學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 呈現全方位動態作用力點之衝擊力回饋於控制器周圍
Rendering Omnidirectional Impact Feedback with Dynamic Point of Application of Force All Round a Controller
作者 陳弘憲
Chen, Hong-Xian
貢獻者 蔡欣叡
Tsai, Hsin-Ruey
陳弘憲
Chen, Hong-Xian
關鍵詞 觸覺回饋
作用力點
力方向
Haptic feedback
Point of application of force
Force direction
日期 2023
上傳時間 1-Sep-2023 15:25:16 (UTC+8)
摘要 衝擊力是一種在VR控制器上常見的觸覺回饋,例如使用武器或球拍來擊打物體。衝擊力在不同的情境中,會作用於不同的作用力點(PAFs)與不同的方向。舉例來說,使用不同形狀的武器,像是劍和十字鎬,或是以不同的方式來使用同一把武器,像是拿劍戳或砍,亦或是球拍和球在不同的方向擊中,這些都會造成作用點力與方向的不同。因此,為了達到真實的VR體驗,呈現動態作用力點與力方向是有必要的。

雖然先前的研究有提出過動態作用力點的概念,但其作用力點只能在限定的
空間中,而且沒有呈現動態力方向。因此,我們提出了一個控制器transPAF,呈現全方位動態作用力點之衝擊力回饋於控制器周圍。transPAF由控制器、半圓軌道、直軌道與衝擊器所組成,它們都是可旋轉的。衝擊器可以移動到球體空間中的任意位置,意即環繞整個控制器的三維空間,並且可旋轉成任何方向。因此,達成了動態作用力點與方向。

我們實施了Just-Noticeable Difference Study研究,來瞭解使用者對於位置與方向的辨識能力,之後再進一步實施一項VR體驗研究,驗證 transPAF的動態作用力點與方向的回饋,提升了使用者的VR體驗,並展示一些transPAF的應用情境。
Impact force is common haptic feedback on virtual reality (VR) controllers, such as hitting objects with weapons or rackets. It applies to different points of application of
force (PAFs) and directions in varied scenarios. For example, using weapons with different shapes, e.g. a sword and a pickaxe, using a weapon in different ways, e.g.
stabbing and slashing with a sword, or a ball flying and hitting a racket in different directions cause different PAFs and/or force directions. Although previous works have
proposed the concept of dynamic PAF, the PAF is only in a limited space and without dynamic force direction. Therefore, we propose a controller, transPAF, to render
omnidirectional impact feedback with dynamic PAF all round the controller for versatile VR scenarios. transPAF consists of a controller, a semicircular track, a linear track, and an impactor, which are all rotatable. The impactor can move to any position in a sphere, which means the whole 3D space all round the controller, and rotate in any direction. Therefore, dynamic PAF and force direction are achieved and independent to each other. We conducted a just-noticeable difference (JND) study to understand users’ distinguishability in position and direction, separately. A VR experience study was further performed to verify that feedback from transPAF with dynamic PAF and force direction enhances the VR experiences and demonstrates some applications for transPAF.
參考文獻 [1] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D Wilson. 2016. Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In Proceedings of the 2016 chi conference on human factors in computing systems. 1968–1979.
[2] Hong-Yu Chang, Wen-Jie Tseng, Chia-En Tsai, Hsin-Yu Chen, Roshan Lalintha Peiris, and Liwei Chan. 2018. FacePush: Introducing Normal Force on Face with
Head-Mounted Displays. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18).
Association for Computing Machinery, New York, NY, USA, 927–935. https://doi.org/10. 1145/3242587.3242588
[3] Alexandra Delazio, Ken Nakagaki, Roberta L. Klatzky, Scott E. Hudson, Jill Fain Lehman, and Alanson P. Sample. 2018. Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12.
https: //doi.org/10.1145/3173574.3173894
[4] Jun Gong, Da-Yuan Huang, Teddy Seyed, Te Lin, Tao Hou, Xin Liu, Molin Yang, Boyu Yang, Yuhan Zhang, and Xing-Dong Yang. 2018. Jetto: Using Lateral Force Feedback for Smartwatch Interactions. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3173574.3174000
[5] Hakan B Gurocak and Benjamin Parrish. 2002. AirGlove: a force feedback device for virtual reality. In Telemanipulator and Telepresence Technologies VIII, Vol.
4570. SPIE, 69–77.
[6] Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor’s Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3174099
[7] Seungwoo Je, Myung Jin Kim, Woojin Lee, Byungjoo Lee, Xing-Dong Yang, Pedro Lopes, and Andrea Bianchi. 2019. Aero-Plane: A Handheld ForceFeedback Device That Renders Weight Motion Illusion on a Virtual 2D Plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 763–775. https://doi.org/10.1145/3332165.3347926
[8] Seungwoo Je, Hyelip Lee, Myung Jin Kim, and Andrea Bianchi. 2018. WindBlaster: A Wearable Propeller-Based Prototype That Provides Ungrounded ForceFeedback. In ACM SIGGRAPH 2018 Emerging Technologies (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New York, NY, USA, Article 23, 2 pages.
https://doi.org/10.1145/3214907.3214915
[9] Shi-Hong Liu, Pai-Chien Yen, Yi-Hsuan Mao, Yu-Hsin Lin, Erick Chandra, and Mike Y. Chen. 2020. HeadBlaster: A Wearable Approach to Simulating Motion Perception Using Head-Mounted Air Propulsion Jets. ACM Trans. Graph. 39, 4,
Article 84 (jul 2020), 12 pages. https://doi.org/10.1145/3386569.3392482
[10] Pedro Lopes, Alexandra Ion, and Patrick Baudisch. 2015. Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation. In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 11–19. https://doi.org/10.1145/2807442.2807443
[11] Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 1471– 1482. https: //doi.org/10.1145/3025453.3025600
[12] Neung Ryu, Hye-Young Jo, Michel Pahud, Mike Sinclair, and Andrea Bianchi. 2021. GamesBond: Bimanual Haptic Illusion of Physically Connected Objects for
Immersive VR Using Grip Deformation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 125, 10 pages. https: //doi.org/10.1145/3411764.3445727
[13] Shahabedin Sagheb, Frank Wencheng Liu, Alireza Bahremand, Assegid Kidane, and Robert LiKamWa. 2019. SWISH: A Shifting-Weight Interface of Simulated Hydrodynamics for Haptic Perception of Virtual Fluid Vessels. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 751–761. https://doi.org/10.1145/3332165.3347870
[14] Tomoya Sasaki, Richard Sahala Hartanto, Kao-Hua Liu, Keitarou Tsuchiya, Atsushi Hiyama, and Masahiko Inami. 2018. Leviopole: Mid-Air Haptic Interactions Using Multirotor. In ACM SIGGRAPH 2018 Emerging Technologies (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New York, NY, USA, Article 12, 2 pages.
https://doi.org/10.1145/3214907. 3214913
[15] Jotaro Shigeyama, Takeru Hashimoto, Shigeo Yoshida, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2019. Transcalibur: A Weight Shifting Virtual Reality Controller for 2D Shape Rendering Based on Computational Perception Model. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3290605.3300241
[16] Shuntaro Shimizu, Takeru Hashimoto, Shigeo Yoshida, Reo Matsumura, Takuji Narumi, and Hideaki Kuzuoka. 2021. Unident: Providing Impact Sensations on Handheld Objects via High-Speed Change of the Rotational Inertia. In 2021 IEEE
Virtual Reality and 3D User Interfaces (VR). 11–20. https://doi.org/10.1109/VR50410.2021.00021
[17] Yuqian Sun, Shigeo Yoshida, Takuji Narumi, and Michitaka Hirose. 2019. PaCaPa: A Handheld VR Device for Rendering Size, Shape, and Stiffness of Virtual Objects in Tool-Based Interactions. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/ 3290605.3300682
[18] Fong Wee Teck. 2012. Force and Torque Simulation in Virtual Tennis. In Proceedings of the Workshop at SIGGRAPH Asia (Singapore, Singapore) (WASA ’12). Association for Computing Machinery, New York, NY, USA, 143– 146. https://doi.org/10.1145/2425296.2425321
[19] Fong Wee Teck, Huang Zhiyong, Farzam Farbiz, Cher Jingting, Chin Ching Ling, and Susanto Rahardja. 2011. Ungrounded Handheld Device for Simulating HighForces of Ball Impacts in Virtual Tennis. In SIGGRAPH Asia 2011 Emerging
Technologies (Hong Kong, China) (SA ’11). Association for Computing Machinery, New York, NY, USA, Article 20, 1 pages.
https://doi.org/10.1145/2073370.2073389
[20] Ching-Yi Tsai, I-Lun Tsai, Chao-Jung Lai, Derrek Chow, Lauren Wei, Lung-Pan Cheng, and Mike Y. Chen. 2022. AirRacket: Perceptual Design of Ungrounded, Directional Force Feedback to Improve Virtual Racket Sports Experiences. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22).
Association for Computing Machinery, New York, NY, USA, Article 185, 15 pages. https://doi.org/10.1145/3491102.3502034
[21] Hsin-Ruey Tsai, Yuan-Chia Chang, Tzu-Yun Wei, Chih-An Tsao, Xander Chinyuan Koo, Hao-Chuan Wang, and Bing-Yu Chen. 2021. GuideBand: Intuitive 3D Multilevel Force Guidance on a Wristband in Virtual Reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 134, 13 pages. https://doi.org/10.1145/3411764.3445262
[22] Hsin-Ruey Tsai and Bing-Yu Chen. 2019. ElastImpact: 2.5D Multilevel Instant Impact Using Elasticity on Head-Mounted Displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New
Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 429–437. https://doi.org/10.1145/3332165.3347931
[23] Hsin-Ruey Tsai, Ching-Wen Hung, Tzu-Chun Wu, and Bing-Yu Chen. 2020. ElastOscillation: 3D Multilevel Force Feedback for Damped Oscillation on VR Controllers. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376408
[24] Hsin-Ruey Tsai, Yu-So Liao, and Chieh Tsai. 2022. ImpactVest: Rendering SpatioTemporal Multilevel Impact Force Feedback on Body in VR. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 356, 11 pages. https://doi.org/10.1145/3491102.3501971
[25] Hsin-Ruey Tsai, Jun Rekimoto, and Bing-Yu Chen. 2019. ElasticVR: Providing Multilevel Continuously-Changing Resistive Force and Instant Impact Using Elasticity for VR. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3290605.3300450
[26] Dzmitry Tsetserukou, Katsunari Sato, and Susumu Tachi. 2010. ExoInterfaces: Novel Exosceleton Haptic Interfaces for Virtual Reality, Augmented Sport and Rehabilitation. In Proceedings of the 1st Augmented Human International
Conference (Megève, France) (AH ’10). Association for Computing Machinery, New York, NY, USA, Article 1, 6 pages.
https://doi.org/10.1145/1785455.1785456
[27] Yu-Wei Wang, Yu-Hsin Lin, Pin-Sung Ku, Yoko Miyatake, Yi-Hsuan Mao, Po Yu Chen, Chun-Miao Tseng, and Mike Y. Chen. 2021. JetController: High-Speed Ungrounded 3-DoF Force Feedback Controllers Using Air Propulsion Jets. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 124, 12 pages. https://doi.org/10.1145/3411764.3445549
[28]Tzu-Yun Wei, Hsin-Ruey Tsai, Yu-So Liao, Chieh Tsai, Yi-Shan Chen, Chi Wang, and Bing-Yu Chen. 2020. ElastiLinks: Force Feedback between VR Controllers with Dynamic Points of Application of Force. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 1023–1034. https://doi.org/10.1145/3379337.3415836
[29] Yuan-Syun Ye, Hsin-Yu Chen, and Liwei Chan. 2019. Pull-Ups: Enhancing Suspension Activities in Virtual Reality with Body-Scale Kinesthetic Force Feedback. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 791–801. https://doi.org/10.1145/3332165.3347874
[30] André Zenner and Antonio Krüger. 2019. Drag:On: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300441
[31] André Zenner and Antonio Krüger. 2017. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 23, 4 (2017), 1285–1294.
https://doi.org/10.1109/TVCG.2017.2656978
[32] Zhong-Yi Zhang, Hong-Xian Chen, Shih-Hao Wang, and Hsin-Ruey Tsai. 2022. ELAXO: Rendering Versatile Resistive Force Feedback for Fingers Grasping and Twisting. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22). Association for Computing Machinery, New York, NY, USA, Article 53, 14 pages.
https://doi.org/10.1145/ 3526113.3545677
描述 碩士
國立政治大學
資訊科學系
110753155
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110753155
資料類型 thesis
dc.contributor.advisor 蔡欣叡zh_TW
dc.contributor.advisor Tsai, Hsin-Rueyen_US
dc.contributor.author (Authors) 陳弘憲zh_TW
dc.contributor.author (Authors) Chen, Hong-Xianen_US
dc.creator (作者) 陳弘憲zh_TW
dc.creator (作者) Chen, Hong-Xianen_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-Sep-2023 15:25:16 (UTC+8)-
dc.date.available 1-Sep-2023 15:25:16 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 15:25:16 (UTC+8)-
dc.identifier (Other Identifiers) G0110753155en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/147036-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 110753155zh_TW
dc.description.abstract (摘要) 衝擊力是一種在VR控制器上常見的觸覺回饋,例如使用武器或球拍來擊打物體。衝擊力在不同的情境中,會作用於不同的作用力點(PAFs)與不同的方向。舉例來說,使用不同形狀的武器,像是劍和十字鎬,或是以不同的方式來使用同一把武器,像是拿劍戳或砍,亦或是球拍和球在不同的方向擊中,這些都會造成作用點力與方向的不同。因此,為了達到真實的VR體驗,呈現動態作用力點與力方向是有必要的。

雖然先前的研究有提出過動態作用力點的概念,但其作用力點只能在限定的
空間中,而且沒有呈現動態力方向。因此,我們提出了一個控制器transPAF,呈現全方位動態作用力點之衝擊力回饋於控制器周圍。transPAF由控制器、半圓軌道、直軌道與衝擊器所組成,它們都是可旋轉的。衝擊器可以移動到球體空間中的任意位置,意即環繞整個控制器的三維空間,並且可旋轉成任何方向。因此,達成了動態作用力點與方向。

我們實施了Just-Noticeable Difference Study研究,來瞭解使用者對於位置與方向的辨識能力,之後再進一步實施一項VR體驗研究,驗證 transPAF的動態作用力點與方向的回饋,提升了使用者的VR體驗,並展示一些transPAF的應用情境。
zh_TW
dc.description.abstract (摘要) Impact force is common haptic feedback on virtual reality (VR) controllers, such as hitting objects with weapons or rackets. It applies to different points of application of
force (PAFs) and directions in varied scenarios. For example, using weapons with different shapes, e.g. a sword and a pickaxe, using a weapon in different ways, e.g.
stabbing and slashing with a sword, or a ball flying and hitting a racket in different directions cause different PAFs and/or force directions. Although previous works have
proposed the concept of dynamic PAF, the PAF is only in a limited space and without dynamic force direction. Therefore, we propose a controller, transPAF, to render
omnidirectional impact feedback with dynamic PAF all round the controller for versatile VR scenarios. transPAF consists of a controller, a semicircular track, a linear track, and an impactor, which are all rotatable. The impactor can move to any position in a sphere, which means the whole 3D space all round the controller, and rotate in any direction. Therefore, dynamic PAF and force direction are achieved and independent to each other. We conducted a just-noticeable difference (JND) study to understand users’ distinguishability in position and direction, separately. A VR experience study was further performed to verify that feedback from transPAF with dynamic PAF and force direction enhances the VR experiences and demonstrates some applications for transPAF.
en_US
dc.description.tableofcontents CHAPTER 1 Introduction 1
CHAPTER 2 Related Work 3
2.1 Force Feedback Methods 3
2.2 Rendering Dynamic Force Direction 4
2.3 Dynamic Point of Application of Force 5
CHAPTER 3 transPAF 7
3.1 Design Considerations 8
3.2 Implementation 9
CHAPTER 4 JUST NOTICEABLE DIFFERENCE STUDY 15
4.1 Participants and Apparatus 15
4.2 Task and Procedure 16
4.3 Results and Discussion 20
4.3.1 Dynamic PAF 21
4.3.2 Dynamic Force Direction 21
4.3.3 Guidelines 22
CHAPTER 5 VR EXPERIENCE STUDY 24
5.1 Participants and Apparatus 24
5.2 Task and Procedure 25
5.3 Results and Discussion 29
5.3.1 Slashing with the sword 30
5.3.2 Stabbing with the sword 31
5.3.3 Pickaxe 31
5.3.4 Hook 32
5.3.5 Dagger 33
5.3.6 Tennis racket 33
CHAPTER 6 LIMITATIONS AND FUTURE WORK 36
CHAPTER7 CONCLUSION 38
REFERENCES 39
zh_TW
dc.format.extent 1030989 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110753155en_US
dc.subject (關鍵詞) 觸覺回饋zh_TW
dc.subject (關鍵詞) 作用力點zh_TW
dc.subject (關鍵詞) 力方向zh_TW
dc.subject (關鍵詞) Haptic feedbacken_US
dc.subject (關鍵詞) Point of application of forceen_US
dc.subject (關鍵詞) Force directionen_US
dc.title (題名) 呈現全方位動態作用力點之衝擊力回饋於控制器周圍zh_TW
dc.title (題名) Rendering Omnidirectional Impact Feedback with Dynamic Point of Application of Force All Round a Controlleren_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D Wilson. 2016. Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In Proceedings of the 2016 chi conference on human factors in computing systems. 1968–1979.
[2] Hong-Yu Chang, Wen-Jie Tseng, Chia-En Tsai, Hsin-Yu Chen, Roshan Lalintha Peiris, and Liwei Chan. 2018. FacePush: Introducing Normal Force on Face with
Head-Mounted Displays. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST ’18).
Association for Computing Machinery, New York, NY, USA, 927–935. https://doi.org/10. 1145/3242587.3242588
[3] Alexandra Delazio, Ken Nakagaki, Roberta L. Klatzky, Scott E. Hudson, Jill Fain Lehman, and Alanson P. Sample. 2018. Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–12.
https: //doi.org/10.1145/3173574.3173894
[4] Jun Gong, Da-Yuan Huang, Teddy Seyed, Te Lin, Tao Hou, Xin Liu, Molin Yang, Boyu Yang, Yuhan Zhang, and Xing-Dong Yang. 2018. Jetto: Using Lateral Force Feedback for Smartwatch Interactions. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3173574.3174000
[5] Hakan B Gurocak and Benjamin Parrish. 2002. AirGlove: a force feedback device for virtual reality. In Telemanipulator and Telepresence Technologies VIII, Vol.
4570. SPIE, 69–77.
[6] Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor’s Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (Montreal QC, Canada) (CHI ’18).
Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3174099
[7] Seungwoo Je, Myung Jin Kim, Woojin Lee, Byungjoo Lee, Xing-Dong Yang, Pedro Lopes, and Andrea Bianchi. 2019. Aero-Plane: A Handheld ForceFeedback Device That Renders Weight Motion Illusion on a Virtual 2D Plane. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 763–775. https://doi.org/10.1145/3332165.3347926
[8] Seungwoo Je, Hyelip Lee, Myung Jin Kim, and Andrea Bianchi. 2018. WindBlaster: A Wearable Propeller-Based Prototype That Provides Ungrounded ForceFeedback. In ACM SIGGRAPH 2018 Emerging Technologies (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New York, NY, USA, Article 23, 2 pages.
https://doi.org/10.1145/3214907.3214915
[9] Shi-Hong Liu, Pai-Chien Yen, Yi-Hsuan Mao, Yu-Hsin Lin, Erick Chandra, and Mike Y. Chen. 2020. HeadBlaster: A Wearable Approach to Simulating Motion Perception Using Head-Mounted Air Propulsion Jets. ACM Trans. Graph. 39, 4,
Article 84 (jul 2020), 12 pages. https://doi.org/10.1145/3386569.3392482
[10] Pedro Lopes, Alexandra Ion, and Patrick Baudisch. 2015. Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation. In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA, 11–19. https://doi.org/10.1145/2807442.2807443
[11] Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 1471– 1482. https: //doi.org/10.1145/3025453.3025600
[12] Neung Ryu, Hye-Young Jo, Michel Pahud, Mike Sinclair, and Andrea Bianchi. 2021. GamesBond: Bimanual Haptic Illusion of Physically Connected Objects for
Immersive VR Using Grip Deformation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 125, 10 pages. https: //doi.org/10.1145/3411764.3445727
[13] Shahabedin Sagheb, Frank Wencheng Liu, Alireza Bahremand, Assegid Kidane, and Robert LiKamWa. 2019. SWISH: A Shifting-Weight Interface of Simulated Hydrodynamics for Haptic Perception of Virtual Fluid Vessels. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 751–761. https://doi.org/10.1145/3332165.3347870
[14] Tomoya Sasaki, Richard Sahala Hartanto, Kao-Hua Liu, Keitarou Tsuchiya, Atsushi Hiyama, and Masahiko Inami. 2018. Leviopole: Mid-Air Haptic Interactions Using Multirotor. In ACM SIGGRAPH 2018 Emerging Technologies (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). Association for Computing Machinery, New York, NY, USA, Article 12, 2 pages.
https://doi.org/10.1145/3214907. 3214913
[15] Jotaro Shigeyama, Takeru Hashimoto, Shigeo Yoshida, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2019. Transcalibur: A Weight Shifting Virtual Reality Controller for 2D Shape Rendering Based on Computational Perception Model. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3290605.3300241
[16] Shuntaro Shimizu, Takeru Hashimoto, Shigeo Yoshida, Reo Matsumura, Takuji Narumi, and Hideaki Kuzuoka. 2021. Unident: Providing Impact Sensations on Handheld Objects via High-Speed Change of the Rotational Inertia. In 2021 IEEE
Virtual Reality and 3D User Interfaces (VR). 11–20. https://doi.org/10.1109/VR50410.2021.00021
[17] Yuqian Sun, Shigeo Yoshida, Takuji Narumi, and Michitaka Hirose. 2019. PaCaPa: A Handheld VR Device for Rendering Size, Shape, and Stiffness of Virtual Objects in Tool-Based Interactions. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/ 3290605.3300682
[18] Fong Wee Teck. 2012. Force and Torque Simulation in Virtual Tennis. In Proceedings of the Workshop at SIGGRAPH Asia (Singapore, Singapore) (WASA ’12). Association for Computing Machinery, New York, NY, USA, 143– 146. https://doi.org/10.1145/2425296.2425321
[19] Fong Wee Teck, Huang Zhiyong, Farzam Farbiz, Cher Jingting, Chin Ching Ling, and Susanto Rahardja. 2011. Ungrounded Handheld Device for Simulating HighForces of Ball Impacts in Virtual Tennis. In SIGGRAPH Asia 2011 Emerging
Technologies (Hong Kong, China) (SA ’11). Association for Computing Machinery, New York, NY, USA, Article 20, 1 pages.
https://doi.org/10.1145/2073370.2073389
[20] Ching-Yi Tsai, I-Lun Tsai, Chao-Jung Lai, Derrek Chow, Lauren Wei, Lung-Pan Cheng, and Mike Y. Chen. 2022. AirRacket: Perceptual Design of Ungrounded, Directional Force Feedback to Improve Virtual Racket Sports Experiences. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22).
Association for Computing Machinery, New York, NY, USA, Article 185, 15 pages. https://doi.org/10.1145/3491102.3502034
[21] Hsin-Ruey Tsai, Yuan-Chia Chang, Tzu-Yun Wei, Chih-An Tsao, Xander Chinyuan Koo, Hao-Chuan Wang, and Bing-Yu Chen. 2021. GuideBand: Intuitive 3D Multilevel Force Guidance on a Wristband in Virtual Reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 134, 13 pages. https://doi.org/10.1145/3411764.3445262
[22] Hsin-Ruey Tsai and Bing-Yu Chen. 2019. ElastImpact: 2.5D Multilevel Instant Impact Using Elasticity on Head-Mounted Displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New
Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 429–437. https://doi.org/10.1145/3332165.3347931
[23] Hsin-Ruey Tsai, Ching-Wen Hung, Tzu-Chun Wu, and Bing-Yu Chen. 2020. ElastOscillation: 3D Multilevel Force Feedback for Damped Oscillation on VR Controllers. Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376408
[24] Hsin-Ruey Tsai, Yu-So Liao, and Chieh Tsai. 2022. ImpactVest: Rendering SpatioTemporal Multilevel Impact Force Feedback on Body in VR. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 356, 11 pages. https://doi.org/10.1145/3491102.3501971
[25] Hsin-Ruey Tsai, Jun Rekimoto, and Bing-Yu Chen. 2019. ElasticVR: Providing Multilevel Continuously-Changing Resistive Force and Instant Impact Using Elasticity for VR. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3290605.3300450
[26] Dzmitry Tsetserukou, Katsunari Sato, and Susumu Tachi. 2010. ExoInterfaces: Novel Exosceleton Haptic Interfaces for Virtual Reality, Augmented Sport and Rehabilitation. In Proceedings of the 1st Augmented Human International
Conference (Megève, France) (AH ’10). Association for Computing Machinery, New York, NY, USA, Article 1, 6 pages.
https://doi.org/10.1145/1785455.1785456
[27] Yu-Wei Wang, Yu-Hsin Lin, Pin-Sung Ku, Yoko Miyatake, Yi-Hsuan Mao, Po Yu Chen, Chun-Miao Tseng, and Mike Y. Chen. 2021. JetController: High-Speed Ungrounded 3-DoF Force Feedback Controllers Using Air Propulsion Jets. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 124, 12 pages. https://doi.org/10.1145/3411764.3445549
[28]Tzu-Yun Wei, Hsin-Ruey Tsai, Yu-So Liao, Chieh Tsai, Yi-Shan Chen, Chi Wang, and Bing-Yu Chen. 2020. ElastiLinks: Force Feedback between VR Controllers with Dynamic Points of Application of Force. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 1023–1034. https://doi.org/10.1145/3379337.3415836
[29] Yuan-Syun Ye, Hsin-Yu Chen, and Liwei Chan. 2019. Pull-Ups: Enhancing Suspension Activities in Virtual Reality with Body-Scale Kinesthetic Force Feedback. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 791–801. https://doi.org/10.1145/3332165.3347874
[30] André Zenner and Antonio Krüger. 2019. Drag:On: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300441
[31] André Zenner and Antonio Krüger. 2017. Shifty: A Weight-Shifting Dynamic Passive Haptic Proxy to Enhance Object Perception in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 23, 4 (2017), 1285–1294.
https://doi.org/10.1109/TVCG.2017.2656978
[32] Zhong-Yi Zhang, Hong-Xian Chen, Shih-Hao Wang, and Hsin-Ruey Tsai. 2022. ELAXO: Rendering Versatile Resistive Force Feedback for Fingers Grasping and Twisting. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST ’22). Association for Computing Machinery, New York, NY, USA, Article 53, 14 pages.
https://doi.org/10.1145/ 3526113.3545677
zh_TW