. Currently, six satellite constellations can be tracked in Taiwan, including GPS, Galileo, BeiDou Navigation Satellite System (BDS-2), GLONASS, QZSS, and the latest BeiDou-3 (BDS-3). On one hand, combining these six constellations allows for a large number of available satellites. On the other hand, BDS-3 has two additional frequencies, B1C and B2a, which overlap with GPS`s L1 and L5, Galileo`s E1 and E5a, and QZSS`s L1 and L5 frequencies, respectively. Therefore, the DISB-fixed model combining these six constellations can effectively assist RTK positioning in severely obstructed observation environments such as urban and forest areas. Although we can anticipate that the DISB-fixed model with these six constellations can address severe shadowing conditions, the advantages of combining these constellations and the potential challenges it may face have not been discussed in previous studies. In this research, we establish a DISB-fixed model capable of handling multi-frequency observations from the six constellations and evaluate the convergence time required for DISBs estimation in this model. We also analyze the RTK performance under severely-obstructed conditions (e.g., elevation angles greater than 55°) and discuss potential issues. The results indicate that under ideal observation conditions, the variations in code and phase DISBs converge within 0.3 meters and 0.02 cycles, respectively, within 10 minutes. Furthermore, under severely-obstructed conditions, although the SP remains relatively high when combining the six constellations, the poor satellite geometry results in significantly poorer ambiguity resolution (AR) performance compared to single-frequency cases. This demonstrates that, in addition to the number of satellites, the use of multi-frequency observations is also an important consideration in severely-obstructed environments.en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 10
第三節 研究架構 11

第二章 文獻回顧 13
第一節 DISBs在時間上的穩定性 21
第二節 率定DISBs後對RTK效能的改善 21

第三章 研究方法 26
第一節 BRSD觀測方程式 26
第二節 DISB-float模型 26
第三節 DISB-fixed模型 33
第四節 卡爾曼濾波(Kalman Filter) 37
第五節 AR流程 38

第四章 成果與分析 42
第一節 實驗資料 42
第二節 DISBs收斂時間分析 45
第三節 RTK效能分析 51

第五章 結論 62

參考文獻 63
zh_TW
dc.format.extent 5707461 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110257031en_US
dc.subject (關鍵詞) 差分系統間偏差(differential inter-system biases, DISBs)zh_TW
dc.subject (關鍵詞) 北斗三號(BDS-3)zh_TW
dc.subject (關鍵詞) 即時動態定位(real-time kinematic, RTK)zh_TW
dc.subject (關鍵詞) Differential inter-system biasesen_US
dc.subject (關鍵詞) BDS-3en_US
dc.subject (關鍵詞) Real-time kinematicen_US
dc.title (題名) 在嚴重遮蔽環境下估計差分系統偏差的BDS-3/GPS/Galileo/BDS-2/GLONASS/QZSS即時動態定位及初步分析zh_TW
dc.title (題名) BDS-3/GPS/Galileo/BDS-2/GLONASS/QZSS real-time kinematic positioning with the estimation of differential inter-system biases and initial assessment under severely-constrained observational environmentsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Odolinski, R., Teunissen, P.J.G. and Odijk, D., 2015, “Combined BDS, Galileo, QZSS and GPS Single-Frequency RTK”, GPS Solut(19): 151–163.
Shi, J., Ouyang, C., Huang, Y. and Peng, W., 2020, “Assessment of BDS-3 global positioning service: ephemeris, SPP, PPP, RTK, and new signal”, GPS Solut (24): 81.
Tu, R., Hong, J., Zhang, P., Zhang, R., Fan, L., Liu, J. and Lu X., 2019, “Multiple GNSS inter-system biases in precise time transfer”, Measurement Science and Technology (30): 11.
Mi, X., Sheng, C., El-Mowafy, A. and Zhang, B., 2021, “Characteristics of receiver-related biases between BDS-3 and BDS-2 for fve frequencies including inter-system biases, diferential code biases, and diferential phase biases”, GPS Solut (25): 113.
Verhagen, S. and Teunissen, P.J.G., 2013 “The ratio test for future GNSS ambiguity resolution”, GPS Solut (17): 535–548.
Mi, X., Zhang, B. and Yuan, Y., 2019, “Multi-GNSS inter-system biases: estimability analysis and impact on RTK positioning”, GPS Solut (23): 81.
63
Li, W., Zhu, S. and Ming, Z., 2021, “Estimation of Inter-System Biases between BDS-3/GPS/Galileo and Its Application in RTK Positioning”, Remote Sensing(13): 3507.
Teunissen, P.J.G., Odolinski, R. and Odijk, D., 2014, “Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles”, J Geod(88): 335–350.
Chen, G., Li, B., Zhang, Z. and Liu, T., 2022, “Integer ambiguity resolution and precise positioning for tight integration of BDS-3, GPS, GALILEO, and QZSS overlapping frequencies signals”, GPS Solut (26): 26.
Gao, W., Meng, X., Gao, C., Pan, S. and Wang, D., 2018, “Combined GPS and BDS for single-frequency continuous RTK positioning through real-time estimation of differential inter-system biases”, GPS Solut (22): 20.
Yang, M., Chu, F.Y. and Lin, C.Y., 2018, “GNSS Ambiguity Resolution in Kinematic Positioning: Benefits of Satellite Availability and Sampling Rate”, Journal of Aeronautics, Astronautics and Aviation(50): 187–204.
Mi, X., Zhang, B. and Yuan, Y., 2019, “Multi-GNSS inter-system biases: estimability analysis and impact on RTK positioning”, GPS Solut (23): 81.
Odijk, D. and Teunissen, P.J.G., 2013, “Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution”, GPS Solut (17): 521–533.
64

Kaloop, M., Yigit, C., El-Mowafy, A., Bezcioglu, M., Dindar, A. and Hu, J., 2020, “Evaluation of Multi-GNSS High-rate Relative Positioning for Monitoring Dynamic Structural Movements in the Urban Environment”, Journal of Geomatics, Natural Hazards and Risk(11): 2239–2262.
Gao, W., Gao, C., Pan, S., Meng, X. and Xia. Y., 2017, “Inter-System Differencing between GPS and BDS for Medium-Baseline RTK Positioning”, Remote Sensing(9): 948.
Kubo, N., Tokura, H. and Pullen, S., 2018, “Mixed GPS–BeiDou RTK with inter-systems bias estimation aided by CSAC”, GPS Solut (22): 5.
Wu, M., Liu , W., Wang, W. and Zhang, X., 2019, “Differential Inter-System Biases Estimation and Initial Assessment of Instantaneous Tightly Combined RTK with BDS-3, GPS, and Galileo”, Remote Sensing(12): 1430.
Zhao, W., Chen, H., Gao, Y., Jiang, W. and Liu, X., 2020, “Evaluation of Inter- System Bias between BDS-2 and BDS-3 Satellites and Its Impact on Precise Point Positioning”, Remote Sensing(12): 2185.
Odijk, D., Nadarajah, N., Zaminpardaz, S. and Teunissen, P.J.G., 2017, “GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application”, GPS Solut (21): 439–450.
Yang, Y., Gao, W., Guo, S., Mao, Y. and Yang, Y., 2019, “Introduction to BeiDou-3 navigation satellite system”, Navigation(66): 7–18.
65

Lu, M., Li, W., Yao, Z. and Cui, X., 2019, “Overview of BDS III new signals”, Navigation(66): 19–35.
Zhang, X., Wu, M., Liu, W., Li, X., Yu, S., Lv, C. and Wickert, J., 2017, “Initial assessment of the COMPASS/BeiDou-3:New-generation navigation signals”, Journal of Geodesy(91): 1225–1240.
Li, X., Xie, W., Huang, J., Ma, T., Zhang, X. and Yuan, Y., 2019, “Estimation and analysis of differential code biases for BDS3/BDS2 using iGMAS and MGEX observations”, Journal of Geodesy(93): 419–435.
Sui, X., Shi, C. and Xu, A., 2019, “The Stability of GPS/BDS inter-system biases at the receiver end and its effect on ambiguity resolution”, Geomatics and Information Science of Wuhan University(43): 175–182.
Wu, M., Zhang, X., Liu, W., Wu, R., Zhang, R., Le, Y. and Wu, Y., 2019, “Influencing factors of differential inter-system bias and performance assessment of tightly combined GPS, Galileo, and QZSS relative positioning for short baseline”, Journal of Geodesy(72): 965–986.
Odolinski, R., Teunissen, P.J.G., and Odijk, D., 2013, “An analysis of combined COMPASS/BeiDou-2 and GPS single- and multiple-frequency RTK positioning” Proceedings of the ION 2013 Pacific PNT Meeting(4): 69–90.
Mi, X., Zhang, B., Yuan, Y. and Luo, X., 2019, “Characteristics of GPS, BDS2, BDS3 and Galileo inter-system biases and their influence on RTK positioning” Measurement Science and Technology (31): 015009.
zh_TW