學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 無人機區域偵查及目標物件定位策略之技術研究
Technical Research on UAV Area Search and Object Geolocation Strategy
作者 劉益誠
Liu, Yi-Chen
貢獻者 劉吉軒
Liu, Jyi-Shane
劉益誠
Liu, Yi-Chen
關鍵詞 智慧無人機
區域偵查
平面視覺
距離預測
三角測量
地理座標投影
區域覆蓋路徑規劃
無人機定位策略
特徵比對
Smart UAV
Area Search
2D vision
Distance Estimation
Triangulation
Geographic Coordinate Projection
Coverage Path Planning
UAV Geolocation Strategy
Feature Matching
日期 2023
上傳時間 1-Sep-2023 15:24:38 (UTC+8)
摘要 無人機在現今產業發展快速,因其相較於需人員搭載的飛行器有更低的
製造成本、更高的機動性而且減少了駕駛人員傷亡的風險而大量應用於過
往需要人力的工作上。無人機發展初期主要應用於軍事用途上,但隨著技
術逐漸商用化無人機逐漸在民生用途上取得大量的發展,包含在工業、農
業、電影拍攝甚至是競技娛樂都出現了無人機的應用技術。除了無人機硬
體本身的發展外,影像處理的技術發展使無人機能在更多應用場景發揮價
值,尤其是平面視覺的影像處理技術使無人機能夠以平面視覺的相機進行
更多的任務,特別是對於重量有限制而無法搭載大量感測器的微型無人機。
對於微型無人機來說平面相機、GPS、指北針與高度計是常備的感測
器,因此本研究對於偵查區域內目標物件定位任務以微型無人機常備的感
測器發展三項定位策略來達成不同任務環境下的目標偵查與定位。其中,
多點平均定位策略以單目視覺定位模組為主,搭配平面視覺影像及感測器
數據來達成對地上目標物件的定位,並利用了無人機執行任務的連續性對
感測器資料進行校正進而提升定位結果的可靠度。為了降低感測器的依賴
程度,本研究以三角計算的方式發展三角測量定位策略,成功降低感測器
的依賴度以及高度對於定位準確度的影響。影像比對定位策略則是以特徵
比對技術為基礎來達成純影像的定位任務,使無人機在感測器失效的任務
環境下仍能夠達成定位任務。
With the rapid development of unmanned aerial vehicle technology and it’s
high mobility, low risk for drone pilot.Unmanned Aerial Vehicle have been used
in a variety of applications.In early stage, UAV was mainly used for military
purposes.But, with UAV technology became more and more prevalent, UAV widely
applied on Manufacturing industry, agriculture and film industry.Beside the UAV
technology, the development of image processing also improve development of
UAV application.And 2D-vision-based image processing was important especially
for micro UAV because of it’s weight limit.
For micro UAV, the commonly equipped sensors are a camera, GPS, compass
and altimeter. Therefore, this research develop three geolocation strategies using
the sensors commonly found on micro drones to achieve target detection and
positioning in different mission environments. Among them, the multi-point
averaging geolocation strategy focuses on the monocular visual positioning module,
using plane visual images and sensor data to locate ground target.This strategy
also calibrate the sensor data to improve the reliability of the positioning results.
To reduce sensor dependency, a triangulation geolocation strategy was developed
using trigonometric calculations, successfully reducing the reliance on sensors and
mitigating the impact of altitude on positioning accuracy. The image matching
geolocation strategy is based on feature matching techniques to achieve pure imagebased
positioning tasks, enabling drones to perform positioning tasks even in
mission environments where sensors may fail.
參考文獻 [1] Robot operating system (ros) https://www.ros.org/.
[2] Ros-mobile http://wiki.ros.org/ros-mobile.
[3] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal on
Robotics and Automation, 2(1):14–23, 1986.
[4] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986.
[5] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.
[6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-
supervised interest point detection and description. Computer Vision and Pattern
Recognition(CVPR), 2018.
[7] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous areas by a
mobile robot. International Conference on Robotics and Automation, 2:1927–1933, 2001.
[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
NeurIPS, 27, 2014.
[9] Fatih Gökçe, Göktürk Üçoluk, Erol ̧Sahin, and Sinan Kalkan. Vision-based detection
and distance estimation of micro unmanned aerial vehicles. Sensors, 15(9):23805–23846,
2015.
[10] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’s. International
Journal of Automation and Computing, 11(347–352), 2014.
[11] Luc Van Gool Herbert Bay, Tinne Tuytelaars. Surf: Speeded up robust features. Computer
Vision
–ECCV, 3951, 2006.
[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. International Journal of Computer Vision, 2018.
[13] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy, 87:43–55, 2013.
[14] Ragab Khalil. The accuracy of gis tools for transforming assumed total station surveys to
real world coordinates. Geographic Information System, 5(486-491), 2013.
[15] Arturo De la Escalera and Jose María Armingol. Automatic chessboard detection for
intrinsic and extrinsic camera parameter calibration. Sensors, 10(3)(2027-2044), 2010.
[16] Chaozhen Lan, Wanjie Lu, Junming Yu, and Qing Xu. Deep learning algorithm for feature
matching of cross modality remote sensing images. Acta Geodaetica et Cartographica
Sinica, 50(2):14–23, 2021.
[17] Zuoyue Li, Jan Dirk Wegner, and Aurelien Lucchi. Topological map extraction from
overhead images. International Conference on Computer Vision, 2019.
[18] Xiao Ling, Yongjun Zhang, Jinxin Xiong, Xu Huang, and Zhipeng Chen. An image
matching algorithm integrating global srtm and image segmentation for multi-source
satellite imagery. Remote Sensing, 8, 2016.
[19] D.G Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(91–110), 2004.
[20] L. H. Nam, L. Huang, X. J. Li, and J. F. Xu. An approach for coverage path planning for
uavs. IEEE 14th International Workshop on Advanced Motion Control, (411-416), 2016.
[21] Donggeun Oh and Junghee Han. Smart search system of autonomous flight uavs for
disaster rescue. Sensors, 21(20), 2021.
[22] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. International
Conference on Robotics and Automation, 2011.
[23] Parrot. Anafi https://www.parrot.com/en/drones/anafi.
[24] Parrot. Bebop2 https://www.parrot.com/en/drones.
[25] Shashikant Prasad. pix2pix gan for generating maps given satellite images using
pytorch, https:// medium.com/ @skpd/ pix2pix-gan-for-generating-map-given-satellite-
images-using-pytorch-6e50c318673a.
[26] Wahyu Rahmaniar, Wen-June Wang, Wahyu Caesarendra, Adam Glowacz, Krzysztof
Oprz ̨edkiewicz, Maciej Sułowicz, and Muhammad Irfan. Distance measurement
of unmanned aerial vehicles using vision-based systems in unknown environments.
Electronics, 10(14), 2021.
[27] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient
alternative to sift or surf. Proceedings of the IEEE International Conference on Computer
Vision, (2564-2571), 2011.
[28] Sajid Saleem, Abdul Bais, and Robert Sablatnig. Towards feature points based image
matching between satellite imagery and aerial photographs of agriculture land. Computers
and Electronics in Agriculture, 126:12–20, 2016.
[29] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.
Superglue: Learning feature matching with graph neural networks. Computer Vision and
Pattern Recognition(CVPR), 2020.
[30] Chris Simpson. Behavior trees for ai: How they work, https://www.gamedeveloper.com/
programming/behavior-trees-for-ai-how-they-work.
[31] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr:
Detector-free local feature matching with transformers. Computer Vision and Pattern
Recognition(CVPR), 2021.
[32] Dengqing Tang, Tianjiang Hu, Zhaowei Ma, Lincheng Shen, and Chongyu Pan. Apriltag
array-aided extrinsic calibration of camera–laser multi-sensor system. Robotics and
Biomimetics, 3(13), 2016.
[33] Jinbiao Yuan, Zhenbao Liu, Yeda Lian, Lulu Chen, Qiang An, Lina Wang, and Bodi Ma.
Global optimization of uav area coverage path planning based on good point set and genetic
algorithm. Aerospace, 9(2), 2022.
[34] Xiaoyue Zhao, Fangling Pu, Zhihang Wang, Hongyu Chen, and Zhaozhuo Xu. Detection,
tracking, and geolocation of moving vehicle from uav using monocular camera. IEEE
Access, 7:101160–101170, 2019.
[35] 佐翼科技. Dx30-w1 https://www.droxotech.com/.
[36] 內政部國土測繪中心. 國土測繪圖資服務雲 https://maps.nlsc.gov.tw.
[37] 擎壤科技. Eg2 https://www.earthgen.com.tw/eg2.
描述 碩士
國立政治大學
資訊科學系
110753136
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110753136
資料類型 thesis
dc.contributor.advisor 劉吉軒zh_TW
dc.contributor.advisor Liu, Jyi-Shaneen_US
dc.contributor.author (Authors) 劉益誠zh_TW
dc.contributor.author (Authors) Liu, Yi-Chenen_US
dc.creator (作者) 劉益誠zh_TW
dc.creator (作者) Liu, Yi-Chenen_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-Sep-2023 15:24:38 (UTC+8)-
dc.date.available 1-Sep-2023 15:24:38 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 15:24:38 (UTC+8)-
dc.identifier (Other Identifiers) G0110753136en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/147033-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 110753136zh_TW
dc.description.abstract (摘要) 無人機在現今產業發展快速,因其相較於需人員搭載的飛行器有更低的
製造成本、更高的機動性而且減少了駕駛人員傷亡的風險而大量應用於過
往需要人力的工作上。無人機發展初期主要應用於軍事用途上,但隨著技
術逐漸商用化無人機逐漸在民生用途上取得大量的發展,包含在工業、農
業、電影拍攝甚至是競技娛樂都出現了無人機的應用技術。除了無人機硬
體本身的發展外,影像處理的技術發展使無人機能在更多應用場景發揮價
值,尤其是平面視覺的影像處理技術使無人機能夠以平面視覺的相機進行
更多的任務,特別是對於重量有限制而無法搭載大量感測器的微型無人機。
對於微型無人機來說平面相機、GPS、指北針與高度計是常備的感測
器,因此本研究對於偵查區域內目標物件定位任務以微型無人機常備的感
測器發展三項定位策略來達成不同任務環境下的目標偵查與定位。其中,
多點平均定位策略以單目視覺定位模組為主,搭配平面視覺影像及感測器
數據來達成對地上目標物件的定位,並利用了無人機執行任務的連續性對
感測器資料進行校正進而提升定位結果的可靠度。為了降低感測器的依賴
程度,本研究以三角計算的方式發展三角測量定位策略,成功降低感測器
的依賴度以及高度對於定位準確度的影響。影像比對定位策略則是以特徵
比對技術為基礎來達成純影像的定位任務,使無人機在感測器失效的任務
環境下仍能夠達成定位任務。
zh_TW
dc.description.abstract (摘要) With the rapid development of unmanned aerial vehicle technology and it’s
high mobility, low risk for drone pilot.Unmanned Aerial Vehicle have been used
in a variety of applications.In early stage, UAV was mainly used for military
purposes.But, with UAV technology became more and more prevalent, UAV widely
applied on Manufacturing industry, agriculture and film industry.Beside the UAV
technology, the development of image processing also improve development of
UAV application.And 2D-vision-based image processing was important especially
for micro UAV because of it’s weight limit.
For micro UAV, the commonly equipped sensors are a camera, GPS, compass
and altimeter. Therefore, this research develop three geolocation strategies using
the sensors commonly found on micro drones to achieve target detection and
positioning in different mission environments. Among them, the multi-point
averaging geolocation strategy focuses on the monocular visual positioning module,
using plane visual images and sensor data to locate ground target.This strategy
also calibrate the sensor data to improve the reliability of the positioning results.
To reduce sensor dependency, a triangulation geolocation strategy was developed
using trigonometric calculations, successfully reducing the reliance on sensors and
mitigating the impact of altitude on positioning accuracy. The image matching
geolocation strategy is based on feature matching techniques to achieve pure imagebased
positioning tasks, enabling drones to perform positioning tasks even in
mission environments where sensors may fail.
en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 4
第二章 文獻探討 6
第一節 無人機區域偵查與定位 6
第二節 區域覆蓋路徑規劃 7
第三節 距離估算 7
第四節 地理對位 8
第五節 影像特徵比對 10
第三章 技術架構 12
第一節 定位策略設計 12
第二節 路徑規劃 14
第三節 目標偵測 15
第四節 多點平均定位策略 21
一、單目視覺定位模組 21
二、感測器資訊與影像之映射 24
三、GPS 座標推算 25
四、校正模組與結果計算 26
第五節 三角測量定位策略 28
第六節 影像比對定位策略 30
一、衛星圖資 30
二、特徵比對 31
三、區域搜尋 31
四、定位模組 36
第七節 無人機控制 38
一、ROS 節點設計 8
二、行為樹設計 38
三、無人機控制機制介面 40
第四章 實驗及評估 42
第一節 評估指標 42
第二節 實驗設計 43
第三節 實驗結果 46
第五章 結論 53
第一節 結果分析 53
第二節 發展方向 54
參考文獻 58
zh_TW
dc.format.extent 15973369 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110753136en_US
dc.subject (關鍵詞) 智慧無人機zh_TW
dc.subject (關鍵詞) 區域偵查zh_TW
dc.subject (關鍵詞) 平面視覺zh_TW
dc.subject (關鍵詞) 距離預測zh_TW
dc.subject (關鍵詞) 三角測量zh_TW
dc.subject (關鍵詞) 地理座標投影zh_TW
dc.subject (關鍵詞) 區域覆蓋路徑規劃zh_TW
dc.subject (關鍵詞) 無人機定位策略zh_TW
dc.subject (關鍵詞) 特徵比對zh_TW
dc.subject (關鍵詞) Smart UAVen_US
dc.subject (關鍵詞) Area Searchen_US
dc.subject (關鍵詞) 2D visionen_US
dc.subject (關鍵詞) Distance Estimationen_US
dc.subject (關鍵詞) Triangulationen_US
dc.subject (關鍵詞) Geographic Coordinate Projectionen_US
dc.subject (關鍵詞) Coverage Path Planningen_US
dc.subject (關鍵詞) UAV Geolocation Strategyen_US
dc.subject (關鍵詞) Feature Matchingen_US
dc.title (題名) 無人機區域偵查及目標物件定位策略之技術研究zh_TW
dc.title (題名) Technical Research on UAV Area Search and Object Geolocation Strategyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Robot operating system (ros) https://www.ros.org/.
[2] Ros-mobile http://wiki.ros.org/ros-mobile.
[3] Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal on
Robotics and Automation, 2(1):14–23, 1986.
[4] John Canny. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986.
[5] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.
[6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-
supervised interest point detection and description. Computer Vision and Pattern
Recognition(CVPR), 2018.
[7] Yoav Gabriely and Elon Rimon. Spanning-tree based coverage of continuous areas by a
mobile robot. International Conference on Robotics and Automation, 2:1927–1933, 2001.
[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
NeurIPS, 27, 2014.
[9] Fatih Gökçe, Göktürk Üçoluk, Erol ̧Sahin, and Sinan Kalkan. Vision-based detection
and distance estimation of micro unmanned aerial vehicles. Sensors, 15(9):23805–23846,
2015.
[10] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’s. International
Journal of Automation and Computing, 11(347–352), 2014.
[11] Luc Van Gool Herbert Bay, Tinne Tuytelaars. Surf: Speeded up robust features. Computer
Vision
–ECCV, 3951, 2006.
[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation
with conditional adversarial networks. International Journal of Computer Vision, 2018.
[13] Charles F. F. Karney. Algorithms for geodesics. Journal of Geodesy, 87:43–55, 2013.
[14] Ragab Khalil. The accuracy of gis tools for transforming assumed total station surveys to
real world coordinates. Geographic Information System, 5(486-491), 2013.
[15] Arturo De la Escalera and Jose María Armingol. Automatic chessboard detection for
intrinsic and extrinsic camera parameter calibration. Sensors, 10(3)(2027-2044), 2010.
[16] Chaozhen Lan, Wanjie Lu, Junming Yu, and Qing Xu. Deep learning algorithm for feature
matching of cross modality remote sensing images. Acta Geodaetica et Cartographica
Sinica, 50(2):14–23, 2021.
[17] Zuoyue Li, Jan Dirk Wegner, and Aurelien Lucchi. Topological map extraction from
overhead images. International Conference on Computer Vision, 2019.
[18] Xiao Ling, Yongjun Zhang, Jinxin Xiong, Xu Huang, and Zhipeng Chen. An image
matching algorithm integrating global srtm and image segmentation for multi-source
satellite imagery. Remote Sensing, 8, 2016.
[19] D.G Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(91–110), 2004.
[20] L. H. Nam, L. Huang, X. J. Li, and J. F. Xu. An approach for coverage path planning for
uavs. IEEE 14th International Workshop on Advanced Motion Control, (411-416), 2016.
[21] Donggeun Oh and Junghee Han. Smart search system of autonomous flight uavs for
disaster rescue. Sensors, 21(20), 2021.
[22] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. International
Conference on Robotics and Automation, 2011.
[23] Parrot. Anafi https://www.parrot.com/en/drones/anafi.
[24] Parrot. Bebop2 https://www.parrot.com/en/drones.
[25] Shashikant Prasad. pix2pix gan for generating maps given satellite images using
pytorch, https:// medium.com/ @skpd/ pix2pix-gan-for-generating-map-given-satellite-
images-using-pytorch-6e50c318673a.
[26] Wahyu Rahmaniar, Wen-June Wang, Wahyu Caesarendra, Adam Glowacz, Krzysztof
Oprz ̨edkiewicz, Maciej Sułowicz, and Muhammad Irfan. Distance measurement
of unmanned aerial vehicles using vision-based systems in unknown environments.
Electronics, 10(14), 2021.
[27] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient
alternative to sift or surf. Proceedings of the IEEE International Conference on Computer
Vision, (2564-2571), 2011.
[28] Sajid Saleem, Abdul Bais, and Robert Sablatnig. Towards feature points based image
matching between satellite imagery and aerial photographs of agriculture land. Computers
and Electronics in Agriculture, 126:12–20, 2016.
[29] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.
Superglue: Learning feature matching with graph neural networks. Computer Vision and
Pattern Recognition(CVPR), 2020.
[30] Chris Simpson. Behavior trees for ai: How they work, https://www.gamedeveloper.com/
programming/behavior-trees-for-ai-how-they-work.
[31] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr:
Detector-free local feature matching with transformers. Computer Vision and Pattern
Recognition(CVPR), 2021.
[32] Dengqing Tang, Tianjiang Hu, Zhaowei Ma, Lincheng Shen, and Chongyu Pan. Apriltag
array-aided extrinsic calibration of camera–laser multi-sensor system. Robotics and
Biomimetics, 3(13), 2016.
[33] Jinbiao Yuan, Zhenbao Liu, Yeda Lian, Lulu Chen, Qiang An, Lina Wang, and Bodi Ma.
Global optimization of uav area coverage path planning based on good point set and genetic
algorithm. Aerospace, 9(2), 2022.
[34] Xiaoyue Zhao, Fangling Pu, Zhihang Wang, Hongyu Chen, and Zhaozhuo Xu. Detection,
tracking, and geolocation of moving vehicle from uav using monocular camera. IEEE
Access, 7:101160–101170, 2019.
[35] 佐翼科技. Dx30-w1 https://www.droxotech.com/.
[36] 內政部國土測繪中心. 國土測繪圖資服務雲 https://maps.nlsc.gov.tw.
[37] 擎壤科技. Eg2 https://www.earthgen.com.tw/eg2.
zh_TW