Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 學生學業情緒與學習投入關聯性之後設分析與MASEM方法驗證
Meta-analysis of correlations between academic emotions and student engagement with the validation by MASEM methods
作者 黎佩欣
Li, Pei-Hsin
貢獻者 余民寧
Yu, Min-Ning
黎佩欣
Li, Pei-Hsin
關鍵詞 學業情緒
學習投入
後設分析
後設分析取向的結構方程式模型
academic emotions
student engagement
meta-analysis
meta-analytic structural equation modeling
日期 2023
上傳時間 1-Sep-2023 16:15:29 (UTC+8)
摘要 本研究的目的在利用後設分析和後設分析取向的結構方程式模型(MASEM),探究不同學生學業情緒與學習投入之關聯性。本研究依據目的,以後設分析之研究流程訂定檢索策略,以及納入、排除條件後,蒐集符合本研究旨趣之國內外期刊及國內碩博士論文,最後根據納入與排除條件篩選出50篇文獻,共53個研究進行後續分析。本研究首先以後設分析探討各學業情緒與多向度學習投入之相關性,進而以結構方程式模型探討學業情緒(愉悅、焦慮、無聊)透過情緒投入影響行為投入與認知投入的直接與間接效果,本研究的結果如下:
一、學生愉悅情緒與自豪情緒與學習投入有正向關係。反之,學生的生氣情緒、焦慮情緒、無聊情緒、無望情緒則與學習投入有負向關係,然屬於負向抑制情緒的無聊、無望的效果較屬於負向激發情緒的生氣、焦慮的效果略大。
二、不同調節變項在各學業情緒與學習投入關係間扮演不同的角色。研究年代、參與者國家別、性別為愉悅情緒與行為投入關係之調節變項。學習科目與參與者國家別為焦慮情緒與行為投入關係的調節變項。研究年代與教育年段為無聊情緒與行為投入關係之調節變項,而參與者國家別與情緒類別為無聊情緒與認知投入關係之調節變項。
三、經結構方程式模型檢驗,情緒投入為愉悅、焦慮、無聊三種學業情緒與行為投入、認知投入的中介變項。首先愉悅情緒可透過情緒投入之中介效果,間接影響行為投入與認知投入。情緒投入亦部分中介無聊情緒與行為投入之關係。此外,情緒投入完全中介無聊情緒與認知投入之關係,且完全中介焦慮情緒與行為投入、認知投入之關係。
本研究依據研究結果進行討論,並據以提出教學與輔導以及對未來研究的相關建議,提供實務與後續研究之參考。
Given the increasing interest in understanding student academic emotions in recent years, this study explored relationships between student academic emotions and student engagement by utilizing meta-analysis and meta-analytic structural equation modeling (MASEM). In total, 50 articles (53 studies) met the inclusion criteria of this study, which consists of two parts. First, using meta-analysis, the study investigated the relationship between various academic emotions and student engagement. Secondly, based on the findings of the meta-analysis, this study used MASEM to investigate the mediating role of emotional engagement between three academic emotions (enjoyment, anxiety, and boredom) and two engagement dimensions (behavioral and cognitive). Results showed that: (1) Enjoyment and pride were positively correlated with all student engagement dimensions. Anger, anxiety, boredom, and hopelessness were negatively correlated with all student engagement dimensions. Notably, the mean effect sizes of boredom and hopelessness were slightly higher than those of anger and anxiety. (2) Research years, participants’ country, and gender were shown to be the moderators of enjoyment and behavioral engagement. The learning subject and participants’ country were moderators between anxiety and behavioral engagement. The research year and education stage were moderators between boredom and behavioral engagement, and the participants’ country and emotion types were the moderator between boredom and cognitive engagement. (3) MASEM showed that emotional engagement partly mediated the effect of enjoyment on behavioral and cognitive engagement. It fully mediates the effect of boredom on cognitive engagement and the effect of anger on behavioral and cognitive engagement. Based on the findings and discussions, the study concludes with an overall summary and provides considerations for schools and teachers as well as future research.
參考文獻 中文文獻:
Borenstein, M., Hedges, L., Higgins, J. P. T., & Rothstein, H. R. (2016). 後設分析 (吳政達審訂)。高教出版。(原著出版於2009)
Cooper H.(2013)。研究統合與後設分析(4版)(張明玲譯)。揚智文化。(原著出版於2009)。
毛國楠、劉政宏、彭淑玲、李維光、陳慧娟(2008)。能力信念、學業自我價值後效與學業成就對國小學生學習動機與學習情緒之影響。教育心理學報,39(4),569–588。http://doi.org/10.6251/BEP.20071213
王慧瑜、劉人瑋、葉明功(2018)。有效進行系統文獻回顧與統合分析研究。臺灣臨床藥學雜誌,26(1),1–10。http://doi.org/10.6168/FJCP.201801_26(1).0001
朱依君、連倖誼(2020)。國小學生參與任務導向學習對學習動機、學習情緒之影響。人文社會科學研究:教育類,14(3),37–57。https://doi.org/10.6618/HSSRP.202009_14(3).3
吳佩羿、劉曉芬、林志哲(2022)。國中生數學學習興趣、學習情緒、學習投入與學習成就之關係。教育與心理研究,45(2),87-116。https://doi.org/10.53106/102498852022064502004
吳明隆(2009)。結構方程模式:AMOS的操作與應用。五南。
李茂能(2016)。當代整合分析理論與實務。五南。
林冠竹(2015)。學業情緒、學業倦怠與學習涉入之關係暨課室目標結構的調節效果 [碩士論文,國立成功大學]。臺灣博碩士論文知識加值系統。
林宴瑛、程炳林(2012)。環境目標結構與控制-價值信念對學業情緒之效果。教育心理學報,44(1),49–72。https://doi.org/10.6251/BEP.20110711
邱明琪(2018)。教師自主支持、成就目標、學習情緒對國中生數學科學習投入之影響 [碩士論文,銘傳大學]。臺灣博碩士論文知識加值系統。
邱素玲、洪福源(2014)大學生班級情緒氣氛、學習自我效能、學習倦怠與學習投入關係研究。彰化師大教育學報,25,85–112。
張映芬(2021)。國中生完美主義組型暨其與父母期望/苛責、學業情緒、動機涉入之關係。教育科學研究期刊,66(1),203–230。https://doi.org/10.6209/JORIES.202103_66(1).0007
郭桂菁(2017)。國中生知覺自然科教師教學風格、學業情緒與學習動機關係之研究 [碩士論文,中國科技大學]。臺灣博碩士論文知識加值系統。
陳妍榛(2017)。國小高年級學童知覺到的環境因素、學業情緒、 學習投入及學業成就之關係 [碩士論文,南華大學]。臺灣博碩士論文知識加值系統。
陳瑋婷(2011)。自我效能、學習策略與學業成就之關係研究:結合後設分析與結構方程模式。師資培育與教師專業發展期刊,4(2),83-96。
陳慧蓉、張郁雯、薛承泰(2018)。脈絡因素、學業自我概念、與學習投入對學業表現的影響:臺灣國小三年級經濟弱勢與一般學生之比較。當代教育研究季刊,26(2),73–107。
程煒婷(2017)。教師支持與中學生學習投入關係:學業情緒的中介暨情緒調節的調節效果 [碩士論文,國立臺灣師範大學]。華藝線上圖書館。
鈕文英、吳裕益(2015)。單一個案研究法:研究設計與後設分析。心理。
黃智淵(2016)。學業情緒、情緒調整策略、自我調整學習策略對學業成就之關係:條件化間接效果檢驗暨教學方案之成效分析 [博士論文,國立成功大學]。臺灣博碩士論文知識加值系統。
黃雅慧(2017)。臺灣國民中學學生學習投入之多層次分析 [碩士論文,銘傳大學]。臺灣博碩士論文知識加值系統。
黃筠婷、程炳林(2021)。國中生學業情緒、情境興趣及學習涉入的交互關係。教育心理學報,52(3),571–593。https://doi.org/10.6251/BEP.202103_52(3).0004
黃義良、王怡又(2018)。學校行銷與學校效能關聯之探討:採後設分析結合結構方程模式之驗證。嘉大教育研究學刊,40,63-98。
劉人儀(2017)。以學習投入、倦怠與身心健康探討中學生數學學習情緒與成就[碩士論文,國立臺灣科技大學]。臺灣博碩士論文知識加值系統。
劉玉玲(2016)。國中生數學學業情緒及數學學習策略與數學學業成就之研究。課程與教學,19(2),161–192。https://doi.org/10.6384/CIQ.201604_19(2).0007
劉玉玲、謝子陽(2021)。整合未來時間觀與數學學習投入:國中生數學學習模式之研究。課程與教學, 24(1),235–263。https://doi.org/10.6384/CIQ.202101_24(1).0009
蔡松玫(2021)。澎湖縣九年級學生知覺教師教學風格及學業情緒與國文領域學習成就之研究 [碩士論文,國立臺北教育大學]。臺灣博碩士論文知識加值系統。
蔡清田(2020)。十二年國民基本教育課程綱要研修的核心素養。臺灣教育評論月刊,9(1),8–12。
賴英娟、巫博瀚(2017)。國中生學業情緒與學習投入對學業成就之影響。課程與教學,20(3),139–163。https://doi.org/10.6384/CIQ.201707_20(3).0006
賴英娟、巫博瀚(2018)。國中生所知覺到的教師自主支持、自我效能及自主動機對學業情緒之影響。課程與教學,21(2),85–110。https://doi.org/10.6384/CIQ.201804_21(2).0004
薛杏秋(2017)。教師自主支持對國民中學學生自我效能、學習情緒及學習投入影響之研究 [碩士論文,銘傳大學]。臺灣博碩士論文知識加值系統。
謝進昌、陳敏瑜(2011)。國內教育、心理後設分析研究出版偏誤檢定之實徵分析。測驗學刊,58(2),391–422。https://doi.org/10.7108/PT.201106.0391
謝觀崢(2021)。大學生英語學業成就與情緒對英語學習投入預測效果研究。樹德科技大學學報,23(2),107–119。
簡瑋成(2012)。學習自我效能、學習投入與學習成就之後設分析 [碩士論文,國立暨南國際大學]。臺灣博碩士論文知識加值系統。
簡嘉菱、程炳林(2013)。環境目標結構、自我決定動機與學業情緒之關係。教育心理學報,44(3),713–733。https://doi.org/10.6251/BEP.20120614
簡嘉菱、程炳林(2018)。學業拖延與課業情緒之交互關係:課室目標結構的調節效果。教育心理學報,50(2),293–313。https://doi.org/10.6251/BEP.201812_50(2).0006

英文文獻:
Acosta-Gonzaga, E., & Ruiz-Ledesma, E. F. (2022). Students’ emotions and engagement in the emerging hybrid learning environment during the COVID-19 pandemic. Sustainability, 14(16), 10236. https://doi.org/10.3390/su141610236
Ainley, M. (2012). Students’ interest and engagement in classroom activities. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 283-302). Springer. https://doi.org/10.1007/978-1-4614-2018-7_13
Ainley, M., & Ainley, J. (2011). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science. Contemporary Educational Psychology, 36(1), 4-12. https://doi.org/ 10. 1016/j.cedpsych.2010.08.001
Alpaslan, M. M., & Ulubey, Ö. (2021). Examining the relations between emotions, motivation, classroom engagement and achievement in mathematics. International Journal of Research in Education and Science, 7(4), 1042–4057.
An, F., Yu, J., & Xi, L. (2022). Relations between perceived teacher support and academic achievement: Positive emotions and learning engagement as mediators. Current Psychology. https://doi.org/10.1007/s12144-022-03668-w
Andre, L., Koene, S., Jansen in de Wal, J., Schuitema, J. A., & Peetsma, T. T. D. (2022). Learning under stress: The moderating role of future time perspective. Psychology in the Schools, 59(4), 800–816. https://doi.org/10.1002/pits.22645
Ansong, D., Okumu, M., Bowen, G. L., Walker, A. M., & Eisensmith, S. R. (2017). The role of parent, classmate, and teacher support in student engagement: Evidence from Ghana. International Journal of Educational Development, 54, 51–58. https://doi.org/10.1016/j.ijedudev.2017.03.010
Appleton, J. J., Christenson, S. L., & Furlong, M. J. (2008). Student engagement with school: Critical conceptual and methodological issues of the construct. Psychology in the Schools, 45(5), 369–386. https://doi.org/10.1002/pits.20303
Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the student engagement instrument. Journal of School Psychology, 44(5), 427–445. https://doi.org/10.1016/j.jsp.2006.04.002
Bamberger, K. T. (2016). The application of intensive longitudinal methods to investigate change: Stimulating the field of applied family research. Clinical Child and Family Psychology Review, 19(1), 21–38. https://doi.org/10.1007/s10567-015-0194-6
Barkatsas, T., Kasimatis, K., & Gialamas, V. (2009). Learning secondary mathematics with technology: Exploring the complex interrelationship between students’ attitudes, engagement, gender and achievement. Computers & Education, 52, 562–570.
Baron, R., & Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. https://doi.org/10.1037//0022-3514.51.6.1173
Becker, E. S., Keller, M. M., Goetz, T., Frenzel, A. C., & Taxer, J. L. (2015). Antecedents of teachers’ emotions in the classroom: an intraindividual approach. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00635
Beedie, C. J., Terry, P. C., Lane, A. M., & Devonport, T. J. (2011). Differential assessment of emotions and moods: Development and validation of the emotion and mood components of anxiety questionnaire. Personality and Individual Differences, 50(2), 228–233. https://doi.org/10.1016/j.paid.2010.09.034
Beedie, C. J., Terry, P., & Lane, A. (2005). Distinctions between emotion and mood. Cognition and Emotion, 19(6), 847–878. https://doi.org/10.1080/02699930541000057
Bench, S. W., & Lench, H. C. (2013). On the Function of Boredom. Behavioral Sciences, 3(3), Article 3. https://doi.org/10.3390/bs3030459
Bergh, D. D., Aguinis, H., Heavey, C., Ketchen, D. J., Boyd, B. K., Su, P., Lau, C. L. L., & Joo, H. (2016). Using meta-analytic structural equation modeling to advance strategic management research: Guidelines and an empirical illustration via the strategic leadership-performance relationship. Strategic Management Journal, 37(3), 477–497. https://doi.org/10.1002/smj.2338
Bieg, M., Goetz, T., & Hubbard, K. (2013). Can I master it and does it matter? An intraindividual analysis on control–value antecedents of trait and state academic emotions. Learning and Individual Differences, 28, 102-108. https://doi.org/10.1016/j.lindif.2013.09.006
Bordbar, M. (2021). Autonomy-supportive faculty, students’ self-system processes, positive academic emotions, and agentic engagement: Adding emotions to self-system model of motivational development. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.727794
Budsankom, P., Sawangboon, T., Damrongpanit, S., & Chuensirimongkol, J. (2015). Factors affecting higher order thinking skills of students: A meta-analytic structural equation modeling study. Educational Research and Reviews, 10(19), 2639–2652.
Çağırgan, D., & Soytürk, İ. (2021). The relationship between math anxiety, student engagement in mathematics and responsibilities towards learning among middle school students. İlköğretim Online, 20(1), 456-467. https://doi.org/10.17051/ilkonline.2021.01.040
Camacho-Morles, J., Slemp, G. R., Pekrun, R., Loderer, K., Hou, H., & Oades, L. G. (2021). Activity achievement emotions and academic performance: A meta-analysis. Educational Psychology Review, 33(3), 1051-1095. https://doi.org /10.1007/s10648-020-09585-3
Caraway, K., Tucker, C. M., Reinke, W. M., & Hall, C. (2003). Self-efficacy, goal orientation, and fear of failure as predictors of school engagement in high school students. Psychology in the Schools, 40(4), 417–427. https://doi.org/10.1002/pits.10092
Carmona-Halty, M., Salanova, M., Llorens, S., & Schaufeli, W. B. (2021). Linking positive emotions and academic performance: The mediated role of academic psychological capital and academic engagement. Current Psychology, 40(6), 2938-2947. https://doi.org/10.1007/s12144-019-00227-8
Chang, D.-F., Chien, W.-C., & Chou, W.-C. (2016). Meta-analysis approach to detect the effect of student engagement on academic achievement, ICIC Express Letters, 10(10), 2441-2446.
Chen, J., & Liang, M. (2022). Play hard, study hard? The influence of gamification on students’ study engagement, 994700. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.994700
Cheung, M. (2020). Meta-analytic structural equation modeling. Psychological Methods, 25(4), 430-455. https://doi.org/10.31234/osf.io/epsqt
Cheung, M. W. L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46(1), 29-40. https://doi.org/10.3758/s13428-013-0361-y
Cheung, M. W. L. (2015). Meta-Analysis: A structural equation modeling approach. John Wiley & Sons.
Cheung, M. W. L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40. https://doi.org/10.1037/ 1082-989X.10.1.40
Cheung, M. W.-L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46(1), 29–40. https://doi.org/10.3758/s13428-013-0361-y
Cho, H. J., Levesque-Bristol, C., & Yough, M. (2023). How autonomy-supportive learning environments promote Asian international students’ academic adjustment: A self-determination theory perspective. Learning Environments Research, 26(1), 51–76. https://doi.org/10.1007/s10984-021-09401-x
Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system process. In M. R. Gunnar & L. A. Scroufe (Eds), Self processes and development (pp. 43–77). Lawrence Erlbaum Associates, Inc.
Crombie, I. K., & Davies, H. T. (2009). What is meta-analysis. Hayward Medical Communications.
D’Errico, F., Paciello, M., & Cerniglia, L. (2016). When emotions enhance students’ engagement in e-learning processes. Journal of E-Learning and Knowledge Society, 12(4). https://doi.org/10.20368/1971-8829/1144
Darwin, C. (2009). The Expression of the Emotions in Man and Animals. Cambridge University Press. https://doi.org/10.1017/CBO9780511694110
Daschmann, E. C., Goetz, T., & Stupnisky, R. H. (2011). Testing the predictors of boredom at school: Development and validation of the precursors to boredom scales. British Journal of Educational Psychology, 81(3), 421-440. https://doi.org/10.1348/000709910X526038
Dembereldorj, Z. (2021). Exploring Online Student Engagement during COVID-19 Pandemic in Mongolia. International Journal of Higher Education, 10(7), 10–18.
Deng, W., Lei, W., Guo, X., Li, X., Ge, W., & Hu, W. (2022). Effects of regulatory focus on online learning engagement of high school students: The mediating role of self-efficacy and academic emotions. Journal of Computer Assisted Learning, 38(3), 707–718. https://doi.org/10.1111/jcal.12642
Denovan, A., Dagnall, N., Macaskill, A., & Papageorgiou, K. (2020). Future time perspective, positive emotions and student engagement: a longitudinal study. Studies in Higher Education, 45(7), 1533-1546. https://doi.org/10.1080/0307 5079.2019.1616168
Derakhshan, A., Fathi, J., Pawlak, M., & Kruk, M. (2022). Classroom social climate, growth language mindset, and student engagement: The mediating role of boredom in learning English as a foreign language. Journal of Multilingual and Multicultural Development, 0(0), 1–19. https://doi.org/10.1080/01434632.2022.2099407
Dewaele, J.-M., & Li, C. (2021). Teacher enthusiasm and students’ social-behavioral learning engagement: The mediating role of student enjoyment and boredom in Chinese EFL classes. Language Teaching Research, 25(6), 922–945. https://doi.org/10.1177/13621688211014538
Dubovi, I., & Adler, I. (2022). The impact of COVID-19 induced anxiety on students’ engagement while learning with online computer-based simulations: The mediating role of boredom. Interactive Learning Environments. https://doi.org/10.1080/10494820.2022.2100427
Durlak, J. A., & Lipsey, M. W. (1991). A practitioner’s guide to meta-analysis. American Journal of Community Psychology, 19(3), 291-332. https://doi.org/10.1007/BF00938026
Duval, S., & Tweedie, R. (2000a). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95(449), 89-98. https://doi.org/10.2307/2669529
Duval, S., & Tweedie, R. (2000b). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455-463. https://doi.org/10.1111/j.0006-341X.2000.00455.x
Eccles, J., & Wang, M.-T. (2012). Part I commentary: So what is student engagement anyway? In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds), Handbook of research on student engagement (pp. 133-145). Springer.
Ee, J., & Ong, C. W. (2014). Which social emotional competencies are enhanced at a social emotional learning camp? Journal of Adventure Education and Outdoor Learning, 14(1), 24–41. https://doi.org/10.1080/14729679.2012.761945
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068
Ekman, P. (1994). Moods, emotions, and traits. In P. Ekman & R. Davidson (Eds), The nature of emotion: Fundamental questions (pp.55–58). Oxford University Press.
Ekman, P. (2016). What scientists who study emotion agree about. Perspectives on Psychological Science, 11(1), 31–34. https://doi.org/10.1177/1745691615596992
Ellsworth, P. C. (2013). Appraisal theory: Old and new questions. Emotion Review, 5(2), 125–131. https://doi.org/10.1177/1754073912463617
Eysenck, H. J. (1978). An exercise in mega-silliness. American Psychologist, 33(5), 517a. https://doi.org/10.1037/0003-066X.33.5.517.a
Fahrenberg, J., Foerster, F., & Müller, W. (1996). Laboratory and field studies for improvement of ambulatory monitoring methodology. In Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 237-255). Hogrefe & Huber Publishers.
Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 56–83. https://doi.org/10.1080/10705519909540119
Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H., & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecological Processes, 5(1), 19. https://doi.org/10.1186/s13717-016-0063-3
Fang, J., Brown, G. T. L., & Hamilton, R. (2022). Changes in Chinese students’ academic emotions after examinations: Pride in success, shame in failure, and self-loathing in comparison. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12552
Federici, R. A., & Skaalvik, E. M. (2014). Students’ perceptions of emotional and instrumental teacher support: Relations with motivational and emotional responses. International Education Studies, 7(1), 21-36. Scopus. https://doi.org/10.5539/ies.v7n1p21
Feng, E., & Hong, G. (2022). Engagement mediates the relationship between emotion and achievement of Chinese EFL learners. Frontiers in Psychology, 13, 895594. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.895594
Finn, J. D. (1989). Withdrawing From School. Review of Educational Research, 59(2), 117–142. https://doi.org/10.3102/00346543059002117
Finn, J. D., & Zimmer, K. S. (2012). Student engagement: What is it? Why does it matter? In S. L. Chirstenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 97-131). Springer.
Flunger, B., Mayer, A., & Umbach, N. (2018). Beneficial for some or for everyone? Exploring the effects of an autonomy-supportive intervention in the real-life classroom. Journal of Educational Psychology, 111(2), 210. https://doi.org/10.1037/edu0000284
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109. https://doi.org/10.3102/00346543074001059
Fredricks, J. A., Filsecker, M., & Lawson, M. A. (2016). Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues. Learning and Instruction, 43, 1–4. https://doi.org/10.1016/j.learninstruc.2016.02.002
Fredrickson, B. L. (2001). The role of positive emotions in positive psychology. The American Psychologist, 56(3), 218-226.
Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1449), 1367-1378. https://doi.org/10.1098/rstb.2004.1512
Frenzel, A. C. (2014). Teacher emotions. In E. A. Linnenbrink-Garcia & R. Pekrun (Eds.), International handbook of emotions in education (pp. 494-519). Routledge.
Frenzel, A. C., Becker-Kurz, B., Pekrun, R., Goetz, T., & Lüdtke, O. (2018). Emotion transmission in the classroom revisited: A reciprocal effects model of teacher and student Enjoyment. Journal of Educational Psychology, 110(5), 628. https://doi.org/10.1037/edu0000228
Frenzel, A. C., Goetz, T., Lüdtke, O., Pekrun, R., & Sutton, R. E. (2009). Emotional transmission in the classroom: Exploring the relationship between teacher and student enjoyment. Journal of Educational Psychology, 101(3), 705–716. https://doi.org/10.1037/a0014695
Garn, A. C., Simonton, K., Dasingert, T., & Simonton, A. (2017). Predicting changes in student engagement in university physical education: Application of control-value theory of achievement emotions. Psychology of Sport and Exercise, 29, 93-102. https://doi.org/10.1016/j.psychsport.2016.12.005
Gaspard, H., & Lauermann, F. (2021). Emotionally and motivationally supportive classrooms: A state-trait analysis of lesson- and classroom-specific variation in teacher- and student-reported teacher enthusiasm and student engagement. Learning and Instruction, 75, 101494. https://doi.org/10.1016/j.learninstruc.2021.101494
Geary, D. C., Hoard, M. K., Nugent, L., & Scofield, J. E. (2021). In-class attention, spatial ability, and mathematics anxiety predict across-grade gains in adolescents’ mathematics achievement. Journal of Educational Psychology, 113(4), 754–769. https://doi.org/10.1037/edu0000487
Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3-8. https://doi.org/10.3102/0013189X005010003
Goetz, T., Bieleke, M., Gogol, K., van Tartwijk, J., Mainhard, T., Lipnevich, A. A., & Pekrun, R. (2021). Getting along and feeling good: Reciprocal associations between student-teacher relationship quality and students’ emotions. Learning and Instruction, 71, 101349. https://doi.org/10.1016/j.learninstruc.2020.101349
González, A., Garrido, J. M. F., Castro, Y. R., & Rodríguez, M. V. C. (2015). Class anxiety in secondary education: Exploring structural relations with perceived control, engagement, disaffection, and performance. The Spanish Journal of Psychology, 18, E68. https://doi.org/10.1017/sjp.2015.70
González, A., Rodríguez, Y., Faílde, J. M., & Carrera, M. V. (2016). Anxiety in the statistics class: Structural relations with self-concept, intrinsic value, and engagement in two samples of undergraduates. Learning and Individual Differences, 45, 214–221. https://doi.org/10.1016/j.lindif.2015.12.019
Graham, S., & Weiner, B. (1986). From an attributional theory of emotion to developmental psychology: A round-trip ticket? Social Cognition, 4(2), 152–179. https://doi.org/10.1521/soco.1986.4.2.152
Granado, X. O., Mendoza Lira, M., Apablaza, C. G. C., & López, V. M. M. (2017). Positive emotions, autonomy support and academic performance of university students: The mediating role of academic engagement and self-efficacy. Revista de Psicodidactica, 22(1), 45–53. https://doi.org/10.1387/RevPsicodidact.14280
Guo, Y. (2021). Exploring the dynamic interplay between foreign language enjoyment and learner engagement with regard to EFL achievement and absenteeism: A sequential mixed methods study. Frontiers in Psychology, 12. https://www.frontiersin.org/articles/10.3389/fpsyg.2021.766058
Hagenauer, G., Hascher, T., & Volet, S. E. (2015). Teacher emotions in the classroom: Associations with students’ engagement, classroom discipline and the interpersonal teacher-student relationship. European Journal of Psychology of Education, 30(4), 385-403. https://doi.org/10.1007/s10212-015-0250-0
Hamedi, S. M., Pishghadam, R., & Fadardi, J. S. (2020). The contribution of reading emotions to reading comprehension: The mediating effect of reading engagement using a structural equation modeling approach. Educational Research for Policy and Practice, 19(2), 211–238. https://doi.org/10.1007/s10671-019-09256-3
Hanin, V., & Van Nieuwenhoven, C. (2016). The influence of motivational and emotional factors in mathematical learning in secondary education. European Review of Applied Psychology, 66(3), 127–138. https://doi.org/10.1016/j.erap.2016.04.006
Harper, S. R., Carini, R. M., Bridges, B. K., & Hayek, J. C. (2004). Gender differences in student engagement among African American undergraduates at historically black colleges and universities. Journal of College Student Development, 45(3), 271–284. https://doi.org/10.1353/csd.2004.0035
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557
Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., & Welch, V. (Eds). (2019). Cochrane handbook for systematic reviews of intervention (2nd Edition). Chichester (UK): John Wiley & Sons.
Hong, E., Mason, E., Peng, Y., & Lee, N. (2015). Effects of homework motivation and worry anxiety on homework achievement in mathematics and English. Educational Research and Evaluation, 21(7–8), 491–514. https://doi.org/10.1080/13803611.2015.1131721
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Hu, S., & Kuh, G. D. (2002). Being (Dis)engaged in educationally purposeful activities: The influences of student and institutional characteristics. Research in Higher Education, 43(5), 555–575. https://doi.org/10.1023/A:1020114231387
Huang, C. (2011). Achievement goals and achievement emotions: A Meta-analysis. Educational Psychology Review, 23(3), 359-388. https://doi.org/10.1007/ s10648- 011-9155-x
Husain, M. M. (2022). To what extent emotion, cognition and behaviour enhance a student’s engagement: A case study on the MAJA teaching approach. Policy Futures in Education, 20(1), 86–97. https://doi.org/10.1177/147821032110320
İlhan, A., Poçan, S., & Gemcioğlu, M. (2022). The effect of mathematics class commitment and anxiety on mathematics success: A path analysis study. Education and Urban Society, 54(2), 186–204. https://doi.org/10.1177/00131245211028621
Jack, R. E., Garrod, O. G. B., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences, 109(19), 7241–7244. https://doi.org/10.1073/pnas.1200155109
Jackson, D., & Turner, R. (2017). Power analysis for random‐effects meta‐analysis. Research Synthesis Methods, 8(3), 290–302. https://doi.org/10.1002/jrsm.1240
Jak, S., & Cheung, M. W.-L. (2020). Meta-analytic structural equation modeling with moderating effects on SEM parameters. Psychological Methods, 25(4), 430–455. https://doi.org/10.1037/met0000245
Jak, S., Li, H., Kolbe, L., de Jonge, H., & Cheung, M. W.-L. (2021). Meta-analytic structural equation modeling made easy: A tutorial and web application for one-stage MASEM. Research Synthesis Methods, 12(5), 590–606. https://doi.org/10.1002/jrsm.1498
Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38(5), 758–773. https://doi.org/10.1080/03075079.2011.598505
Kahu, E., Stephens, C., Leach, L., & Zepke, N. (2015). Linking academic emotions and student engagement: Mature-aged distance students’ transition to university. Journal of Further and Higher Education, 39(4), 481–497. https://doi.org/10.1080/0309877X.2014.895305
Kamari, S., Fouladchang, M., Khormaei, F., & Jowkar, B. (2021). Social achievement goals and academic engagement: The mediating role of academic and social positive emotions. Iranian Journal of Psychiatry and Behavioral Sciences, 15(3). https://doi.org/10.5812/ijpbs.110241
Kang, X., & Wu, Y. (2022). Academic enjoyment, behavioral engagement, self-concept, organizational strategy and achievement in EFL setting: A multiple mediation analysis. PLOS ONE, 17(4), e0267405. https://doi.org/10.1371/journal.pone.0267405
Kaplan, D. (2001). Structural equation modeling. In N. J. Smelser & P. B. Baltes (Eds), International Encyclopedia of the Social & Behavioral Sciences (pp. 15215-15222). Pergamon. https://doi.org/10.1016/B0-08-043076-7/00776-2
Keller, R. E., Johnson, E., & DeShong, S. (2017). A structural equation model looking at student’s participatory behavior and their success in Calculus I. International Journal of STEM Education, 4(1), 1-11. https://doi.org/10.1186/s40594-017-0093-0
Khajavy, G. H. (2020). Modeling the relations between foreign language engagement, emotions, grit and reading achievement. In P. Hiver, A. H. Al-Hoorie, & S. Mercer (Eds.), Student engagement in the language classroom (pp. 241–249). Multilingual Matters.
King, R. B., & Frondozo, C. E. (2022). Variety is the spice of life: How emotional diversity is associated with better student engagement and achievement. British Journal of Educational Psychology, 92(1), e12436. https://doi.org/10.1111/bjep.12436
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications. http://ebookcentral.proquest.com/lib/oxford/detail.action?docID= 4000663
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. https://doi.org/10.1016/j.biopsycho.2010.03.010
Kuh, G. D. (2009). The national survey of student engagement: Conceptual and empirical foundations. New Directions for Institutional Research, 2009(141), 5-20. https://doi.org/10.1002/ir.283
Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. The Journal of Higher Education, 79(5), 540–563. https://doi.org/10.1353/jhe.0.0019
Lai Y.-C., & Wu P.-H. (2019). The relationship of classroom goal structures, self-determination motivation, and achievement emotions. Curriculum & Instruction Quarterly, 22(4), 151-173. https://doi.org/10.6384/CIQ.201910_22(4).0006
Lakhal, S., Khechine, H., & Mukamurera, J. (2021). Explaining persistence in online courses in higher education: A difference-in-differences analysis. International Journal of Educational Technology in Higher Education, 18(1), 19. https://doi.org/10.1186/s41239-021-00251-4
Lau, R. S., & Cheung, G. W. (2012). Estimating and comparing specific mediation effects in complex latent variable models. Organizational Research Methods, 15(1), 3–16. https://doi.org/10.1177/1094428110391673
Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press, Incorporated. http://ebookcentral.proquest.com/lib/oxford/detail.action?docID=4700723
Lei, H., & Cui, Y. (2016). Effects of academic emotions on achievement among mainland Chinese students: A meta-analysis. Social Behavior and Personality: An International Journal, 44(9), 1541-1553. https://doi.org/10.2224/sbp.2016. 44.9.1541
Lei, H., Cui, Y., & Chiu, M. M. (2018). The relationship between teacher support and students’ academic emotions: A meta-analysis. Frontiers in Psychology, 8, 2288. https://doi.org/10.3389/fpsyg.2017.02288
Lei, H., Cui, Y., & Zhou, W. (2018). Relationships between student engagement and academic achievement: A meta-analysis. Social Behavior and Personality, 46(3), 517–528. https://doi.org/10.2224/sbp.7054
Leptokaridou, E. T., Vlachopoulos, S. P., & Papaioannou, A. G. (2016). Experimental longitudinal test of the influence of autonomy-supportive teaching on motivation for participation in elementary school physical education. Educational Psychology, 36(7), 1138–1159. https://doi.org/10.1080/01443410.2014.950195
Li, G., Li, Z., Wu, X., & Zhen, R. (2022). Relations between class competition and primary school students’ academic achievement: Learning anxiety and learning engagement as mediators. Frontiers in Psychology, 13. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.775213
Li, H., Zhang, A., Zhang, M., Huang, B., Zhao, X., Gao, J., & Si, J. (2021). Concurrent and longitudinal associations between parental educational involvement, teacher support, and math anxiety: The role of math learning involvement in elementary school children. Contemporary Educational Psychology, 66, 101984. https://doi.org/10.1016/j.cedpsych.2021.101984
Li, J., & Xue, E. (2023). Dynamic interaction between student learning behaviour and learning environment: Meta-analysis of student engagement and its influencing factors. Behavioral Sciences, 13(1), Article 1. https://doi.org/10.3390/bs13010059
Li, W., Gao, W., & Sha, J. (2020). Perceived teacher autonomy support and school engagement of Tibetan students in elementary and middle schools: Mediating effect of self-efficacy and academic emotions. Frontiers in Psychology, 11(50). https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00050
Li, Y., & Lerner, R. M. (2013). Interrelations of behavioral, emotional, and cognitive school engagement in high school students. Journal of Youth and Adolescence, 42(1), 20–32. https://doi.org/10.1007/s10964-012-9857-5
Li, Y., Lerner, J. V., & Lerner, R. M. (2010). Personal and ecological assets and academic competence in early adolescence: The mediating role of school engagement. Journal of Youth and Adolescence, 39(7), 801–815. https://doi.org/10.1007/s10964-010-9535-4
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. British Medical Journal, 339, b2700 https://doi.org/10.1136/bmj.b2700
Lichtenfeld, S., Pekrun, R., Marsh, H. W., Nett, U. E., & Reiss, K. (2022). Achievement emotions and elementary school children’s academic performance: Longitudinal models of developmental ordering. Journal of Educational Psychology. https://doi.org/10.1037/edu0000748
Light, R. J., & Pillemer, D. B. (1984). Summing up: The science of reviewing research. Harvard University Press.
Lim, N. (2016). Cultural differences in emotion: Differences in emotional arousal level between the East and the West. Integrative Medicine Research, 5(2), 105–109. https://doi.org/10.1016/j.imr.2016.03.004
Linnenbrink, E. A. (2007). The role of affect in student learning: A multi-dimensional approach to considering the interaction of affect, motivation, and engagement. In P. A. Schutz & R. Pekrun (Eds), Emotion in education (pp.107–124). Elsevier Academic Press.
Linnenbrink-Garcia, L., & Pekrun, R. (2011). Students’ emotions and academic engagement: Introduction to the special issue. Contemporary Educational Psychology, 36(1), 1-3. https://doi.org/10.1016/j.cedpsych.2010.11.004
Littell, J. H., Corcoran, J., & Pillai, V. K. (2008). Systematic reviews and meta-analysis. Oxford University Press.
Liu, H., Li, J., & Fang, F. (2022). Examining the complexity between boredom and engagement in English learning: Evidence from chinese high school students. Sustainability, 14(24), Article 24. https://doi.org/10.3390/su142416920
Liu, H., Yao, M., Li, J., & Li, R. (2021). Multiple mediators in the relationship between perceived teacher autonomy support and student engagement in math and literacy learning. Educational Psychology, 41(2), 116-136. https://doi.org/ 10.1080/ 01443 410.2020.1837346
Liu, R. D., Zhen, R., Ding, Y., Liu, Y., Wang, J., Jiang, R., et al. (2018). Teacher support and math engagement: roles of academic self-efficacy and positive emotions. Educational Psychology, 38(1), 3-16. https://doi.org/10.1080/01443410.2017. 1359238
Liu, R.-D., Zhen, R., Ding, Y., Liu, Y., Wang, J., Jiang, R., & Xu, L. (2018). Teacher support and math engagement: Roles of academic self-efficacy and positive emotions. Educational Psychology, 38(1), 3–16. https://doi.org/10.1080/01443410.2017.1359238
Liu, S., Zou, S., Zhang, D., Wang, X., & Wu, X. (2022). Problematic Internet use and academic engagement during the COVID-19 lockdown: The indirect effects of depression, anxiety, and insomnia in early, middle, and late adolescence. Journal of Affective Disorders, 309, 9-18. https://doi.org/10.1016/j.jad.2022.04.043
Liukkonen, J., Barkoukis, V., Watt, A., & Jaakkola, T. (2010). Motivational climate and students’ emotional experiences and effort in physical education. The Journal of Educational Research, 103(5), 295–308. https://doi.org/10.1080/00220670903383044
Loderer, K., Pekrun, R., & Lester, J. C. (2020). Beyond cold technology: A systematic review and meta-analysis on emotions in technology-based learning environments. Learning and Instruction, 70, 101162. https://doi.org/10.1016/ j.learninstruc.2018.08.002
Lohbeck, A., Nitkowski, D., & Petermann, F. (2016). A control-value theory approach: Relationships between academic self-concept, interest, and test anxiety in elementary school children. Child & Youth Care Forum, 45(6), 887–904.
Luo, W., Lee, K., Ng, P. T., & Ong, J. X. W. (2014). Incremental Beliefs of Ability, Achievement Emotions and Learning of Singapore Students. Educational Psychology, 34(5), 619–634. https://doi.org/10.1080/01443410.2014.909008
Luo, W., Ng, P. T., Lee, K., & Aye, M. (2016). Self-efficacy, value, and achievement emotions as mediators between parenting practice and homework behavior: A control-value theory perspective. Learning and Individual Differences, 50, 275–282. https://doi.org/10.1016/j.lindif.2016.07.017
Luo, Z., & Luo, W. (2022). Discrete achievement emotions as mediators between achievement goals and academic engagement of Singapore students. Educational Psychology, 42(6), 749-766. https://doi.org/10.1080/01443410. 2022.2048795
Maharajan, M. K., Rajiah, K., Tam, A. M., Chaw, S. L., Ang, M. J., & Yong, M. W. (2017). Pharmacy students’ anxiety towards research during their undergraduate degree; How to reduce it? PLOS ONE, 12(4), e0176095. https://doi.org/10.1371/journal.pone.0176095
Mainhard, T., Oudman, Sophie, Hornstra, Lisette, Bosker, Roe J., & Goetz, Thomas. (2018). Student emotions in class: The relative importance of teachers and their interpersonal relations with students. Learning and Instruction, 53, 109-119. https://doi.org/10.1016/j.learninstruc.2017.07.011
Mehdipour Maralani, F., Shalbaf, A., & Gholamali Lavasani, M. (2018). Agentic engagement and test anxiety: The mediatory role of the basic psychological needs. SAGE Open, 8(2), 215824401877288. https://doi.org/10.1177/2158244018772
Mehl, M. R., & Conner, T. S. (2012). Handbook of research methods for studying daily life. Guilford Press.
Naik, S., & Wawrzynski, M. (2018). Gender, Race, Finance, and Student Engagement in Cocurricular Activities in a South African University. Journal of College Student Development, 59, 598–613. https://doi.org/10.1353/csd.2018.0055
Ntoumanis, N. (2001). A self-determination approach to the understanding of motivation in physical education. British Journal of Educational Psychology, 71(2), 225–242. https://doi.org/10.1348/000709901158497
Obermeier, R., Schlesier, J., Meyer, S., & Gläser-Zikuda, M. (2022). Trajectories of scholastic well-being: The effect of achievement emotions and instructional quality in the first year of secondary school (fifth grade). Social Psychology of Education, 25(5), 1051–1070. https://doi.org/10.1007/s11218-022-09726-2
Oh-Young, C., Gordon, H. R. D., Xing, X., & Filler, J. (2018). Meta-analytic procedures for career and technical education post-secondary researchers and practitioners. Journal of Research in Technical Career, 2(1), 32-41. https://doi.org/10.9741/25 78-2118.1010
Oriol, X., Amutio, A., Mendoza, M., Da Costa, S., & Miranda, R. (2016). Emotional creativity as predictor of intrinsic motivation and academic engagement in university students: The mediating role of positive emotions. Frontiers in Psychology, 7, 1243. https://doi.org/10.3389/fpsyg.2016.01243
Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8(2), 157-159. https://doi.org/10.2307/1164923
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
Paechter, M., Macher, D., Martskvishvili, K., Wimmer, S., & Papousek, I. (2017). Mathematics anxiety and statistics anxiety. Shared but also unshared components and antagonistic contributions to performance in statistics. Frontiers in Psychology, 8. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01196
Pajares, F., & Graham, L. (1999). Self-Efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24(2), 124–139. https://doi.org/10.1006/ceps.1998.0991
Patrick, B. C., Skinner, E. A., & Connell, J. P. (1994). What motivates children’s behavior and emotion? Joint effects of perceived control and autonomy in the academic domain. Journal of Personality and Social Psychology, 65(4), 781-791. https://doi.org/10.1037/0022-3514.65.4.781
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315-341. https://doi.org/10.1007/s10648-006-9029-9
Pekrun, R. (2016). Using self-report to assess emotions in education. In M. Zembylas & P. A. Schutz (Eds), Methodological Advances in Research on Emotion and Education (pp. 43–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-29049-2_4
Pekrun, R. (2020). Commentary: Self-report is indispensable to assess students’ learning. Frontline Learning Research, 8(3), 185–193. https://doi.org/10.14786/flr.v8i3.637
Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 259-282). Springer. https://doi.org/10. 1007/978-1-4614-2018-7_12
Pekrun, R., Elliot, A. J., & Maier, M. A. (2009). Achievement goals and achievement emotions: Testing a model of their joint relations with academic performance. Journal of Educational Psychology, 101(1), 115. https://doi.org/10.1037/a0013383
Pekrun, R., Frenzel, A. C., Goetz, T., & Perry, R. P. (2007). The control-value theory of achievement emotions: An integrative approach to emotions in education. In P. A. Schutz & R. Pekrun (Eds.), Emotion in education (pp. 13-36). Academic Press. https://doi.org/10.1016/B978-012372545-5/50003-4
Pekrun, R., Goetz, T., & Frenzel, A. C. (2005). Achievement Emotions Questionnaire—Mathematics (AEQ-M): User’s manual. University of Munich, Department of Psychology.
Pekrun, R., Goetz, T., Daniels, L. M., Stupnisky, R. H., & Perry, R. P. (2010). Boredom in achievement settings: Exploring control–value antecedents and performance outcomes of a neglected emotion. Journal of Educational Psychology, 102(3), 531–549. https://doi.org/10.1037/a0019243
Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36-48. https://doi.org/10.1016/j.cedpsych.2010.10.002
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105. https://doi.org/ 10.1207/S15326985EP3702_4
Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Child Development, 88(5), 1653–1670. https://doi.org/10.1111/cdev.12704
Pekrun, R., Marsh, H. W., Elliot, A. J., Stockinger, K., Perry, R. P., Vogl, E., Goetz, T., van Tilburg, W. A. P., Lüdtke, O., & Vispoel, W. P. (2023). A three-dimensional taxonomy of achievement emotions. Journal of Personality and Social Psychology, 124(1), 145-178. https://doi.org/10.1037/pspp0000448
Perone, S., Anderson, A. J., & Weybright, E. H. (2023). Older and wiser? Age-related change in state and trait boredom during adolescence and associations with neural correlates of self-regulation. Adaptive Human Behavior and Physiology, 9(2), 141–157. https://doi.org/10.1007/s40750-023-00213-2
Pincus, T., Miles, C., Froud, R., Underwood, M., Carnes, D., & Taylor, S. J. (2011). Methodological criteria for the assessment of moderators in systematic reviews of randomised controlled trials: A consensus study. BMC Medical Research Methodology, 11, 14. https://doi.org/10.1186/1471-2288-11-14
Pintrich, P. R., & Groot, E. V. D. (1990). Motivational and Self-Regulated Learning Components of Classroom Academic Performance. Educational Psychology, 82(1), 33–40.
Pinxten, M., Marsh, H. W., De Fraine, B., Van Den Noortgate, W., & Van Damme, J. (2014). Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure. British Journal of Educational Psychology, 84(1), 152–174. https://doi.org/10.1111/bjep.12028
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. https://doi.org/10.1080/19312458.2012.679848
Putwain, D. W., Schmitz, E. A., Wood, P., & Pekrun, R. (2021). The role of achievement emotions in primary school mathematics: Control–value antecedents and achievement outcomes. British Journal of Educational Psychology, 91(1), 347-367. https://doi.org/10.1111/bjep.12367
Putwain, D. W., Wood, P., & Pekrun, R. (2022). Achievement emotions and academic achievement: Reciprocal relations and the moderating influence of academic buoyancy. Journal of Educational Psychology, 114(1), 108–126. https://doi.org/10.1037/edu0000637
Quintero, M., Hasty, L., Li, T., Song, S., & Wang, Z. (2022). A multidimensional examination of math anxiety and engagement on math achievement. British Journal of Educational Psychology, 92(3), 955–973. https://doi.org/10.1111/bjep.12482
Raeisi-Vanani, A., Plonsky, L., Wang, W., Lee, K., & Peng, P. (2022). Applying meta-analytic structural equation modeling to second language research: An introduction. Research Methods in Applied Linguistics, 1(3), 100018. https://doi.org/10.1016/j.rmal.2022.100018
Reeve, J. (2013). How students create motivationally supportive learning environments for themselves: The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579–595. https://doi.org/10.1037/a0032690
Reeve, J., & Lee, W. (2014). Students’ classroom engagement produces longitudinal changes in classroom motivation. Journal of Educational Psychology, 106(2), 527–540. https://doi.org/10.1037/a0034934
Reeve, J., & Shin, S. H. (2020). How teachers can support students’ agentic engagement. Theory Into Practice, 59(2), 150–161. https://doi.org/10.1080/00405841.2019.1702451
Reeve, J., & Tseng, C. M. (2011). Agency as a fourth aspect of students’ engagement during learning activities. Contemporary Educational Psychology, 36(4), 257-267. https://doi.org/10.1016/j.cedpsych.2011.05.002
Reeve, J., Cheon, S. H., & Jang, H. (2020). How and why students make academic progress: Reconceptualizing the student engagement construct to increase its explanatory power. Contemporary Educational Psychology, 62, 101899. https://doi.org/10.1016/j.cedpsych.2020.101899
Reschly, A. L., & Christenson, S. L. (2012). Jingle, jangle, and conceptual haziness: Evolution and future directions of the engagement construct. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds), Handbook of Research on Student Engagement (pp. 3–19). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_1
Reschly, A. L., Huebner, E. S., Appleton, J. J., & Antaramian, S. (2008). Engagement as flourishing: The contribution of positive emotions and coping to adolescents’ engagement at school and with learning. Psychology in the Schools, 45(5), 419–431. https://doi.org/10.1002/pits.20306
Reyes, M. R., Brackett, M. A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement, and academic achievement. Journal of Educational Psychology, 104(3), 700-712. https://doi.org/10.1037/a0027268
Rimm-Kaufman, S., Baroody, A., Larsen, R., Curby, T., & Abry, T. (2015). To what extent do teacher-student interaction quality and student gender contribute to fifth graders’ engagement in mathematics learning? Journal of Educational Psychology, 107, 170–185. https://doi.org/10.1037/a0037252
Roorda, D. L., Jak, S., Zee, M., Oort, F. J., & Koomen, H. M. Y. (2017). Affective teacher–student relationships and students’ engagement and achievement: A meta-analytic update and test of the mediating role of engagement. School Psychology Review, 46(3), 239-261. https://doi.org/10.17105/SPR-2017-0035.V46-3
Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86, 638-641. https://doi.org/10.1037/0033-2909.86.3.638
Russell, J., & Pratt, G. (1980). A description of the affective quality attributed to environments. Journal of Personality and Social Psychology, 38, 311-322. https://doi.org/10.1037/0022-3514.38.2.311
Sadoughi, M., & Hejazi, S. Y. (2021). Teacher support and academic engagement among EFL learners: The role of positive academic emotions. Studies in Educational Evaluation, 70, 101060. https://doi.org/10.1016/j.stueduc.2021. 101060
Sakiz, G. (2012). Perceived instructor affective support in relation to academic emotions and motivation in college. Educational Psychology, 32(1), 63–79. https://doi.org/10.1080/01443410.2011.625611
Sakiz, G. (2015). Perceived teacher factors in relation to students’ achievement-related outcomes in science classrooms in elementary school. European Journal of Science and Mathematics Education, 3(2), 115–129.
Sakiz, G. (2017). Perceived teacher affective support in relation to emotional and motivational variables in elementary school science classrooms in Turkey. Research in Science and Technological Education, 35(1), 108–129. https://doi.org/10.1080/02635143.2017.1278683
Sakiz, G., Pape, S. J., & Hoy, A. W. (2012). Does perceived teacher affective support matter for middle school students in mathematics classrooms? Journal of School Psychology, 50(2), 235–255. https://doi.org/10.1016/j.jsp.2011.10.005
Saleem, M. S., Isha, A. S. N., Awan, M. I., Yusop, Y. B., & Naji, G. M. A. (2022). Fostering academic engagement in post-graduate students: Assessing the role of positive emotions, positive psychology, and stress. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.920395
Salmela-Aro, K., & Read, S. (2017). Study engagement and burnout profiles among Finnish higher education students. Burnout Research, 7. https://doi.org/10.1016/j.burn.2017.11.001
Sánchez Rosas, J., Takaya, P., & Molinari, A. (2016). The role of teacher behavior, motivation and emotion in predicting academic social participation in class. Pensando Psicología, 12, 39–53. https://doi.org/10.16925/pe.v12i19.1327
Schaufeli, W. B. (2017). General engagement: Conceptualization and measurement with the Utrecht General Engagement Scale (UGES). Journal of Well-Being Assessment, 1(1), 9-24. https://doi.org/10.1007/s41543-017-0001-x
Schaufeli, W. B., Salanova, M., González-romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71-92. https://doi.org/ 10.1023/A:1015630930326
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695–729. https://doi.org/10.1177/0539018405058216
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
Sharp, J. G., Hemmings, B., Kay, R., & Sharp, J. C. (2019). Academic boredom and the perceived course experiences of final year Education Studies students at university. Journal of Further and Higher Education, 43(5), 601–627. https://doi.org/10.1080/0309877X.2017.1386287
Sharpe, D. (1997). Of apples and oranges, file drawers and garbage: Why validity issues in meta-analysis will not go away. Clinical Psychology Review, 17(8), 881-901.
Sheng, Z., Kong, W., Cortina, J. M., & Hou, S. (2016). Analyzing matrices of meta-analytic correlations: Current practices and recommendations. Research Synthesis Methods, 7(2), 187-208. https://doi.org/10.1002/jrsm.1206
Skinner, E. A. (2016). Engagement and disaffection as central to processes of motivational resilience and development. In K. R. Wentzel & D. B. Miele (Eds), Handbook of motivation at school (2nd ed, pp. 145-168). Routledge.
Skinner, E. A., Furrer, C., Marchand, G., & Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of Educational Psychology, 100(4), 765–781. https://doi.org/10.1037/a0012840
Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection: conceptualization and assessment of children’s behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement, 69(3), 493-525. https://doi.org/ 10.1177/0013164408323233
Skinner, E., & Pitzer, J. (2012). Developmental dynamics of student engagement, coping, and everyday resilience. In Handbook of Research on Student Engagement (pp. 21-44). Springer. https://doi.org/10.1007/978-1-4614-2018-7_2
Slåtten, T., Lien, G., Evenstad, S. B. N., & Onshus, T. (2021). Supportive study climate and academic performance among university students: The role of psychological capital, positive emotions and study engagement. International Journal of Quality and Service Sciences, 13(4), 585–600. https://doi.org/10.1108/IJQSS-03-2020-0045
Song, F., Eastwood, A. J., Gilbody, S., Duley, L., & Sutton, A. J. (2000). Publication and related biases. Health Technology Assessment (Winchester, England), 4(10), 1–115.
Subramainan, L., & Mahmoud, M. A. (2020). A systematic review on students’ engagement in classroom: Indicators, challenges and computational techniques. International Journal of Advanced Computer Science and Applications, 11(1). https://doi.org/10.14569/IJACSA.2020.0110113
Tai, T.-E., & Tang, C. W. (2021). The role of graduate students’ learning strategies in reducing their English medium instruction avoidance: The mediation effect of language anxiety. Asia Pacific Journal of Education, 41(2), 368–384. https://doi.org/10.1080/02188791.2020.1777937
Tam, K. Y. Y., Poon, C. Y. S., Hui, V. K. Y., Wong, C. Y. F., Kwong, V. W. Y., Yuen, G. W. C., et al. (2019). Boredom begets boredom: An experience sampling study on the impact of teacher boredom on student boredom and motivation. British Journal of Educational Psychology, 90, 124-137. https://doi.org/10.1111/bjep. 12309
Tan, J., Mao, J., Jiang, Y., & Gao, M. (2021). The influence of academic emotions on learning effects: A systematic review. International Journal of Environmental Research and Public Health, 18(18), 9678. https://doi.org/10.3390/ijerph1818 9678
Tarka, P. (2018). An overview of structural equation modeling: Its beginnings, historical development, usefulness and controversies in the social sciences. Quality & Quantity, 52(1), 313–354. https://doi.org/10.1007/s11135-017-0469-8
Tawfik, G. M., Dila, K. A. S., Mohamed, M. Y. F., Tam, D. N. H., Kien, N. D., Ahmed, A. M., et al. (2019). A step by step guide for conducting a systematic review and meta-analysis with simulation data. Tropical Medicine and Health, 47(1), 46. https://doi.org/10.1186/s41182-019-0165-6
Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. https://doi.org/10.1177/875647939000600106
Tight, M. (2020). Student retention and engagement in higher education. Journal of Further and Higher Education, 44(5), 689–704. https://doi.org/10.1080/0309877X.2019.1576860
Trowler, V. (2010). Student engagement literature review. The Higher Education Academy.
Tulis, M., & Ainley, M. (2011). Interest, enjoyment and pride after failure experiences? Predictors of students’ state-emotions after success and failure during learning in mathematics. Educational Psychology, 31(7), 779-807. https://doi.org/10.1080/ 01443410.2011.608524
Turner, R. M., Bird, S. M., & Higgins, J. P. T. (2013). The impact of study size on meta-analyses: Examination of underpowered studies in Cochrane reviews. PLOS ONE, 8(3), e59202. https://doi.org/10.1371/journal.pone.0059202
Tvedt, M. S., Bru, E., & Idsoe, T. (2021). Perceived teacher support and intentions to quit upper secondary school: Direct, and indirect associations via emotional engagement and boredom. Scandinavian Journal of Educational Research, 65(1), 101–122. https://doi.org/10.1080/00313831.2019.1659401
Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28(1), 119-144. https://doi.org/10.1007/s10648-015-9301-y
Tze, V. M. C., Klassen, R. M., & Daniels, L. M. (2014). Patterns of boredom and its relationship with perceived autonomy support and engagement. Contemporary Educational Psychology, 39(3), 175–187. https://doi.org/10.1016/j.cedpsych.2014.05.001
UNESCO. (2015). Global Citizenship Education: Topics and learning objectives. the United Nations Educational, Scientific, and Cultural Organization.
Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need?: A Primer on Statistical Power for Meta-Analysis. Journal of Educational and Behavioral Statistics, 35(2), 215–247. https://doi.org/10.3102/1076998609346961
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. doi:10.18637/jss.v036.i03
Viswesvaran, C., & Ones, D. S. (1995). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48(4), 865-885. https://doi.org/10.1111/j.1744-6570.1995.tb01784.x
Voelkl, K. E. (1997). Identification with School. American Journal of Education, 105(3), 294–318.
Wang, J., Liu, R.-D., Ding, Y., Xu, L., Liu, Y., & Zhen, R. (2017). Teacher’s autonomy support and engagement in math: Multiple mediating roles of self-efficacy, intrinsic value, and boredom. Frontiers in Psychology, 8, 1006. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01006
Wang, M.-T., Fredricks, J. A., Ye, F., Hofkens, T. L., & Linn, J. S. (2016). The Math and Science Engagement Scales: Scale development, validation, and psychometric properties. Learning and Instruction, 43, 16–26. https://doi.org/10.1016/j.learninstruc.2016.01.008
Wang, Y., Cao, Y., Gong, S., Wang, Z., Li, N., & Ai, L. (2022). Interaction and learning engagement in online learning: The mediating roles of online learning self-efficacy and academic emotions. Learning and Individual Differences, 94. https://doi.org/10.1016/j.lindif.2022.102128
Wang, Z., Wang, L., Chang, S., & Wang, H. (2022). The mediating effect of parenting stress on the relationship between social support and quality of life in parents of children with autistic spectrum disorder: A meta-analytic structural equation modeling. Frontiers in psychiatry, 13, 713620. https://doi.org/10.3389/fpsyt.2022.713620
Watson, D., Anna, L., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. 54(6), 1063–1070.
Wilcox, G., McQuay, J., Blackstaffe, A., Perry, R., & Hawe, P. (2016). Twenty percent of the variance between students in academic engagement is explained by grade level, gender, family affluence, anxiety, and social support. School Psychology Forum, 10(4), 397–409.
Williamson, B. (2021). Psychodata: Disassembling the psychological, economic, and statistical infrastructure of ‘social-emotional learning’. Journal of Education Policy, 36(1), 129–154. https://doi.org/10.1080/02680939.2019.1672895
Wright, S. (1921). Correlation and Causation. Journal of Agricultural Research, 20, 557–585.
Wu, P.-I., Liu, H.-F., & Lin, C.-C. (2022). The relationships among mathematics learning interest, learning emotions, learning engagement, and learning achievement of junior high school students. Journal of Education & Psychology, 45(2), 87–116. https://doi.org/10.53106/102498852022064502004
Yıldırım, S. (2012). Teacher support, motivation, learning strategy use, and achievement: A multilevel mediation model. The Journal of Experimental Education, 80(2), 150–172. https://doi.org/10.1080/00220973.2011.596855
Zapata-Cuervo, N., Montes-Guerra, M. I., Shin, H. H., Jeong, M., & Cho, M.-H. (2023). Students’ psychological perceptions toward online learning engagement and outcomes during the COVID-19 pandemic: A comparative analysis of students in three different countries. Journal of Hospitality & Tourism Education, 35(2), 108–122. https://doi.org/10.1080/10963758.2021.1907195
Zhang, T. (2009). Relations among school students’ self-determined motivation perceived enjoyment, effort, and physical activity behaviors. Perceptual and Motor Skills, 109(3), 783–790. https://doi.org/10.2466/pms.109.3.783-790
Zhang, J., Zhao, N., & Kong, Q. P. (2019). The Relationship between math anxiety and math performance: A meta-analytic investigation. Frontiers in Psychology, 10. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01613
Zhao, Y., & Yang, L. (2022). Examining the relationship between perceived teacher support and students’ academic engagement in foreign language learning: Enjoyment and boredom as mediators. Frontiers in Psychology, 13. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.987554
Zhen, R., Liu, R. D., Ding, Y., Wang, J., Liu, Y., & Xu, L. (2017). The mediating roles of academic self-efficacy and academic emotions in the relation between basic psychological needs satisfaction and learning engagement among Chinese adolescent students. Learning and Individual Differences, 54, 210-216. https://doi.org/10.1016/j.lindif.2017.01.01
Zhou, L., & Wu, Y. (2021). Validation of the Chinese version of the Achievement Emotions Questionnaire–Elementary School. Social Behavior and Personality, 49(5), E10118–E10128. https://doi.org/10.2224/sbp.10118
Zins, J. E., Bloodworth, M. R., Weissberg, R. P., & Walberg, H. J. (2007). The scientific base linking social and emotional learning to school success. Journal of Educational and Psychological Consultation, 17(2–3), 191–210. https://doi.org/10.1080/10474410701413145
描述 博士
國立政治大學
教育學系
102152515
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0102152515
資料類型 thesis
dc.contributor.advisor 余民寧zh_TW
dc.contributor.advisor Yu, Min-Ningen_US
dc.contributor.author (Authors) 黎佩欣zh_TW
dc.contributor.author (Authors) Li, Pei-Hsinen_US
dc.creator (作者) 黎佩欣zh_TW
dc.creator (作者) Li, Pei-Hsinen_US
dc.date (日期) 2023en_US
dc.date.accessioned 1-Sep-2023 16:15:29 (UTC+8)-
dc.date.available 1-Sep-2023 16:15:29 (UTC+8)-
dc.date.issued (上傳時間) 1-Sep-2023 16:15:29 (UTC+8)-
dc.identifier (Other Identifiers) G0102152515en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/147246-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 教育學系zh_TW
dc.description (描述) 102152515zh_TW
dc.description.abstract (摘要) 本研究的目的在利用後設分析和後設分析取向的結構方程式模型(MASEM),探究不同學生學業情緒與學習投入之關聯性。本研究依據目的,以後設分析之研究流程訂定檢索策略,以及納入、排除條件後,蒐集符合本研究旨趣之國內外期刊及國內碩博士論文,最後根據納入與排除條件篩選出50篇文獻,共53個研究進行後續分析。本研究首先以後設分析探討各學業情緒與多向度學習投入之相關性,進而以結構方程式模型探討學業情緒(愉悅、焦慮、無聊)透過情緒投入影響行為投入與認知投入的直接與間接效果,本研究的結果如下:
一、學生愉悅情緒與自豪情緒與學習投入有正向關係。反之,學生的生氣情緒、焦慮情緒、無聊情緒、無望情緒則與學習投入有負向關係,然屬於負向抑制情緒的無聊、無望的效果較屬於負向激發情緒的生氣、焦慮的效果略大。
二、不同調節變項在各學業情緒與學習投入關係間扮演不同的角色。研究年代、參與者國家別、性別為愉悅情緒與行為投入關係之調節變項。學習科目與參與者國家別為焦慮情緒與行為投入關係的調節變項。研究年代與教育年段為無聊情緒與行為投入關係之調節變項,而參與者國家別與情緒類別為無聊情緒與認知投入關係之調節變項。
三、經結構方程式模型檢驗,情緒投入為愉悅、焦慮、無聊三種學業情緒與行為投入、認知投入的中介變項。首先愉悅情緒可透過情緒投入之中介效果,間接影響行為投入與認知投入。情緒投入亦部分中介無聊情緒與行為投入之關係。此外,情緒投入完全中介無聊情緒與認知投入之關係,且完全中介焦慮情緒與行為投入、認知投入之關係。
本研究依據研究結果進行討論,並據以提出教學與輔導以及對未來研究的相關建議,提供實務與後續研究之參考。
zh_TW
dc.description.abstract (摘要) Given the increasing interest in understanding student academic emotions in recent years, this study explored relationships between student academic emotions and student engagement by utilizing meta-analysis and meta-analytic structural equation modeling (MASEM). In total, 50 articles (53 studies) met the inclusion criteria of this study, which consists of two parts. First, using meta-analysis, the study investigated the relationship between various academic emotions and student engagement. Secondly, based on the findings of the meta-analysis, this study used MASEM to investigate the mediating role of emotional engagement between three academic emotions (enjoyment, anxiety, and boredom) and two engagement dimensions (behavioral and cognitive). Results showed that: (1) Enjoyment and pride were positively correlated with all student engagement dimensions. Anger, anxiety, boredom, and hopelessness were negatively correlated with all student engagement dimensions. Notably, the mean effect sizes of boredom and hopelessness were slightly higher than those of anger and anxiety. (2) Research years, participants’ country, and gender were shown to be the moderators of enjoyment and behavioral engagement. The learning subject and participants’ country were moderators between anxiety and behavioral engagement. The research year and education stage were moderators between boredom and behavioral engagement, and the participants’ country and emotion types were the moderator between boredom and cognitive engagement. (3) MASEM showed that emotional engagement partly mediated the effect of enjoyment on behavioral and cognitive engagement. It fully mediates the effect of boredom on cognitive engagement and the effect of anger on behavioral and cognitive engagement. Based on the findings and discussions, the study concludes with an overall summary and provides considerations for schools and teachers as well as future research.en_US
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 7
第三節 名詞釋義 8
第四節 研究範圍 9
第二章 文獻探討 11
第一節 學業情緒之理論與研究 11
第二節 學習投入的內涵及相關研究 23
第三節 學業情緒與學習投入之關係 31
第四節 學業情緒之後設分析 42
第五節 MASEM 方法學評閱 53
第三章 研究設計與實施 67
第一節 研究架構與問題 67
第二節 研究流程及資料處理 68
第三節 資料分析 72
第四章 研究結果與討論 81
第一節 研究樣本分析 81
第二節 學生學業情緒與學習投入之關聯性 87
第三節 結構方程式驗證分析 135
第四節 討論 144
第五章 結論與建議 153
第一節 結論 153
第二節 研究貢獻 155
第三節 研究限制與建議 156
參考文獻 163
附錄 189
附錄一 國內期刊與碩博士相關研究 189
附錄二 後設分析檢索詞 191
附錄三 納入後設分析之文獻 192
zh_TW
dc.format.extent 7064764 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0102152515en_US
dc.subject (關鍵詞) 學業情緒zh_TW
dc.subject (關鍵詞) 學習投入zh_TW
dc.subject (關鍵詞) 後設分析zh_TW
dc.subject (關鍵詞) 後設分析取向的結構方程式模型zh_TW
dc.subject (關鍵詞) academic emotionsen_US
dc.subject (關鍵詞) student engagementen_US
dc.subject (關鍵詞) meta-analysisen_US
dc.subject (關鍵詞) meta-analytic structural equation modelingen_US
dc.title (題名) 學生學業情緒與學習投入關聯性之後設分析與MASEM方法驗證zh_TW
dc.title (題名) Meta-analysis of correlations between academic emotions and student engagement with the validation by MASEM methodsen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 中文文獻:
Borenstein, M., Hedges, L., Higgins, J. P. T., & Rothstein, H. R. (2016). 後設分析 (吳政達審訂)。高教出版。(原著出版於2009)
Cooper H.(2013)。研究統合與後設分析(4版)(張明玲譯)。揚智文化。(原著出版於2009)。
毛國楠、劉政宏、彭淑玲、李維光、陳慧娟(2008)。能力信念、學業自我價值後效與學業成就對國小學生學習動機與學習情緒之影響。教育心理學報,39(4),569–588。http://doi.org/10.6251/BEP.20071213
王慧瑜、劉人瑋、葉明功(2018)。有效進行系統文獻回顧與統合分析研究。臺灣臨床藥學雜誌,26(1),1–10。http://doi.org/10.6168/FJCP.201801_26(1).0001
朱依君、連倖誼(2020)。國小學生參與任務導向學習對學習動機、學習情緒之影響。人文社會科學研究:教育類,14(3),37–57。https://doi.org/10.6618/HSSRP.202009_14(3).3
吳佩羿、劉曉芬、林志哲(2022)。國中生數學學習興趣、學習情緒、學習投入與學習成就之關係。教育與心理研究,45(2),87-116。https://doi.org/10.53106/102498852022064502004
吳明隆(2009)。結構方程模式:AMOS的操作與應用。五南。
李茂能(2016)。當代整合分析理論與實務。五南。
林冠竹(2015)。學業情緒、學業倦怠與學習涉入之關係暨課室目標結構的調節效果 [碩士論文,國立成功大學]。臺灣博碩士論文知識加值系統。
林宴瑛、程炳林(2012)。環境目標結構與控制-價值信念對學業情緒之效果。教育心理學報,44(1),49–72。https://doi.org/10.6251/BEP.20110711
邱明琪(2018)。教師自主支持、成就目標、學習情緒對國中生數學科學習投入之影響 [碩士論文,銘傳大學]。臺灣博碩士論文知識加值系統。
邱素玲、洪福源(2014)大學生班級情緒氣氛、學習自我效能、學習倦怠與學習投入關係研究。彰化師大教育學報,25,85–112。
張映芬(2021)。國中生完美主義組型暨其與父母期望/苛責、學業情緒、動機涉入之關係。教育科學研究期刊,66(1),203–230。https://doi.org/10.6209/JORIES.202103_66(1).0007
郭桂菁(2017)。國中生知覺自然科教師教學風格、學業情緒與學習動機關係之研究 [碩士論文,中國科技大學]。臺灣博碩士論文知識加值系統。
陳妍榛(2017)。國小高年級學童知覺到的環境因素、學業情緒、 學習投入及學業成就之關係 [碩士論文,南華大學]。臺灣博碩士論文知識加值系統。
陳瑋婷(2011)。自我效能、學習策略與學業成就之關係研究:結合後設分析與結構方程模式。師資培育與教師專業發展期刊,4(2),83-96。
陳慧蓉、張郁雯、薛承泰(2018)。脈絡因素、學業自我概念、與學習投入對學業表現的影響:臺灣國小三年級經濟弱勢與一般學生之比較。當代教育研究季刊,26(2),73–107。
程煒婷(2017)。教師支持與中學生學習投入關係:學業情緒的中介暨情緒調節的調節效果 [碩士論文,國立臺灣師範大學]。華藝線上圖書館。
鈕文英、吳裕益(2015)。單一個案研究法:研究設計與後設分析。心理。
黃智淵(2016)。學業情緒、情緒調整策略、自我調整學習策略對學業成就之關係:條件化間接效果檢驗暨教學方案之成效分析 [博士論文,國立成功大學]。臺灣博碩士論文知識加值系統。
黃雅慧(2017)。臺灣國民中學學生學習投入之多層次分析 [碩士論文,銘傳大學]。臺灣博碩士論文知識加值系統。
黃筠婷、程炳林(2021)。國中生學業情緒、情境興趣及學習涉入的交互關係。教育心理學報,52(3),571–593。https://doi.org/10.6251/BEP.202103_52(3).0004
黃義良、王怡又(2018)。學校行銷與學校效能關聯之探討:採後設分析結合結構方程模式之驗證。嘉大教育研究學刊,40,63-98。
劉人儀(2017)。以學習投入、倦怠與身心健康探討中學生數學學習情緒與成就[碩士論文,國立臺灣科技大學]。臺灣博碩士論文知識加值系統。
劉玉玲(2016)。國中生數學學業情緒及數學學習策略與數學學業成就之研究。課程與教學,19(2),161–192。https://doi.org/10.6384/CIQ.201604_19(2).0007
劉玉玲、謝子陽(2021)。整合未來時間觀與數學學習投入:國中生數學學習模式之研究。課程與教學, 24(1),235–263。https://doi.org/10.6384/CIQ.202101_24(1).0009
蔡松玫(2021)。澎湖縣九年級學生知覺教師教學風格及學業情緒與國文領域學習成就之研究 [碩士論文,國立臺北教育大學]。臺灣博碩士論文知識加值系統。
蔡清田(2020)。十二年國民基本教育課程綱要研修的核心素養。臺灣教育評論月刊,9(1),8–12。
賴英娟、巫博瀚(2017)。國中生學業情緒與學習投入對學業成就之影響。課程與教學,20(3),139–163。https://doi.org/10.6384/CIQ.201707_20(3).0006
賴英娟、巫博瀚(2018)。國中生所知覺到的教師自主支持、自我效能及自主動機對學業情緒之影響。課程與教學,21(2),85–110。https://doi.org/10.6384/CIQ.201804_21(2).0004
薛杏秋(2017)。教師自主支持對國民中學學生自我效能、學習情緒及學習投入影響之研究 [碩士論文,銘傳大學]。臺灣博碩士論文知識加值系統。
謝進昌、陳敏瑜(2011)。國內教育、心理後設分析研究出版偏誤檢定之實徵分析。測驗學刊,58(2),391–422。https://doi.org/10.7108/PT.201106.0391
謝觀崢(2021)。大學生英語學業成就與情緒對英語學習投入預測效果研究。樹德科技大學學報,23(2),107–119。
簡瑋成(2012)。學習自我效能、學習投入與學習成就之後設分析 [碩士論文,國立暨南國際大學]。臺灣博碩士論文知識加值系統。
簡嘉菱、程炳林(2013)。環境目標結構、自我決定動機與學業情緒之關係。教育心理學報,44(3),713–733。https://doi.org/10.6251/BEP.20120614
簡嘉菱、程炳林(2018)。學業拖延與課業情緒之交互關係:課室目標結構的調節效果。教育心理學報,50(2),293–313。https://doi.org/10.6251/BEP.201812_50(2).0006

英文文獻:
Acosta-Gonzaga, E., & Ruiz-Ledesma, E. F. (2022). Students’ emotions and engagement in the emerging hybrid learning environment during the COVID-19 pandemic. Sustainability, 14(16), 10236. https://doi.org/10.3390/su141610236
Ainley, M. (2012). Students’ interest and engagement in classroom activities. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 283-302). Springer. https://doi.org/10.1007/978-1-4614-2018-7_13
Ainley, M., & Ainley, J. (2011). Student engagement with science in early adolescence: The contribution of enjoyment to students’ continuing interest in learning about science. Contemporary Educational Psychology, 36(1), 4-12. https://doi.org/ 10. 1016/j.cedpsych.2010.08.001
Alpaslan, M. M., & Ulubey, Ö. (2021). Examining the relations between emotions, motivation, classroom engagement and achievement in mathematics. International Journal of Research in Education and Science, 7(4), 1042–4057.
An, F., Yu, J., & Xi, L. (2022). Relations between perceived teacher support and academic achievement: Positive emotions and learning engagement as mediators. Current Psychology. https://doi.org/10.1007/s12144-022-03668-w
Andre, L., Koene, S., Jansen in de Wal, J., Schuitema, J. A., & Peetsma, T. T. D. (2022). Learning under stress: The moderating role of future time perspective. Psychology in the Schools, 59(4), 800–816. https://doi.org/10.1002/pits.22645
Ansong, D., Okumu, M., Bowen, G. L., Walker, A. M., & Eisensmith, S. R. (2017). The role of parent, classmate, and teacher support in student engagement: Evidence from Ghana. International Journal of Educational Development, 54, 51–58. https://doi.org/10.1016/j.ijedudev.2017.03.010
Appleton, J. J., Christenson, S. L., & Furlong, M. J. (2008). Student engagement with school: Critical conceptual and methodological issues of the construct. Psychology in the Schools, 45(5), 369–386. https://doi.org/10.1002/pits.20303
Appleton, J. J., Christenson, S. L., Kim, D., & Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the student engagement instrument. Journal of School Psychology, 44(5), 427–445. https://doi.org/10.1016/j.jsp.2006.04.002
Bamberger, K. T. (2016). The application of intensive longitudinal methods to investigate change: Stimulating the field of applied family research. Clinical Child and Family Psychology Review, 19(1), 21–38. https://doi.org/10.1007/s10567-015-0194-6
Barkatsas, T., Kasimatis, K., & Gialamas, V. (2009). Learning secondary mathematics with technology: Exploring the complex interrelationship between students’ attitudes, engagement, gender and achievement. Computers & Education, 52, 562–570.
Baron, R., & Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. https://doi.org/10.1037//0022-3514.51.6.1173
Becker, E. S., Keller, M. M., Goetz, T., Frenzel, A. C., & Taxer, J. L. (2015). Antecedents of teachers’ emotions in the classroom: an intraindividual approach. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00635
Beedie, C. J., Terry, P. C., Lane, A. M., & Devonport, T. J. (2011). Differential assessment of emotions and moods: Development and validation of the emotion and mood components of anxiety questionnaire. Personality and Individual Differences, 50(2), 228–233. https://doi.org/10.1016/j.paid.2010.09.034
Beedie, C. J., Terry, P., & Lane, A. (2005). Distinctions between emotion and mood. Cognition and Emotion, 19(6), 847–878. https://doi.org/10.1080/02699930541000057
Bench, S. W., & Lench, H. C. (2013). On the Function of Boredom. Behavioral Sciences, 3(3), Article 3. https://doi.org/10.3390/bs3030459
Bergh, D. D., Aguinis, H., Heavey, C., Ketchen, D. J., Boyd, B. K., Su, P., Lau, C. L. L., & Joo, H. (2016). Using meta-analytic structural equation modeling to advance strategic management research: Guidelines and an empirical illustration via the strategic leadership-performance relationship. Strategic Management Journal, 37(3), 477–497. https://doi.org/10.1002/smj.2338
Bieg, M., Goetz, T., & Hubbard, K. (2013). Can I master it and does it matter? An intraindividual analysis on control–value antecedents of trait and state academic emotions. Learning and Individual Differences, 28, 102-108. https://doi.org/10.1016/j.lindif.2013.09.006
Bordbar, M. (2021). Autonomy-supportive faculty, students’ self-system processes, positive academic emotions, and agentic engagement: Adding emotions to self-system model of motivational development. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.727794
Budsankom, P., Sawangboon, T., Damrongpanit, S., & Chuensirimongkol, J. (2015). Factors affecting higher order thinking skills of students: A meta-analytic structural equation modeling study. Educational Research and Reviews, 10(19), 2639–2652.
Çağırgan, D., & Soytürk, İ. (2021). The relationship between math anxiety, student engagement in mathematics and responsibilities towards learning among middle school students. İlköğretim Online, 20(1), 456-467. https://doi.org/10.17051/ilkonline.2021.01.040
Camacho-Morles, J., Slemp, G. R., Pekrun, R., Loderer, K., Hou, H., & Oades, L. G. (2021). Activity achievement emotions and academic performance: A meta-analysis. Educational Psychology Review, 33(3), 1051-1095. https://doi.org /10.1007/s10648-020-09585-3
Caraway, K., Tucker, C. M., Reinke, W. M., & Hall, C. (2003). Self-efficacy, goal orientation, and fear of failure as predictors of school engagement in high school students. Psychology in the Schools, 40(4), 417–427. https://doi.org/10.1002/pits.10092
Carmona-Halty, M., Salanova, M., Llorens, S., & Schaufeli, W. B. (2021). Linking positive emotions and academic performance: The mediated role of academic psychological capital and academic engagement. Current Psychology, 40(6), 2938-2947. https://doi.org/10.1007/s12144-019-00227-8
Chang, D.-F., Chien, W.-C., & Chou, W.-C. (2016). Meta-analysis approach to detect the effect of student engagement on academic achievement, ICIC Express Letters, 10(10), 2441-2446.
Chen, J., & Liang, M. (2022). Play hard, study hard? The influence of gamification on students’ study engagement, 994700. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.994700
Cheung, M. (2020). Meta-analytic structural equation modeling. Psychological Methods, 25(4), 430-455. https://doi.org/10.31234/osf.io/epsqt
Cheung, M. W. L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46(1), 29-40. https://doi.org/10.3758/s13428-013-0361-y
Cheung, M. W. L. (2015). Meta-Analysis: A structural equation modeling approach. John Wiley & Sons.
Cheung, M. W. L., & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10(1), 40. https://doi.org/10.1037/ 1082-989X.10.1.40
Cheung, M. W.-L. (2014). Fixed- and random-effects meta-analytic structural equation modeling: Examples and analyses in R. Behavior Research Methods, 46(1), 29–40. https://doi.org/10.3758/s13428-013-0361-y
Cho, H. J., Levesque-Bristol, C., & Yough, M. (2023). How autonomy-supportive learning environments promote Asian international students’ academic adjustment: A self-determination theory perspective. Learning Environments Research, 26(1), 51–76. https://doi.org/10.1007/s10984-021-09401-x
Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system process. In M. R. Gunnar & L. A. Scroufe (Eds), Self processes and development (pp. 43–77). Lawrence Erlbaum Associates, Inc.
Crombie, I. K., & Davies, H. T. (2009). What is meta-analysis. Hayward Medical Communications.
D’Errico, F., Paciello, M., & Cerniglia, L. (2016). When emotions enhance students’ engagement in e-learning processes. Journal of E-Learning and Knowledge Society, 12(4). https://doi.org/10.20368/1971-8829/1144
Darwin, C. (2009). The Expression of the Emotions in Man and Animals. Cambridge University Press. https://doi.org/10.1017/CBO9780511694110
Daschmann, E. C., Goetz, T., & Stupnisky, R. H. (2011). Testing the predictors of boredom at school: Development and validation of the precursors to boredom scales. British Journal of Educational Psychology, 81(3), 421-440. https://doi.org/10.1348/000709910X526038
Dembereldorj, Z. (2021). Exploring Online Student Engagement during COVID-19 Pandemic in Mongolia. International Journal of Higher Education, 10(7), 10–18.
Deng, W., Lei, W., Guo, X., Li, X., Ge, W., & Hu, W. (2022). Effects of regulatory focus on online learning engagement of high school students: The mediating role of self-efficacy and academic emotions. Journal of Computer Assisted Learning, 38(3), 707–718. https://doi.org/10.1111/jcal.12642
Denovan, A., Dagnall, N., Macaskill, A., & Papageorgiou, K. (2020). Future time perspective, positive emotions and student engagement: a longitudinal study. Studies in Higher Education, 45(7), 1533-1546. https://doi.org/10.1080/0307 5079.2019.1616168
Derakhshan, A., Fathi, J., Pawlak, M., & Kruk, M. (2022). Classroom social climate, growth language mindset, and student engagement: The mediating role of boredom in learning English as a foreign language. Journal of Multilingual and Multicultural Development, 0(0), 1–19. https://doi.org/10.1080/01434632.2022.2099407
Dewaele, J.-M., & Li, C. (2021). Teacher enthusiasm and students’ social-behavioral learning engagement: The mediating role of student enjoyment and boredom in Chinese EFL classes. Language Teaching Research, 25(6), 922–945. https://doi.org/10.1177/13621688211014538
Dubovi, I., & Adler, I. (2022). The impact of COVID-19 induced anxiety on students’ engagement while learning with online computer-based simulations: The mediating role of boredom. Interactive Learning Environments. https://doi.org/10.1080/10494820.2022.2100427
Durlak, J. A., & Lipsey, M. W. (1991). A practitioner’s guide to meta-analysis. American Journal of Community Psychology, 19(3), 291-332. https://doi.org/10.1007/BF00938026
Duval, S., & Tweedie, R. (2000a). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95(449), 89-98. https://doi.org/10.2307/2669529
Duval, S., & Tweedie, R. (2000b). Trim and fill: A simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455-463. https://doi.org/10.1111/j.0006-341X.2000.00455.x
Eccles, J., & Wang, M.-T. (2012). Part I commentary: So what is student engagement anyway? In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds), Handbook of research on student engagement (pp. 133-145). Springer.
Ee, J., & Ong, C. W. (2014). Which social emotional competencies are enhanced at a social emotional learning camp? Journal of Adventure Education and Outdoor Learning, 14(1), 24–41. https://doi.org/10.1080/14729679.2012.761945
Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169-200. https://doi.org/10.1080/02699939208411068
Ekman, P. (1994). Moods, emotions, and traits. In P. Ekman & R. Davidson (Eds), The nature of emotion: Fundamental questions (pp.55–58). Oxford University Press.
Ekman, P. (2016). What scientists who study emotion agree about. Perspectives on Psychological Science, 11(1), 31–34. https://doi.org/10.1177/1745691615596992
Ellsworth, P. C. (2013). Appraisal theory: Old and new questions. Emotion Review, 5(2), 125–131. https://doi.org/10.1177/1754073912463617
Eysenck, H. J. (1978). An exercise in mega-silliness. American Psychologist, 33(5), 517a. https://doi.org/10.1037/0003-066X.33.5.517.a
Fahrenberg, J., Foerster, F., & Müller, W. (1996). Laboratory and field studies for improvement of ambulatory monitoring methodology. In Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 237-255). Hogrefe & Huber Publishers.
Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 56–83. https://doi.org/10.1080/10705519909540119
Fan, Y., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H., & Shao, C. (2016). Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecological Processes, 5(1), 19. https://doi.org/10.1186/s13717-016-0063-3
Fang, J., Brown, G. T. L., & Hamilton, R. (2022). Changes in Chinese students’ academic emotions after examinations: Pride in success, shame in failure, and self-loathing in comparison. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12552
Federici, R. A., & Skaalvik, E. M. (2014). Students’ perceptions of emotional and instrumental teacher support: Relations with motivational and emotional responses. International Education Studies, 7(1), 21-36. Scopus. https://doi.org/10.5539/ies.v7n1p21
Feng, E., & Hong, G. (2022). Engagement mediates the relationship between emotion and achievement of Chinese EFL learners. Frontiers in Psychology, 13, 895594. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.895594
Finn, J. D. (1989). Withdrawing From School. Review of Educational Research, 59(2), 117–142. https://doi.org/10.3102/00346543059002117
Finn, J. D., & Zimmer, K. S. (2012). Student engagement: What is it? Why does it matter? In S. L. Chirstenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 97-131). Springer.
Flunger, B., Mayer, A., & Umbach, N. (2018). Beneficial for some or for everyone? Exploring the effects of an autonomy-supportive intervention in the real-life classroom. Journal of Educational Psychology, 111(2), 210. https://doi.org/10.1037/edu0000284
Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74(1), 59-109. https://doi.org/10.3102/00346543074001059
Fredricks, J. A., Filsecker, M., & Lawson, M. A. (2016). Student engagement, context, and adjustment: Addressing definitional, measurement, and methodological issues. Learning and Instruction, 43, 1–4. https://doi.org/10.1016/j.learninstruc.2016.02.002
Fredrickson, B. L. (2001). The role of positive emotions in positive psychology. The American Psychologist, 56(3), 218-226.
Fredrickson, B. L. (2004). The broaden-and-build theory of positive emotions. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1449), 1367-1378. https://doi.org/10.1098/rstb.2004.1512
Frenzel, A. C. (2014). Teacher emotions. In E. A. Linnenbrink-Garcia & R. Pekrun (Eds.), International handbook of emotions in education (pp. 494-519). Routledge.
Frenzel, A. C., Becker-Kurz, B., Pekrun, R., Goetz, T., & Lüdtke, O. (2018). Emotion transmission in the classroom revisited: A reciprocal effects model of teacher and student Enjoyment. Journal of Educational Psychology, 110(5), 628. https://doi.org/10.1037/edu0000228
Frenzel, A. C., Goetz, T., Lüdtke, O., Pekrun, R., & Sutton, R. E. (2009). Emotional transmission in the classroom: Exploring the relationship between teacher and student enjoyment. Journal of Educational Psychology, 101(3), 705–716. https://doi.org/10.1037/a0014695
Garn, A. C., Simonton, K., Dasingert, T., & Simonton, A. (2017). Predicting changes in student engagement in university physical education: Application of control-value theory of achievement emotions. Psychology of Sport and Exercise, 29, 93-102. https://doi.org/10.1016/j.psychsport.2016.12.005
Gaspard, H., & Lauermann, F. (2021). Emotionally and motivationally supportive classrooms: A state-trait analysis of lesson- and classroom-specific variation in teacher- and student-reported teacher enthusiasm and student engagement. Learning and Instruction, 75, 101494. https://doi.org/10.1016/j.learninstruc.2021.101494
Geary, D. C., Hoard, M. K., Nugent, L., & Scofield, J. E. (2021). In-class attention, spatial ability, and mathematics anxiety predict across-grade gains in adolescents’ mathematics achievement. Journal of Educational Psychology, 113(4), 754–769. https://doi.org/10.1037/edu0000487
Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3-8. https://doi.org/10.3102/0013189X005010003
Goetz, T., Bieleke, M., Gogol, K., van Tartwijk, J., Mainhard, T., Lipnevich, A. A., & Pekrun, R. (2021). Getting along and feeling good: Reciprocal associations between student-teacher relationship quality and students’ emotions. Learning and Instruction, 71, 101349. https://doi.org/10.1016/j.learninstruc.2020.101349
González, A., Garrido, J. M. F., Castro, Y. R., & Rodríguez, M. V. C. (2015). Class anxiety in secondary education: Exploring structural relations with perceived control, engagement, disaffection, and performance. The Spanish Journal of Psychology, 18, E68. https://doi.org/10.1017/sjp.2015.70
González, A., Rodríguez, Y., Faílde, J. M., & Carrera, M. V. (2016). Anxiety in the statistics class: Structural relations with self-concept, intrinsic value, and engagement in two samples of undergraduates. Learning and Individual Differences, 45, 214–221. https://doi.org/10.1016/j.lindif.2015.12.019
Graham, S., & Weiner, B. (1986). From an attributional theory of emotion to developmental psychology: A round-trip ticket? Social Cognition, 4(2), 152–179. https://doi.org/10.1521/soco.1986.4.2.152
Granado, X. O., Mendoza Lira, M., Apablaza, C. G. C., & López, V. M. M. (2017). Positive emotions, autonomy support and academic performance of university students: The mediating role of academic engagement and self-efficacy. Revista de Psicodidactica, 22(1), 45–53. https://doi.org/10.1387/RevPsicodidact.14280
Guo, Y. (2021). Exploring the dynamic interplay between foreign language enjoyment and learner engagement with regard to EFL achievement and absenteeism: A sequential mixed methods study. Frontiers in Psychology, 12. https://www.frontiersin.org/articles/10.3389/fpsyg.2021.766058
Hagenauer, G., Hascher, T., & Volet, S. E. (2015). Teacher emotions in the classroom: Associations with students’ engagement, classroom discipline and the interpersonal teacher-student relationship. European Journal of Psychology of Education, 30(4), 385-403. https://doi.org/10.1007/s10212-015-0250-0
Hamedi, S. M., Pishghadam, R., & Fadardi, J. S. (2020). The contribution of reading emotions to reading comprehension: The mediating effect of reading engagement using a structural equation modeling approach. Educational Research for Policy and Practice, 19(2), 211–238. https://doi.org/10.1007/s10671-019-09256-3
Hanin, V., & Van Nieuwenhoven, C. (2016). The influence of motivational and emotional factors in mathematical learning in secondary education. European Review of Applied Psychology, 66(3), 127–138. https://doi.org/10.1016/j.erap.2016.04.006
Harper, S. R., Carini, R. M., Bridges, B. K., & Hayek, J. C. (2004). Gender differences in student engagement among African American undergraduates at historically black colleges and universities. Journal of College Student Development, 45(3), 271–284. https://doi.org/10.1353/csd.2004.0035
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327(7414), 557–560. https://doi.org/10.1136/bmj.327.7414.557
Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., & Welch, V. (Eds). (2019). Cochrane handbook for systematic reviews of intervention (2nd Edition). Chichester (UK): John Wiley & Sons.
Hong, E., Mason, E., Peng, Y., & Lee, N. (2015). Effects of homework motivation and worry anxiety on homework achievement in mathematics and English. Educational Research and Evaluation, 21(7–8), 491–514. https://doi.org/10.1080/13803611.2015.1131721
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Hu, S., & Kuh, G. D. (2002). Being (Dis)engaged in educationally purposeful activities: The influences of student and institutional characteristics. Research in Higher Education, 43(5), 555–575. https://doi.org/10.1023/A:1020114231387
Huang, C. (2011). Achievement goals and achievement emotions: A Meta-analysis. Educational Psychology Review, 23(3), 359-388. https://doi.org/10.1007/ s10648- 011-9155-x
Husain, M. M. (2022). To what extent emotion, cognition and behaviour enhance a student’s engagement: A case study on the MAJA teaching approach. Policy Futures in Education, 20(1), 86–97. https://doi.org/10.1177/147821032110320
İlhan, A., Poçan, S., & Gemcioğlu, M. (2022). The effect of mathematics class commitment and anxiety on mathematics success: A path analysis study. Education and Urban Society, 54(2), 186–204. https://doi.org/10.1177/00131245211028621
Jack, R. E., Garrod, O. G. B., Yu, H., Caldara, R., & Schyns, P. G. (2012). Facial expressions of emotion are not culturally universal. Proceedings of the National Academy of Sciences, 109(19), 7241–7244. https://doi.org/10.1073/pnas.1200155109
Jackson, D., & Turner, R. (2017). Power analysis for random‐effects meta‐analysis. Research Synthesis Methods, 8(3), 290–302. https://doi.org/10.1002/jrsm.1240
Jak, S., & Cheung, M. W.-L. (2020). Meta-analytic structural equation modeling with moderating effects on SEM parameters. Psychological Methods, 25(4), 430–455. https://doi.org/10.1037/met0000245
Jak, S., Li, H., Kolbe, L., de Jonge, H., & Cheung, M. W.-L. (2021). Meta-analytic structural equation modeling made easy: A tutorial and web application for one-stage MASEM. Research Synthesis Methods, 12(5), 590–606. https://doi.org/10.1002/jrsm.1498
Kahu, E. R. (2013). Framing student engagement in higher education. Studies in Higher Education, 38(5), 758–773. https://doi.org/10.1080/03075079.2011.598505
Kahu, E., Stephens, C., Leach, L., & Zepke, N. (2015). Linking academic emotions and student engagement: Mature-aged distance students’ transition to university. Journal of Further and Higher Education, 39(4), 481–497. https://doi.org/10.1080/0309877X.2014.895305
Kamari, S., Fouladchang, M., Khormaei, F., & Jowkar, B. (2021). Social achievement goals and academic engagement: The mediating role of academic and social positive emotions. Iranian Journal of Psychiatry and Behavioral Sciences, 15(3). https://doi.org/10.5812/ijpbs.110241
Kang, X., & Wu, Y. (2022). Academic enjoyment, behavioral engagement, self-concept, organizational strategy and achievement in EFL setting: A multiple mediation analysis. PLOS ONE, 17(4), e0267405. https://doi.org/10.1371/journal.pone.0267405
Kaplan, D. (2001). Structural equation modeling. In N. J. Smelser & P. B. Baltes (Eds), International Encyclopedia of the Social & Behavioral Sciences (pp. 15215-15222). Pergamon. https://doi.org/10.1016/B0-08-043076-7/00776-2
Keller, R. E., Johnson, E., & DeShong, S. (2017). A structural equation model looking at student’s participatory behavior and their success in Calculus I. International Journal of STEM Education, 4(1), 1-11. https://doi.org/10.1186/s40594-017-0093-0
Khajavy, G. H. (2020). Modeling the relations between foreign language engagement, emotions, grit and reading achievement. In P. Hiver, A. H. Al-Hoorie, & S. Mercer (Eds.), Student engagement in the language classroom (pp. 241–249). Multilingual Matters.
King, R. B., & Frondozo, C. E. (2022). Variety is the spice of life: How emotional diversity is associated with better student engagement and achievement. British Journal of Educational Psychology, 92(1), e12436. https://doi.org/10.1111/bjep.12436
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications. http://ebookcentral.proquest.com/lib/oxford/detail.action?docID= 4000663
Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. https://doi.org/10.1016/j.biopsycho.2010.03.010
Kuh, G. D. (2009). The national survey of student engagement: Conceptual and empirical foundations. New Directions for Institutional Research, 2009(141), 5-20. https://doi.org/10.1002/ir.283
Kuh, G. D., Cruce, T. M., Shoup, R., Kinzie, J., & Gonyea, R. M. (2008). Unmasking the effects of student engagement on first-year college grades and persistence. The Journal of Higher Education, 79(5), 540–563. https://doi.org/10.1353/jhe.0.0019
Lai Y.-C., & Wu P.-H. (2019). The relationship of classroom goal structures, self-determination motivation, and achievement emotions. Curriculum & Instruction Quarterly, 22(4), 151-173. https://doi.org/10.6384/CIQ.201910_22(4).0006
Lakhal, S., Khechine, H., & Mukamurera, J. (2021). Explaining persistence in online courses in higher education: A difference-in-differences analysis. International Journal of Educational Technology in Higher Education, 18(1), 19. https://doi.org/10.1186/s41239-021-00251-4
Lau, R. S., & Cheung, G. W. (2012). Estimating and comparing specific mediation effects in complex latent variable models. Organizational Research Methods, 15(1), 3–16. https://doi.org/10.1177/1094428110391673
Lazarus, R. S. (1991). Emotion and adaptation. Oxford University Press, Incorporated. http://ebookcentral.proquest.com/lib/oxford/detail.action?docID=4700723
Lei, H., & Cui, Y. (2016). Effects of academic emotions on achievement among mainland Chinese students: A meta-analysis. Social Behavior and Personality: An International Journal, 44(9), 1541-1553. https://doi.org/10.2224/sbp.2016. 44.9.1541
Lei, H., Cui, Y., & Chiu, M. M. (2018). The relationship between teacher support and students’ academic emotions: A meta-analysis. Frontiers in Psychology, 8, 2288. https://doi.org/10.3389/fpsyg.2017.02288
Lei, H., Cui, Y., & Zhou, W. (2018). Relationships between student engagement and academic achievement: A meta-analysis. Social Behavior and Personality, 46(3), 517–528. https://doi.org/10.2224/sbp.7054
Leptokaridou, E. T., Vlachopoulos, S. P., & Papaioannou, A. G. (2016). Experimental longitudinal test of the influence of autonomy-supportive teaching on motivation for participation in elementary school physical education. Educational Psychology, 36(7), 1138–1159. https://doi.org/10.1080/01443410.2014.950195
Li, G., Li, Z., Wu, X., & Zhen, R. (2022). Relations between class competition and primary school students’ academic achievement: Learning anxiety and learning engagement as mediators. Frontiers in Psychology, 13. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.775213
Li, H., Zhang, A., Zhang, M., Huang, B., Zhao, X., Gao, J., & Si, J. (2021). Concurrent and longitudinal associations between parental educational involvement, teacher support, and math anxiety: The role of math learning involvement in elementary school children. Contemporary Educational Psychology, 66, 101984. https://doi.org/10.1016/j.cedpsych.2021.101984
Li, J., & Xue, E. (2023). Dynamic interaction between student learning behaviour and learning environment: Meta-analysis of student engagement and its influencing factors. Behavioral Sciences, 13(1), Article 1. https://doi.org/10.3390/bs13010059
Li, W., Gao, W., & Sha, J. (2020). Perceived teacher autonomy support and school engagement of Tibetan students in elementary and middle schools: Mediating effect of self-efficacy and academic emotions. Frontiers in Psychology, 11(50). https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00050
Li, Y., & Lerner, R. M. (2013). Interrelations of behavioral, emotional, and cognitive school engagement in high school students. Journal of Youth and Adolescence, 42(1), 20–32. https://doi.org/10.1007/s10964-012-9857-5
Li, Y., Lerner, J. V., & Lerner, R. M. (2010). Personal and ecological assets and academic competence in early adolescence: The mediating role of school engagement. Journal of Youth and Adolescence, 39(7), 801–815. https://doi.org/10.1007/s10964-010-9535-4
Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. British Medical Journal, 339, b2700 https://doi.org/10.1136/bmj.b2700
Lichtenfeld, S., Pekrun, R., Marsh, H. W., Nett, U. E., & Reiss, K. (2022). Achievement emotions and elementary school children’s academic performance: Longitudinal models of developmental ordering. Journal of Educational Psychology. https://doi.org/10.1037/edu0000748
Light, R. J., & Pillemer, D. B. (1984). Summing up: The science of reviewing research. Harvard University Press.
Lim, N. (2016). Cultural differences in emotion: Differences in emotional arousal level between the East and the West. Integrative Medicine Research, 5(2), 105–109. https://doi.org/10.1016/j.imr.2016.03.004
Linnenbrink, E. A. (2007). The role of affect in student learning: A multi-dimensional approach to considering the interaction of affect, motivation, and engagement. In P. A. Schutz & R. Pekrun (Eds), Emotion in education (pp.107–124). Elsevier Academic Press.
Linnenbrink-Garcia, L., & Pekrun, R. (2011). Students’ emotions and academic engagement: Introduction to the special issue. Contemporary Educational Psychology, 36(1), 1-3. https://doi.org/10.1016/j.cedpsych.2010.11.004
Littell, J. H., Corcoran, J., & Pillai, V. K. (2008). Systematic reviews and meta-analysis. Oxford University Press.
Liu, H., Li, J., & Fang, F. (2022). Examining the complexity between boredom and engagement in English learning: Evidence from chinese high school students. Sustainability, 14(24), Article 24. https://doi.org/10.3390/su142416920
Liu, H., Yao, M., Li, J., & Li, R. (2021). Multiple mediators in the relationship between perceived teacher autonomy support and student engagement in math and literacy learning. Educational Psychology, 41(2), 116-136. https://doi.org/ 10.1080/ 01443 410.2020.1837346
Liu, R. D., Zhen, R., Ding, Y., Liu, Y., Wang, J., Jiang, R., et al. (2018). Teacher support and math engagement: roles of academic self-efficacy and positive emotions. Educational Psychology, 38(1), 3-16. https://doi.org/10.1080/01443410.2017. 1359238
Liu, R.-D., Zhen, R., Ding, Y., Liu, Y., Wang, J., Jiang, R., & Xu, L. (2018). Teacher support and math engagement: Roles of academic self-efficacy and positive emotions. Educational Psychology, 38(1), 3–16. https://doi.org/10.1080/01443410.2017.1359238
Liu, S., Zou, S., Zhang, D., Wang, X., & Wu, X. (2022). Problematic Internet use and academic engagement during the COVID-19 lockdown: The indirect effects of depression, anxiety, and insomnia in early, middle, and late adolescence. Journal of Affective Disorders, 309, 9-18. https://doi.org/10.1016/j.jad.2022.04.043
Liukkonen, J., Barkoukis, V., Watt, A., & Jaakkola, T. (2010). Motivational climate and students’ emotional experiences and effort in physical education. The Journal of Educational Research, 103(5), 295–308. https://doi.org/10.1080/00220670903383044
Loderer, K., Pekrun, R., & Lester, J. C. (2020). Beyond cold technology: A systematic review and meta-analysis on emotions in technology-based learning environments. Learning and Instruction, 70, 101162. https://doi.org/10.1016/ j.learninstruc.2018.08.002
Lohbeck, A., Nitkowski, D., & Petermann, F. (2016). A control-value theory approach: Relationships between academic self-concept, interest, and test anxiety in elementary school children. Child & Youth Care Forum, 45(6), 887–904.
Luo, W., Lee, K., Ng, P. T., & Ong, J. X. W. (2014). Incremental Beliefs of Ability, Achievement Emotions and Learning of Singapore Students. Educational Psychology, 34(5), 619–634. https://doi.org/10.1080/01443410.2014.909008
Luo, W., Ng, P. T., Lee, K., & Aye, M. (2016). Self-efficacy, value, and achievement emotions as mediators between parenting practice and homework behavior: A control-value theory perspective. Learning and Individual Differences, 50, 275–282. https://doi.org/10.1016/j.lindif.2016.07.017
Luo, Z., & Luo, W. (2022). Discrete achievement emotions as mediators between achievement goals and academic engagement of Singapore students. Educational Psychology, 42(6), 749-766. https://doi.org/10.1080/01443410. 2022.2048795
Maharajan, M. K., Rajiah, K., Tam, A. M., Chaw, S. L., Ang, M. J., & Yong, M. W. (2017). Pharmacy students’ anxiety towards research during their undergraduate degree; How to reduce it? PLOS ONE, 12(4), e0176095. https://doi.org/10.1371/journal.pone.0176095
Mainhard, T., Oudman, Sophie, Hornstra, Lisette, Bosker, Roe J., & Goetz, Thomas. (2018). Student emotions in class: The relative importance of teachers and their interpersonal relations with students. Learning and Instruction, 53, 109-119. https://doi.org/10.1016/j.learninstruc.2017.07.011
Mehdipour Maralani, F., Shalbaf, A., & Gholamali Lavasani, M. (2018). Agentic engagement and test anxiety: The mediatory role of the basic psychological needs. SAGE Open, 8(2), 215824401877288. https://doi.org/10.1177/2158244018772
Mehl, M. R., & Conner, T. S. (2012). Handbook of research methods for studying daily life. Guilford Press.
Naik, S., & Wawrzynski, M. (2018). Gender, Race, Finance, and Student Engagement in Cocurricular Activities in a South African University. Journal of College Student Development, 59, 598–613. https://doi.org/10.1353/csd.2018.0055
Ntoumanis, N. (2001). A self-determination approach to the understanding of motivation in physical education. British Journal of Educational Psychology, 71(2), 225–242. https://doi.org/10.1348/000709901158497
Obermeier, R., Schlesier, J., Meyer, S., & Gläser-Zikuda, M. (2022). Trajectories of scholastic well-being: The effect of achievement emotions and instructional quality in the first year of secondary school (fifth grade). Social Psychology of Education, 25(5), 1051–1070. https://doi.org/10.1007/s11218-022-09726-2
Oh-Young, C., Gordon, H. R. D., Xing, X., & Filler, J. (2018). Meta-analytic procedures for career and technical education post-secondary researchers and practitioners. Journal of Research in Technical Career, 2(1), 32-41. https://doi.org/10.9741/25 78-2118.1010
Oriol, X., Amutio, A., Mendoza, M., Da Costa, S., & Miranda, R. (2016). Emotional creativity as predictor of intrinsic motivation and academic engagement in university students: The mediating role of positive emotions. Frontiers in Psychology, 7, 1243. https://doi.org/10.3389/fpsyg.2016.01243
Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8(2), 157-159. https://doi.org/10.2307/1164923
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
Paechter, M., Macher, D., Martskvishvili, K., Wimmer, S., & Papousek, I. (2017). Mathematics anxiety and statistics anxiety. Shared but also unshared components and antagonistic contributions to performance in statistics. Frontiers in Psychology, 8. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01196
Pajares, F., & Graham, L. (1999). Self-Efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemporary Educational Psychology, 24(2), 124–139. https://doi.org/10.1006/ceps.1998.0991
Patrick, B. C., Skinner, E. A., & Connell, J. P. (1994). What motivates children’s behavior and emotion? Joint effects of perceived control and autonomy in the academic domain. Journal of Personality and Social Psychology, 65(4), 781-791. https://doi.org/10.1037/0022-3514.65.4.781
Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315-341. https://doi.org/10.1007/s10648-006-9029-9
Pekrun, R. (2016). Using self-report to assess emotions in education. In M. Zembylas & P. A. Schutz (Eds), Methodological Advances in Research on Emotion and Education (pp. 43–54). Springer International Publishing. https://doi.org/10.1007/978-3-319-29049-2_4
Pekrun, R. (2020). Commentary: Self-report is indispensable to assess students’ learning. Frontline Learning Research, 8(3), 185–193. https://doi.org/10.14786/flr.v8i3.637
Pekrun, R., & Linnenbrink-Garcia, L. (2012). Academic emotions and student engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (pp. 259-282). Springer. https://doi.org/10. 1007/978-1-4614-2018-7_12
Pekrun, R., Elliot, A. J., & Maier, M. A. (2009). Achievement goals and achievement emotions: Testing a model of their joint relations with academic performance. Journal of Educational Psychology, 101(1), 115. https://doi.org/10.1037/a0013383
Pekrun, R., Frenzel, A. C., Goetz, T., & Perry, R. P. (2007). The control-value theory of achievement emotions: An integrative approach to emotions in education. In P. A. Schutz & R. Pekrun (Eds.), Emotion in education (pp. 13-36). Academic Press. https://doi.org/10.1016/B978-012372545-5/50003-4
Pekrun, R., Goetz, T., & Frenzel, A. C. (2005). Achievement Emotions Questionnaire—Mathematics (AEQ-M): User’s manual. University of Munich, Department of Psychology.
Pekrun, R., Goetz, T., Daniels, L. M., Stupnisky, R. H., & Perry, R. P. (2010). Boredom in achievement settings: Exploring control–value antecedents and performance outcomes of a neglected emotion. Journal of Educational Psychology, 102(3), 531–549. https://doi.org/10.1037/a0019243
Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students’ learning and performance: The Achievement Emotions Questionnaire (AEQ). Contemporary Educational Psychology, 36(1), 36-48. https://doi.org/10.1016/j.cedpsych.2010.10.002
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105. https://doi.org/ 10.1207/S15326985EP3702_4
Pekrun, R., Lichtenfeld, S., Marsh, H. W., Murayama, K., & Goetz, T. (2017). Achievement emotions and academic performance: Longitudinal models of reciprocal effects. Child Development, 88(5), 1653–1670. https://doi.org/10.1111/cdev.12704
Pekrun, R., Marsh, H. W., Elliot, A. J., Stockinger, K., Perry, R. P., Vogl, E., Goetz, T., van Tilburg, W. A. P., Lüdtke, O., & Vispoel, W. P. (2023). A three-dimensional taxonomy of achievement emotions. Journal of Personality and Social Psychology, 124(1), 145-178. https://doi.org/10.1037/pspp0000448
Perone, S., Anderson, A. J., & Weybright, E. H. (2023). Older and wiser? Age-related change in state and trait boredom during adolescence and associations with neural correlates of self-regulation. Adaptive Human Behavior and Physiology, 9(2), 141–157. https://doi.org/10.1007/s40750-023-00213-2
Pincus, T., Miles, C., Froud, R., Underwood, M., Carnes, D., & Taylor, S. J. (2011). Methodological criteria for the assessment of moderators in systematic reviews of randomised controlled trials: A consensus study. BMC Medical Research Methodology, 11, 14. https://doi.org/10.1186/1471-2288-11-14
Pintrich, P. R., & Groot, E. V. D. (1990). Motivational and Self-Regulated Learning Components of Classroom Academic Performance. Educational Psychology, 82(1), 33–40.
Pinxten, M., Marsh, H. W., De Fraine, B., Van Den Noortgate, W., & Van Damme, J. (2014). Enjoying mathematics or feeling competent in mathematics? Reciprocal effects on mathematics achievement and perceived math effort expenditure. British Journal of Educational Psychology, 84(1), 152–174. https://doi.org/10.1111/bjep.12028
Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77–98. https://doi.org/10.1080/19312458.2012.679848
Putwain, D. W., Schmitz, E. A., Wood, P., & Pekrun, R. (2021). The role of achievement emotions in primary school mathematics: Control–value antecedents and achievement outcomes. British Journal of Educational Psychology, 91(1), 347-367. https://doi.org/10.1111/bjep.12367
Putwain, D. W., Wood, P., & Pekrun, R. (2022). Achievement emotions and academic achievement: Reciprocal relations and the moderating influence of academic buoyancy. Journal of Educational Psychology, 114(1), 108–126. https://doi.org/10.1037/edu0000637
Quintero, M., Hasty, L., Li, T., Song, S., & Wang, Z. (2022). A multidimensional examination of math anxiety and engagement on math achievement. British Journal of Educational Psychology, 92(3), 955–973. https://doi.org/10.1111/bjep.12482
Raeisi-Vanani, A., Plonsky, L., Wang, W., Lee, K., & Peng, P. (2022). Applying meta-analytic structural equation modeling to second language research: An introduction. Research Methods in Applied Linguistics, 1(3), 100018. https://doi.org/10.1016/j.rmal.2022.100018
Reeve, J. (2013). How students create motivationally supportive learning environments for themselves: The concept of agentic engagement. Journal of Educational Psychology, 105(3), 579–595. https://doi.org/10.1037/a0032690
Reeve, J., & Lee, W. (2014). Students’ classroom engagement produces longitudinal changes in classroom motivation. Journal of Educational Psychology, 106(2), 527–540. https://doi.org/10.1037/a0034934
Reeve, J., & Shin, S. H. (2020). How teachers can support students’ agentic engagement. Theory Into Practice, 59(2), 150–161. https://doi.org/10.1080/00405841.2019.1702451
Reeve, J., & Tseng, C. M. (2011). Agency as a fourth aspect of students’ engagement during learning activities. Contemporary Educational Psychology, 36(4), 257-267. https://doi.org/10.1016/j.cedpsych.2011.05.002
Reeve, J., Cheon, S. H., & Jang, H. (2020). How and why students make academic progress: Reconceptualizing the student engagement construct to increase its explanatory power. Contemporary Educational Psychology, 62, 101899. https://doi.org/10.1016/j.cedpsych.2020.101899
Reschly, A. L., & Christenson, S. L. (2012). Jingle, jangle, and conceptual haziness: Evolution and future directions of the engagement construct. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds), Handbook of Research on Student Engagement (pp. 3–19). Springer US. https://doi.org/10.1007/978-1-4614-2018-7_1
Reschly, A. L., Huebner, E. S., Appleton, J. J., & Antaramian, S. (2008). Engagement as flourishing: The contribution of positive emotions and coping to adolescents’ engagement at school and with learning. Psychology in the Schools, 45(5), 419–431. https://doi.org/10.1002/pits.20306
Reyes, M. R., Brackett, M. A., Rivers, S. E., White, M., & Salovey, P. (2012). Classroom emotional climate, student engagement, and academic achievement. Journal of Educational Psychology, 104(3), 700-712. https://doi.org/10.1037/a0027268
Rimm-Kaufman, S., Baroody, A., Larsen, R., Curby, T., & Abry, T. (2015). To what extent do teacher-student interaction quality and student gender contribute to fifth graders’ engagement in mathematics learning? Journal of Educational Psychology, 107, 170–185. https://doi.org/10.1037/a0037252
Roorda, D. L., Jak, S., Zee, M., Oort, F. J., & Koomen, H. M. Y. (2017). Affective teacher–student relationships and students’ engagement and achievement: A meta-analytic update and test of the mediating role of engagement. School Psychology Review, 46(3), 239-261. https://doi.org/10.17105/SPR-2017-0035.V46-3
Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86, 638-641. https://doi.org/10.1037/0033-2909.86.3.638
Russell, J., & Pratt, G. (1980). A description of the affective quality attributed to environments. Journal of Personality and Social Psychology, 38, 311-322. https://doi.org/10.1037/0022-3514.38.2.311
Sadoughi, M., & Hejazi, S. Y. (2021). Teacher support and academic engagement among EFL learners: The role of positive academic emotions. Studies in Educational Evaluation, 70, 101060. https://doi.org/10.1016/j.stueduc.2021. 101060
Sakiz, G. (2012). Perceived instructor affective support in relation to academic emotions and motivation in college. Educational Psychology, 32(1), 63–79. https://doi.org/10.1080/01443410.2011.625611
Sakiz, G. (2015). Perceived teacher factors in relation to students’ achievement-related outcomes in science classrooms in elementary school. European Journal of Science and Mathematics Education, 3(2), 115–129.
Sakiz, G. (2017). Perceived teacher affective support in relation to emotional and motivational variables in elementary school science classrooms in Turkey. Research in Science and Technological Education, 35(1), 108–129. https://doi.org/10.1080/02635143.2017.1278683
Sakiz, G., Pape, S. J., & Hoy, A. W. (2012). Does perceived teacher affective support matter for middle school students in mathematics classrooms? Journal of School Psychology, 50(2), 235–255. https://doi.org/10.1016/j.jsp.2011.10.005
Saleem, M. S., Isha, A. S. N., Awan, M. I., Yusop, Y. B., & Naji, G. M. A. (2022). Fostering academic engagement in post-graduate students: Assessing the role of positive emotions, positive psychology, and stress. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.920395
Salmela-Aro, K., & Read, S. (2017). Study engagement and burnout profiles among Finnish higher education students. Burnout Research, 7. https://doi.org/10.1016/j.burn.2017.11.001
Sánchez Rosas, J., Takaya, P., & Molinari, A. (2016). The role of teacher behavior, motivation and emotion in predicting academic social participation in class. Pensando Psicología, 12, 39–53. https://doi.org/10.16925/pe.v12i19.1327
Schaufeli, W. B. (2017). General engagement: Conceptualization and measurement with the Utrecht General Engagement Scale (UGES). Journal of Well-Being Assessment, 1(1), 9-24. https://doi.org/10.1007/s41543-017-0001-x
Schaufeli, W. B., Salanova, M., González-romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71-92. https://doi.org/ 10.1023/A:1015630930326
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695–729. https://doi.org/10.1177/0539018405058216
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ANE.0000000000002864
Sharp, J. G., Hemmings, B., Kay, R., & Sharp, J. C. (2019). Academic boredom and the perceived course experiences of final year Education Studies students at university. Journal of Further and Higher Education, 43(5), 601–627. https://doi.org/10.1080/0309877X.2017.1386287
Sharpe, D. (1997). Of apples and oranges, file drawers and garbage: Why validity issues in meta-analysis will not go away. Clinical Psychology Review, 17(8), 881-901.
Sheng, Z., Kong, W., Cortina, J. M., & Hou, S. (2016). Analyzing matrices of meta-analytic correlations: Current practices and recommendations. Research Synthesis Methods, 7(2), 187-208. https://doi.org/10.1002/jrsm.1206
Skinner, E. A. (2016). Engagement and disaffection as central to processes of motivational resilience and development. In K. R. Wentzel & D. B. Miele (Eds), Handbook of motivation at school (2nd ed, pp. 145-168). Routledge.
Skinner, E. A., Furrer, C., Marchand, G., & Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of Educational Psychology, 100(4), 765–781. https://doi.org/10.1037/a0012840
Skinner, E. A., Kindermann, T. A., & Furrer, C. J. (2009). A motivational perspective on engagement and disaffection: conceptualization and assessment of children’s behavioral and emotional participation in academic activities in the classroom. Educational and Psychological Measurement, 69(3), 493-525. https://doi.org/ 10.1177/0013164408323233
Skinner, E., & Pitzer, J. (2012). Developmental dynamics of student engagement, coping, and everyday resilience. In Handbook of Research on Student Engagement (pp. 21-44). Springer. https://doi.org/10.1007/978-1-4614-2018-7_2
Slåtten, T., Lien, G., Evenstad, S. B. N., & Onshus, T. (2021). Supportive study climate and academic performance among university students: The role of psychological capital, positive emotions and study engagement. International Journal of Quality and Service Sciences, 13(4), 585–600. https://doi.org/10.1108/IJQSS-03-2020-0045
Song, F., Eastwood, A. J., Gilbody, S., Duley, L., & Sutton, A. J. (2000). Publication and related biases. Health Technology Assessment (Winchester, England), 4(10), 1–115.
Subramainan, L., & Mahmoud, M. A. (2020). A systematic review on students’ engagement in classroom: Indicators, challenges and computational techniques. International Journal of Advanced Computer Science and Applications, 11(1). https://doi.org/10.14569/IJACSA.2020.0110113
Tai, T.-E., & Tang, C. W. (2021). The role of graduate students’ learning strategies in reducing their English medium instruction avoidance: The mediation effect of language anxiety. Asia Pacific Journal of Education, 41(2), 368–384. https://doi.org/10.1080/02188791.2020.1777937
Tam, K. Y. Y., Poon, C. Y. S., Hui, V. K. Y., Wong, C. Y. F., Kwong, V. W. Y., Yuen, G. W. C., et al. (2019). Boredom begets boredom: An experience sampling study on the impact of teacher boredom on student boredom and motivation. British Journal of Educational Psychology, 90, 124-137. https://doi.org/10.1111/bjep. 12309
Tan, J., Mao, J., Jiang, Y., & Gao, M. (2021). The influence of academic emotions on learning effects: A systematic review. International Journal of Environmental Research and Public Health, 18(18), 9678. https://doi.org/10.3390/ijerph1818 9678
Tarka, P. (2018). An overview of structural equation modeling: Its beginnings, historical development, usefulness and controversies in the social sciences. Quality & Quantity, 52(1), 313–354. https://doi.org/10.1007/s11135-017-0469-8
Tawfik, G. M., Dila, K. A. S., Mohamed, M. Y. F., Tam, D. N. H., Kien, N. D., Ahmed, A. M., et al. (2019). A step by step guide for conducting a systematic review and meta-analysis with simulation data. Tropical Medicine and Health, 47(1), 46. https://doi.org/10.1186/s41182-019-0165-6
Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. https://doi.org/10.1177/875647939000600106
Tight, M. (2020). Student retention and engagement in higher education. Journal of Further and Higher Education, 44(5), 689–704. https://doi.org/10.1080/0309877X.2019.1576860
Trowler, V. (2010). Student engagement literature review. The Higher Education Academy.
Tulis, M., & Ainley, M. (2011). Interest, enjoyment and pride after failure experiences? Predictors of students’ state-emotions after success and failure during learning in mathematics. Educational Psychology, 31(7), 779-807. https://doi.org/10.1080/ 01443410.2011.608524
Turner, R. M., Bird, S. M., & Higgins, J. P. T. (2013). The impact of study size on meta-analyses: Examination of underpowered studies in Cochrane reviews. PLOS ONE, 8(3), e59202. https://doi.org/10.1371/journal.pone.0059202
Tvedt, M. S., Bru, E., & Idsoe, T. (2021). Perceived teacher support and intentions to quit upper secondary school: Direct, and indirect associations via emotional engagement and boredom. Scandinavian Journal of Educational Research, 65(1), 101–122. https://doi.org/10.1080/00313831.2019.1659401
Tze, V. M. C., Daniels, L. M., & Klassen, R. M. (2016). Evaluating the relationship between boredom and academic outcomes: A meta-analysis. Educational Psychology Review, 28(1), 119-144. https://doi.org/10.1007/s10648-015-9301-y
Tze, V. M. C., Klassen, R. M., & Daniels, L. M. (2014). Patterns of boredom and its relationship with perceived autonomy support and engagement. Contemporary Educational Psychology, 39(3), 175–187. https://doi.org/10.1016/j.cedpsych.2014.05.001
UNESCO. (2015). Global Citizenship Education: Topics and learning objectives. the United Nations Educational, Scientific, and Cultural Organization.
Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need?: A Primer on Statistical Power for Meta-Analysis. Journal of Educational and Behavioral Statistics, 35(2), 215–247. https://doi.org/10.3102/1076998609346961
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. doi:10.18637/jss.v036.i03
Viswesvaran, C., & Ones, D. S. (1995). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48(4), 865-885. https://doi.org/10.1111/j.1744-6570.1995.tb01784.x
Voelkl, K. E. (1997). Identification with School. American Journal of Education, 105(3), 294–318.
Wang, J., Liu, R.-D., Ding, Y., Xu, L., Liu, Y., & Zhen, R. (2017). Teacher’s autonomy support and engagement in math: Multiple mediating roles of self-efficacy, intrinsic value, and boredom. Frontiers in Psychology, 8, 1006. https://www.frontiersin.org/articles/10.3389/fpsyg.2017.01006
Wang, M.-T., Fredricks, J. A., Ye, F., Hofkens, T. L., & Linn, J. S. (2016). The Math and Science Engagement Scales: Scale development, validation, and psychometric properties. Learning and Instruction, 43, 16–26. https://doi.org/10.1016/j.learninstruc.2016.01.008
Wang, Y., Cao, Y., Gong, S., Wang, Z., Li, N., & Ai, L. (2022). Interaction and learning engagement in online learning: The mediating roles of online learning self-efficacy and academic emotions. Learning and Individual Differences, 94. https://doi.org/10.1016/j.lindif.2022.102128
Wang, Z., Wang, L., Chang, S., & Wang, H. (2022). The mediating effect of parenting stress on the relationship between social support and quality of life in parents of children with autistic spectrum disorder: A meta-analytic structural equation modeling. Frontiers in psychiatry, 13, 713620. https://doi.org/10.3389/fpsyt.2022.713620
Watson, D., Anna, L., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. 54(6), 1063–1070.
Wilcox, G., McQuay, J., Blackstaffe, A., Perry, R., & Hawe, P. (2016). Twenty percent of the variance between students in academic engagement is explained by grade level, gender, family affluence, anxiety, and social support. School Psychology Forum, 10(4), 397–409.
Williamson, B. (2021). Psychodata: Disassembling the psychological, economic, and statistical infrastructure of ‘social-emotional learning’. Journal of Education Policy, 36(1), 129–154. https://doi.org/10.1080/02680939.2019.1672895
Wright, S. (1921). Correlation and Causation. Journal of Agricultural Research, 20, 557–585.
Wu, P.-I., Liu, H.-F., & Lin, C.-C. (2022). The relationships among mathematics learning interest, learning emotions, learning engagement, and learning achievement of junior high school students. Journal of Education & Psychology, 45(2), 87–116. https://doi.org/10.53106/102498852022064502004
Yıldırım, S. (2012). Teacher support, motivation, learning strategy use, and achievement: A multilevel mediation model. The Journal of Experimental Education, 80(2), 150–172. https://doi.org/10.1080/00220973.2011.596855
Zapata-Cuervo, N., Montes-Guerra, M. I., Shin, H. H., Jeong, M., & Cho, M.-H. (2023). Students’ psychological perceptions toward online learning engagement and outcomes during the COVID-19 pandemic: A comparative analysis of students in three different countries. Journal of Hospitality & Tourism Education, 35(2), 108–122. https://doi.org/10.1080/10963758.2021.1907195
Zhang, T. (2009). Relations among school students’ self-determined motivation perceived enjoyment, effort, and physical activity behaviors. Perceptual and Motor Skills, 109(3), 783–790. https://doi.org/10.2466/pms.109.3.783-790
Zhang, J., Zhao, N., & Kong, Q. P. (2019). The Relationship between math anxiety and math performance: A meta-analytic investigation. Frontiers in Psychology, 10. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01613
Zhao, Y., & Yang, L. (2022). Examining the relationship between perceived teacher support and students’ academic engagement in foreign language learning: Enjoyment and boredom as mediators. Frontiers in Psychology, 13. https://www.frontiersin.org/articles/10.3389/fpsyg.2022.987554
Zhen, R., Liu, R. D., Ding, Y., Wang, J., Liu, Y., & Xu, L. (2017). The mediating roles of academic self-efficacy and academic emotions in the relation between basic psychological needs satisfaction and learning engagement among Chinese adolescent students. Learning and Individual Differences, 54, 210-216. https://doi.org/10.1016/j.lindif.2017.01.01
Zhou, L., & Wu, Y. (2021). Validation of the Chinese version of the Achievement Emotions Questionnaire–Elementary School. Social Behavior and Personality, 49(5), E10118–E10128. https://doi.org/10.2224/sbp.10118
Zins, J. E., Bloodworth, M. R., Weissberg, R. P., & Walberg, H. J. (2007). The scientific base linking social and emotional learning to school success. Journal of Educational and Psychological Consultation, 17(2–3), 191–210. https://doi.org/10.1080/10474410701413145
zh_TW