學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 核心專利技術進步率與專利引用關聯之探討 - 以動力電池專利為例
The Relation between Technology Performance Improvement rate and Patent Citations - The Case of Battery Technology
作者 翁崇綸
Weng, Chong-Lun
貢獻者 李浩仲<br>李文傑
Li, Hao-Chung<br>Li, Wen-Jie
翁崇綸
Weng, Chong-Lun
關鍵詞 動力電池
核心專利
技術進步率
專利引用網絡
Electric vehicle battery
Core patent
Technology improvement rate
日期 2023
上傳時間 1-Sep-2023 15:33:31 (UTC+8)
摘要 近年來,全球暖化問題日益嚴重,許多國家紛紛確立了淨零碳排的目標,並頒布了禁止燃油汽車銷售的法規,直接推動電動車產業在未來的發展。然而,電動車的高昂價格和續航里程不足等問題仍然存在,影響了其全面普及。因此,本研究從專利分析的角度出發,並以在未來有望成為發展重點的動力電池領域為例,利用技術進步率的估計推敲在未來具備發展潛力的技術領域,建構專利引用網絡了解其發展脈絡,並選取美國和中國專利局資料,針對二國在動力電池產業鏈的上中下游技術發展進行研究,以了解產業的現況及發展趨勢。本研究利用1990年至2022年間的專利資料,研究結果顯示,中國的動力電池研究發展主要由企業和學術機構驅動。在發展趨勢方面,中國在上游領域致力於開發多元化的複合材料。在中游領域,中國專注於優化生產製程,以降低電池的成本和提高效能。在下游領域,則專注於改善車體的儲能能力,以提供更好的使用體驗。相較之下,美國的動力電池發展主要受到日本和韓國企業的驅動。在上游領域,美國企業致力於固態電池的研究和開發,以追求更高效能和更可靠的電池技術。在中游領域,通過改變電池模組的結構來提升性能和可靠性。在下游領域,美國致力於發展智能化充電系統和充電基礎設施,以提供更便捷和智能化的充電體驗。
In response to the escalating global warming crisis, countries worldwide are prioritizing the transition to net-zero carbon emissions and phasing out fossil fuel vehicles. The electric vehicle (EV) industry is at the forefront of this transformation. However, challenges such as high costs and limited range hinder widespread EV adoption. This study examines the developments in the electric vehicle battery industry`s upstream, midstream, and downstream sectors in China and the United States using patent analysis. The research reveals that in China, enterprises and academic institutions drive the research and development of key battery technologies. China focuses on diversifying composite materials and exploring solid-state batteries in the upstream sector. In the midstream sector, efforts are directed towards optimizing production processes to reduce costs. Improving the energy storage capacity of vehicle bodies is a recent trend in the downstream sector. In the United States, the development of electric vehicle batteries is primarily driven by Japanese and South Korean companies. US firms concentrate on solid-state battery research in the upstream sector, while in the midstream sector, they enhance performance and reliability through battery module structure improvements. The US also prioritizes developing intelligent charging systems and infrastructure in the downstream sector.
參考文獻 中文文獻
吳念祺, & 陳彥豪. (2011). 電動車成本結構分析及對傳統汽車產業之影響. 臺灣經濟研究月刊, 34(11), 75-82.
英文文獻
Abrams, D.(2021), “COVID and Crime: An Early Empirical Look,” Journal of Public Economics, 194, 104344.
Alstott, J., Triulzi, G., Yan, B., & Luo, J. (2017). Mapping technology space by normalizing patent networks. Scientometrics, 110, 443-479.
Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-519.
Borgstedt, P., Neyer, B., & Schewe, G. (2017). Paving the road to electric vehicles–A patent analysis of the automotive supply industry. Journal of cleaner production, 167, 75-87.
Degroote, B., & Held, P. (2018). Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation. World Patent Information, 54, S78-S84.
Dijk, M., Orsato, R. J., & Kemp, R. (2013). The emergence of an electric mobility trajectory. Energy policy, 52, 135-145.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small business economics, 9(4), 361-381.
Farmer, J. D., & Lafond, F. (2016). How predictable is technological progress?. Research Policy, 45(3), 647-665.
Feng, S., & Magee, C. L. (2020). Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Applied Energy, 260, 114264.
Gereffi, G., Humphrey, J., & Sturgeon, T. (2005). The governance of global value chains. Review of international political economy, 12(1), 78-104.
Golembiewski, B., Vom Stein, N., Sick, N., & Wiemhöfer, H. D. (2015). Identifying trends in battery technologies with regard to electric mobility: evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, 87, 800-810.
Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social networks, 11(1), 39-63.
Koh, H., & Magee, C. L. (2006). A functional approach for studying technological progress: Application to information technology. Technological Forecasting and Social Change, 73(9), 1061-1083.
Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The economic journal, 114(495), 441-465.
Martinelli, A., & Nomaler, Ö. (2014). Measuring knowledge persistence: a genetic approach to patent citation networks. Journal of Evolutionary Economics, 24, 623-652.
Park, H., & Magee, C. L. (2017). Tracing technological development trajectories: A genetic knowledge persistence-based main path approach. PloS one, 12(1), e0170895.
Pilkington, A., Dyerson, R., & Tissier, O. (2002). The electric vehicle:: Patent data as indicators of technological development. World patent information, 24(1), 5-12.
Porter, A. L. D. E., & Chubin, D. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3-4), 161-176.
Rosenberg, N., & Nelson, R. R. (1994). American universities and technical advance in industry. Research policy, 23(3), 323-348.
Stephens, J. C., Wilson, E. J., & Peterson, T. R. (2008). Socio-Political Evaluation of Energy Deployment (SPEED): An integrated research framework analyzing energy technology deployment. Technological forecasting and social change, 75(8), 1224-1246.
Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. The Rand journal of economics, 172-187.
Triulzi, G. (2015). Looking for the right path: technology dynamics, inventive strategies and catching-up in the semiconductor industry.
Triulzi, G., Alstott, J., & Magee, C. L. (2020). Estimating technology performance improvement rates by mining patent data. Technological Forecasting and Social Change, 158, 120100.
Valentini, L. (2012). Ideal vs. non‐ideal theory: A conceptual map. Philosophy compass, 7(9), 654-664.
Väyrynen, A., & Salminen, J. (2012). Lithium ion battery production. The Journal of Chemical Thermodynamics, 46, 80-85.
Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in complex systems, 10(01), 93-115.
Wang, Z., Yang, Z., Zhang, Y., & Yin, J. (2012). Energy technology patents–CO2 emissions nexus: an empirical analysis from China. Energy Policy, 42, 248-260.
Wei, S. J., Xie, Z., & Zhang, X. (2017). From “made in China” to “innovated in China”: Necessity, prospect, and challenges. Journal of Economic Perspectives, 31(1), 49-70.
Yang, L. F., Xu, J. H., & Neuhäusler, P. (2013). Electric vehicle technology in China: An exploratory patent analysis. World Patent Information, 35(4), 305-312.
Yeo, W., Kim, S., Lee, J. M., & Kang, J. (2014). Aggregative and stochastic model of main path identification: a case study on graphene. Scientometrics, 98, 633-655.
描述 碩士
國立政治大學
經濟學系
110258030
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110258030
資料類型 thesis
dc.contributor.advisor 李浩仲<br>李文傑zh_TW
dc.contributor.advisor Li, Hao-Chung<br>Li, Wen-Jieen_US
dc.contributor.author (Authors) 翁崇綸zh_TW
dc.contributor.author (Authors) Weng, Chong-Lunen_US
dc.creator (作者) 翁崇綸zh_TW
dc.creator (作者) Weng, Chong-Lunen_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-Sep-2023 15:33:31 (UTC+8)-
dc.date.available 1-Sep-2023 15:33:31 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 15:33:31 (UTC+8)-
dc.identifier (Other Identifiers) G0110258030en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/147069-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟學系zh_TW
dc.description (描述) 110258030zh_TW
dc.description.abstract (摘要) 近年來,全球暖化問題日益嚴重,許多國家紛紛確立了淨零碳排的目標,並頒布了禁止燃油汽車銷售的法規,直接推動電動車產業在未來的發展。然而,電動車的高昂價格和續航里程不足等問題仍然存在,影響了其全面普及。因此,本研究從專利分析的角度出發,並以在未來有望成為發展重點的動力電池領域為例,利用技術進步率的估計推敲在未來具備發展潛力的技術領域,建構專利引用網絡了解其發展脈絡,並選取美國和中國專利局資料,針對二國在動力電池產業鏈的上中下游技術發展進行研究,以了解產業的現況及發展趨勢。本研究利用1990年至2022年間的專利資料,研究結果顯示,中國的動力電池研究發展主要由企業和學術機構驅動。在發展趨勢方面,中國在上游領域致力於開發多元化的複合材料。在中游領域,中國專注於優化生產製程,以降低電池的成本和提高效能。在下游領域,則專注於改善車體的儲能能力,以提供更好的使用體驗。相較之下,美國的動力電池發展主要受到日本和韓國企業的驅動。在上游領域,美國企業致力於固態電池的研究和開發,以追求更高效能和更可靠的電池技術。在中游領域,通過改變電池模組的結構來提升性能和可靠性。在下游領域,美國致力於發展智能化充電系統和充電基礎設施,以提供更便捷和智能化的充電體驗。zh_TW
dc.description.abstract (摘要) In response to the escalating global warming crisis, countries worldwide are prioritizing the transition to net-zero carbon emissions and phasing out fossil fuel vehicles. The electric vehicle (EV) industry is at the forefront of this transformation. However, challenges such as high costs and limited range hinder widespread EV adoption. This study examines the developments in the electric vehicle battery industry`s upstream, midstream, and downstream sectors in China and the United States using patent analysis. The research reveals that in China, enterprises and academic institutions drive the research and development of key battery technologies. China focuses on diversifying composite materials and exploring solid-state batteries in the upstream sector. In the midstream sector, efforts are directed towards optimizing production processes to reduce costs. Improving the energy storage capacity of vehicle bodies is a recent trend in the downstream sector. In the United States, the development of electric vehicle batteries is primarily driven by Japanese and South Korean companies. US firms concentrate on solid-state battery research in the upstream sector, while in the midstream sector, they enhance performance and reliability through battery module structure improvements. The US also prioritizes developing intelligent charging systems and infrastructure in the downstream sector.en_US
dc.description.tableofcontents 第一章 緒論 7
第一節 研究背景 7
第二節 專利價值 8
第三節 研究動機 8
第二章 文獻回顧 12
第一節 專利分析的價值 12
第二節 產業鏈分析 13
第三節 專利引用網絡的建立 13
第四節 主要路徑分析 15
第五節 技術改進率 16
第三章 研究方法 17
第一節 研究流程 17
第二節 估計技術改進率 17
第三節 建構專利引用網絡 19
一、 建構特定技術領域的專利引用網絡 20
二、 衡量專利的知識持久性 20
三、 識別核心專利並建立主要路徑 22
第四章 資料 23
第一節 資料來源 23
第二節 動力電池產業鏈專利 23
第三節 產業子領域劃分 27
第四節 資料敘述統計 31
第五章 實證結果 32
第一節 不同技術領域的技術改進率估計值 32
第二節 專利引用主要路徑與近期發展趨勢 34
一、 中國上游:極板原料 34
二、 中國中游:極板製造 36
三、 中國下游:熱管理系統、電池模組(包)組裝 37
四、 美國上游:極板原料 39
五、 美國中游:極板製造 40
六、 美國下游:電池模組(包)組裝 41
七、 中、美二國其他子領域 42
第三節 核心專利受讓人分析 43
第六章 結論與建議 47
參考文獻 49
附錄 53
zh_TW
dc.format.extent 4762839 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110258030en_US
dc.subject (關鍵詞) 動力電池zh_TW
dc.subject (關鍵詞) 核心專利zh_TW
dc.subject (關鍵詞) 技術進步率zh_TW
dc.subject (關鍵詞) 專利引用網絡zh_TW
dc.subject (關鍵詞) Electric vehicle batteryen_US
dc.subject (關鍵詞) Core patenten_US
dc.subject (關鍵詞) Technology improvement rateen_US
dc.title (題名) 核心專利技術進步率與專利引用關聯之探討 - 以動力電池專利為例zh_TW
dc.title (題名) The Relation between Technology Performance Improvement rate and Patent Citations - The Case of Battery Technologyen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 中文文獻
吳念祺, & 陳彥豪. (2011). 電動車成本結構分析及對傳統汽車產業之影響. 臺灣經濟研究月刊, 34(11), 75-82.
英文文獻
Abrams, D.(2021), “COVID and Crime: An Early Empirical Look,” Journal of Public Economics, 194, 104344.
Alstott, J., Triulzi, G., Yan, B., & Luo, J. (2017). Mapping technology space by normalizing patent networks. Scientometrics, 110, 443-479.
Archibugi, D., & Planta, M. (1996). Measuring technological change through patents and innovation surveys. Technovation, 16(9), 451-519.
Borgstedt, P., Neyer, B., & Schewe, G. (2017). Paving the road to electric vehicles–A patent analysis of the automotive supply industry. Journal of cleaner production, 167, 75-87.
Degroote, B., & Held, P. (2018). Analysis of the patent documentation coverage of the CPC in comparison with the IPC with a focus on Asian documentation. World Patent Information, 54, S78-S84.
Dijk, M., Orsato, R. J., & Kemp, R. (2013). The emergence of an electric mobility trajectory. Energy policy, 52, 135-145.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small business economics, 9(4), 361-381.
Farmer, J. D., & Lafond, F. (2016). How predictable is technological progress?. Research Policy, 45(3), 647-665.
Feng, S., & Magee, C. L. (2020). Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees. Applied Energy, 260, 114264.
Gereffi, G., Humphrey, J., & Sturgeon, T. (2005). The governance of global value chains. Review of international political economy, 12(1), 78-104.
Golembiewski, B., Vom Stein, N., Sick, N., & Wiemhöfer, H. D. (2015). Identifying trends in battery technologies with regard to electric mobility: evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, 87, 800-810.
Hummon, N. P., & Dereian, P. (1989). Connectivity in a citation network: The development of DNA theory. Social networks, 11(1), 39-63.
Koh, H., & Magee, C. L. (2006). A functional approach for studying technological progress: Application to information technology. Technological Forecasting and Social Change, 73(9), 1061-1083.
Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The economic journal, 114(495), 441-465.
Martinelli, A., & Nomaler, Ö. (2014). Measuring knowledge persistence: a genetic approach to patent citation networks. Journal of Evolutionary Economics, 24, 623-652.
Park, H., & Magee, C. L. (2017). Tracing technological development trajectories: A genetic knowledge persistence-based main path approach. PloS one, 12(1), e0170895.
Pilkington, A., Dyerson, R., & Tissier, O. (2002). The electric vehicle:: Patent data as indicators of technological development. World patent information, 24(1), 5-12.
Porter, A. L. D. E., & Chubin, D. (1985). An indicator of cross-disciplinary research. Scientometrics, 8(3-4), 161-176.
Rosenberg, N., & Nelson, R. R. (1994). American universities and technical advance in industry. Research policy, 23(3), 323-348.
Stephens, J. C., Wilson, E. J., & Peterson, T. R. (2008). Socio-Political Evaluation of Energy Deployment (SPEED): An integrated research framework analyzing energy technology deployment. Technological forecasting and social change, 75(8), 1224-1246.
Trajtenberg, M. (1990). A penny for your quotes: patent citations and the value of innovations. The Rand journal of economics, 172-187.
Triulzi, G. (2015). Looking for the right path: technology dynamics, inventive strategies and catching-up in the semiconductor industry.
Triulzi, G., Alstott, J., & Magee, C. L. (2020). Estimating technology performance improvement rates by mining patent data. Technological Forecasting and Social Change, 158, 120100.
Valentini, L. (2012). Ideal vs. non‐ideal theory: A conceptual map. Philosophy compass, 7(9), 654-664.
Väyrynen, A., & Salminen, J. (2012). Lithium ion battery production. The Journal of Chemical Thermodynamics, 46, 80-85.
Verspagen, B. (2007). Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research. Advances in complex systems, 10(01), 93-115.
Wang, Z., Yang, Z., Zhang, Y., & Yin, J. (2012). Energy technology patents–CO2 emissions nexus: an empirical analysis from China. Energy Policy, 42, 248-260.
Wei, S. J., Xie, Z., & Zhang, X. (2017). From “made in China” to “innovated in China”: Necessity, prospect, and challenges. Journal of Economic Perspectives, 31(1), 49-70.
Yang, L. F., Xu, J. H., & Neuhäusler, P. (2013). Electric vehicle technology in China: An exploratory patent analysis. World Patent Information, 35(4), 305-312.
Yeo, W., Kim, S., Lee, J. M., & Kang, J. (2014). Aggregative and stochastic model of main path identification: a case study on graphene. Scientometrics, 98, 633-655.
zh_TW