學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 額葉紋狀體與額葉海馬體迴路功能性破壞對區辨性增強低頻反應操作式制約行為的影響
Effects of fronto-striatal and fronto-hippocampal functional disconnection on operant behavior trained by differential reinforcement of low-rate response schedule
作者 吳舒婷
Wu, Shu-Ting
貢獻者 楊立行
Yang, Lee-Xieng
吳舒婷
Wu, Shu-Ting
關鍵詞 操作式制約行為
功能性連結破壞
鵝膏蕈酸
額葉紋狀體
額葉海馬體
日期 2023
上傳時間 3-Oct-2023 10:46:11 (UTC+8)
摘要 在大腦掌管的高階認知功能中,前額葉、紋狀體,和海馬迴等多個腦區共 同針對衝動控制和時間感知這兩個功能扮演著重要角色。而在操作式制約行為 中,區辨性低反應頻率增強模式作業 (Differential Reinforcement of Low-rate Response task; DRL)被認為需要涉及上述兩個認知歷程。然而,過去對於此些腦 區的研究主要是使用消融、興奮性毒素破壞、或藥理方式所進行單一或雙側破 壞腦區的方式,很少有研究運用功能性連結破壞的方法探索衝動行為的神經機 制。本研究透過功能性連結破壞方法探討前額葉中兩個子腦區的連結、前額葉- 紋狀體、前額葉-伏隔核,和前額葉-海馬迴的神經連結機制對 DRL 衝動行為的 影響。實驗 1 針對外側眼眶前額葉(lateral orbitofrontal cortex; lOFC)與內側前 額葉(medial prefrontal cortex; mPFC)之間的功能聯繫進行破壞。實驗 2 則針 對外側眼眶前額葉與基底核或海馬迴進行功能性破壞。實驗 2-1 針對 lOFC 與背 側紋狀體(dorsal striatum; DS),實驗 2-2 為 lOFC 與伏隔核(Nucleus accumbens; NAc),以及實驗 2-3 為 lOFC 和海馬迴(Hippocampus; HIP)等三連結進行功能性破壞。實驗 3 則針對 mPFC 與 NAc 之間的連接進行了功能性破壞。然而,因連結破壞的實驗方式可能在學習階段的不同時間發生,因此本研 究測量了學習的不同階段,包含 DRL 10 秒與 DRL 15 秒的習得,DRL 15 秒消 除,與 DRL 15 秒再習得。研究結果顯示,在針對 lOFC-DS 連接迴路操弄的實 驗中,功能性破壞組在再習得階段的表現優於實驗控制組,其他階段則無此影 響。而在針對 lOFC-NAc 連接迴路操弄的實驗中,功能性破壞組則在習得 DRL 10 秒與 DRL 15 秒的表現較控制組差。然而在針對 lOFC-mPFC、lOFC-HIP 和 mPFC-NAc 這三個迴路操弄的研究中沒有組間的差異。綜合以上結果,實驗支 持皮質-紋狀體間的神經網絡參與衝動行為,並有助於實驗者對不同學習階段的 DRL 作業在行為抑制相關的時間感知中進行更深入的了解。
In the brain, the prefrontal, striatal, and hippocampal areas together are important for high-level cognition functions, including impulsive control and timing. Operant behavior trained by differential reinforcement of low-rate response (DRL) schedule of reinforcement requires these two processes. Previous studies investigated the functions of these brain areas using aspiration, excitotoxic lesion, or pharmacological treatment mainly through a manner of bilateral interventions, few studies applied the functional disconnection approach to explore the neural substrates of impulsive action. This study evaluated the roles of fronto-striatal and fronto-hippocampal circuits on DRL behavior via the approach of functional disconnection. Experiment 1 manipulated the functional disconnection between the lateral orbitofrontal cortex (lOFC) and medial prefrontal cortex (mPFC). Experiment 2 intervened the lOFC connecting to the dorsal striatum (DS; Experiment 2-1), to the nucleus accumbens (NAc; Experiment 2-2), and to the hippocampus (HIP; Experiment 2-3). And, Experiment 3 manipulated the functional disconnection between the mPFC and NAc. In consideration of the potential impacts of disconnection lesions that could affect distinct processes in different learning stages. Behavioral assessments were conducted in the acquisition of DRL 10s and DRL 15s which were followed by the extinction and spontaneous recovery. The results showed that rats with disconnection lesions of lOFC-DS performed better in the recovery stage than those with control lesions, but had no impact on the other stages. Moreover, rats with disconnection lesions of lOFC- NAc disrupted the acquisition of DRL 10s and DRL 15s. No significant influence was produced by the functional disconnection of lOFC-mPFC, lOFC-HIP, or mPFC-NAc. Together, the current data are in general agreement with the notion of the cortico- striatal circuit involved in impulsive action and provide insights of timing associated with behavioral inhibition in the acquisition of DRL behavior at different learning stages.
參考文獻 Aron, A. R., & Poldrack, R. A. (2005). The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1285–1292.
Baker, P. M., & Ragozzino, M. E. (2014). Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learning and Memory, 21(8), 368–379.
Balleine B. W. (2005). Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiology and Behavior, 86(5), 717-730.
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1). 48-69.
Bari A., Dalley J. W., & Robbins T. W. (2008). The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protocols, 3(5), 759-767.
Bari A., & Robbins T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.
Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation Of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428–437.
Besson, M., Belin, D., McNamara, R., Theobald, D. E., Castel, A., Beckett, V. L., Crittenden, B. M., Newman, A. H., Everitt, B. J., Robbins, T. W., & Dalley, J. W. (2010). Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology, 35(2), 560–569.
Braggio, J. T., & Ellen, P. (1976). Cued DRL training: effects on the permanence of lesion-induced overresponding. Journal of Comparative and Physiological Psychology, 90(7), 694–703.
Broos, N., Schmaal, L., Wiskerke, J., Kostelijk, L., Lam, T., Stoop, N., Weierink, L., Ham, J., de Geus, E. J., Schoffelmeer, A. N., van den Brink, W., Veltman, D. J., de Vries, T. J., Pattij, T., & Goudriaan, A. E. (2012). The relationship between impulsive choice and impulsive action: a cross-species translational study. PloS One, 7(5), e36781.
Carli, M., Robbins, T. W., Evenden, J. L., & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research, 9(3), 361– 380.
Cheng R. K., & Liao R. M. (2007). Dopamine receptor antagonist reverse amphetamine-induced behavioral alteration on a differential reinforcement for low-rate (DRL) operant task in the rat. The Chinese Journal of Physiology, 50(2), 77–88.
Cheng, R. K., & Liao, R. M. (2017). Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in
rats. Behavioural Brain Research, 331, 177–187.
Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacology, Biochemistry, and Behavior, 85(1), 114–122.
Cheng, R. K., MacDonald, C. J., Williams, C. L., & Meck, W. H. (2008). Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learning and Memory, 15(3), 153–162.
Chiang, F. K., Cheng, R. K., & Liao, R. M. (2015). Differential effects of dopamine receptor subtype-specific agonists with respect to operant behavior maintained on a differential reinforcement of low-rate responding (DRL) schedule. Pharmacology, Biochemistry, and Behavior, 130, 67–76.
Cho, Y. H., & Jeantet, Y. (2010). Differential involvement of prefrontal cortex, striatum, and hippocampus in DRL performance in mice. Neurobiology of Learning and Memory, 93(1), 85–91.
Christakou A., Robbins T. W., & Everitt B. J. (2001). Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behavioral Neuroscience, 115(4), 812-825.
Christakou A., Robbins T. W., & Everitt B. J. (2004). Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. The Journal of Neuroscience, 24(4), 773-780.
Chudasama Y., Doobay V. M., & Liu Y. (2012). Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. The Journal of Neuroscience, 32(32), 10915-10924.
Chudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1-2), 105–119.
Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical
substrates. Neuroscience and Biobehavioral Reviews, 28(7), 771–784.
Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680–694.
Dalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008).
Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry, and Behavior, 90(2), 250–260.
Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews Neuroscience, 18(3), 158-171.
D`Amour-Horvat, V., & Leyton, M. (2014). Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Frontiers in Behavioral Neuroscience, 8, 432.
Dietrich, A., & Allen, J. D. (1998). Functional dissociation of the prefrontal cortex and the hippocampus in timing behavior. Behavioral Neuroscience, 112(5), 1043–1047.
Dunnett, S. B., & Iversen, S. D. (1982). Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behavioural Brain Research, 6(3), 213–226.
Dunnett, S. B., Meldrum, A., & Muir, J. L. (2005). Frontal-striatal disconnection disrupts cognitive performance of the frontal-type in the rat. Neuroscience, 135(4), 1055–1065.
Eagle, D. M., & Baunez, C. (2010). Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 34(1), 50-72.
Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., & Robbins, T. W. (2008). Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cerebral Cortex, 18(1), 178-188.
Elcoro, M., Aparicio, C. F., Kelly, S. P., & Thompson, T. (2016). Behavioral inhibition in rats after 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychology and Neuroscience, 9(1), 125.
Ellen, P., & Aitken, W. C., Jr (1970). Absence of overresponding on a DRL schedule by hippocampally-lesioned rats. Physiology and Behavior, 5(4), 489–495.
Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146(4), 348– 361.
Feil, J., Sheppard, D., Fitzgerald, P. B., Yücel, M., Lubman, D. I., & Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience and Biobehavioral
Reviews, 35, 248-275.
Feja, M., & Koch, M. (2015). Frontostriatal systems comprising connections between ventral medial prefrontal cortex and nucleus accumbens subregions differentially regulate motor impulse control in rats. Psychopharmacology, 232(7), 1291– 1302.
Finger, S., Altemus, K. L., Green, L., Wolf, C., Miller, J., & Almli, C. R. (1987). Effects of medial frontal cortex lesions on DRL performance in rats. Physiology and Behavior, 41(4), 387-389.
Fletcher, P. J., Chambers, J. W., Rizos, Z., & Chintoh, A. F. (2009). Effects of 5-HT depletion in the frontal cortex or nucleus accumbens on response inhibition measured in the 5-choice serial reaction time test and on a DRL
schedule. Behavioural Brain Research, 201(1), 88–98.
Fuster, J. M. (1997). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Raven Press.
Fuster, J. M. (2015). The Prefrontal Cortex. Academic Press.
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Handbook of Physiology, 5:373-417. Groenewegen, H. J., Wright, C. I., & Uylings, H. B. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. Journal of Psychopharmacology, 11(2), 99–106. Haber S. N. (2016). Corticostriatal circuitry. Dialogues in Clinical
Neuroscience, 18(1), 7–21.
Hardung, S., Epple, R., Jäckel, Z., Eriksson, D., Uran, C., Senn, V., Gibor, L., Yizhar,
O., & Diester, I. (2017). A functional gradient in the rodent prefrontal cortex
supports behavioral inhibition. Current Biology, 27(4), 549-555.
Hart, G., Bradfield, L. A., & Balleine, B. W. (2018). Prefrontal Corticostriatal
Disconnection Blocks the Acquisition of Goal-Directed Action. The Journal of Neuroscience, 38(5), 1311–1322.
Hervig, M. E., Fiddian, L., Piilgaard, L., Božič, T., Blanco-Pozo, M., Knudsen, C., Olesen, S. F., Alsiö, J., & Robbins, T. W. (2020). Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. Cerebral Cortex, 30(3), 1016–1029.
Hoover, W. B., & Vertes, R. P. (2011). Projections of the medial orbital and ventral orbital cortex in the rat. The Journal of Comparative Neurology, 519(18), 3766- 3801.
Hsu, T. M., Noble, E. E., Liu, C. M., Cortella, A. M., Konanur, V. R., Suarez, A. N., Reiner, D. J., Hahn, J. D., Hayes, M. R., & Kanoski, S. E. (2018). A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Molecular Psychiatry, 23(7), 1555– 1565.
Jentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., Groman, S. M., James, A. S., & Pennington, Z. T. (2014). Dissecting impulsivity and its relationships to drug addictions. Annals of the New York Academy of Sciences, 1327, 1–26.
Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward- related stimuli. Psychopharmacology, 146(4), 373–390.
Kesner, R. P., & Churchwell, J. C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiology of Learning and Memory, 96(3), 417–431.
Kim, S., & Lee, D. (2011). Prefrontal cortex and impulsive decision making. Biological Psychiatry, 69(12), 1140–1146.
Kirby, E. D., Jensen, K., Goosens, K. A., & Kaufer, D. (2012). Stereotaxic surgery for excitotoxic lesion of specific brain areas in the adult rat. Journal of Visualized Experiments: JoVE, (65), e4079.
Kolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research, 320(1), 65–98.
Kolb, B. (1990). Prefrontal cortex. In B. Kolb & R. C. Tees (Eds.), The Cerebral Cortex of the Rat (pp. 437–458). Cambridge, M. A., US: The MIT Press. Kolb, B., Nonneman, A. J., & Singh, R. K. (1974). Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. Journal of Comparative and Physiological Psychology, 87(4), 772.
Kotz, S. A., Brown, R. M., & Schwartze, M. (2016). Cortico-striatal circuits and the timing of action and perception. Current Opinion in Behavioral Sciences, 8, 42-45.
Kramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A
selective critique. Psychological Bulletin, 74(4), 225–254.
Kubos, K. L., Brady, J. V., Moran, T. H., Smith, C. H., & Robinson, R. G. (1985). Asymmetrical effect of unilateral cortical lesions and amphetamine on DRL-20: A time-loss analysis. Pharmacology Biochemistry and Behavior, 22(6), 1001- 1006.
Liao, R. M. (2009). Effects of amphetamine and cocaine on behavior maintained by differential reinforcement of low-rate-response (DRL) schedule. The Chinese Journal of Physiology, 52(4), 250-263.
Liao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. The Chinese Journal of Physiology, 48(1), 41–50.
Liao, R. M., & Lin, H. L. (2008). Differential effects of lesions in the subareas of medial prefrontal cortex on the development of behavioral sensitization to amphetamine: the role of environmental context. The Chinese Journal of Physiology, 51(6), 394–401.
Liao, R. M., & Pattij, T. (2022). Neural basis of operant behaviors maintained on the differential-reinforcement -of-low-rate (DRL) schedule in rodents. Brain Research Bulletin, 185, 1-17.
Lodge D. J. (2011). The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology, 36(6), 1227– 1236.
Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of
Experimental Psychology. Human Perception and Performance, 10(2), 276–291. Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology, Biochemistry, and Behavior, 123, 45–54.
Madden, G. J. & Bickel, W. K. (Eds.). (2010). Impulsivity: the Behavioral and Neurological Science of Discounting. American Psychological Association. Washington, DC.
Mar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(17), 6398–6404.
Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139-170.
Messanvi, F., Perkins, A., du Hoffmann, J., & Chudasama, Y. (2020). Fronto- temporal galanin modulates impulse control. Psychopharmacology, 237(2), 291– 303.
Morein-Zamir, S., & Robbins, T. W. (2015). Fronto-striatal circuits in response- inhibition: Relevance to addiction. Brain Research, 1628(Pt A), 117–129.
Muir, J. L., Everitt, B. J., & Robbins, T. W. (1996). The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.
Cerebral Cortex, 6, 470-481.
Nalwa, V., & Rao, P. S. (1985). DRL responding under uncertain reinforcement in rats after medial frontal cortical lesions. Behavioural Brain Research, 17(1), 73-76.
Neill, D. B. (1976). Frontal-striatal control of behavioral inhibition in the rat. Brain Research, 105(1), 89-103.
Nonneman, A. J., Voigt, J., & Kolb, B. E. (1974). Comparisons of behavioral effects of hippocampal and prefrontal cortex lesions in the rat. Journal of Comparative and Physiological Psychology, 87(2), 249.
Numan, R., Seifert, A. R., & Lubar, J. F. (1975). Effects of medio-cortical frontal lesions on DRL performance in the rat. Physiological Psychology, 3(4), 390-394.
O`Donnell, J. M., Marek, G. J., & Seiden, L. S. (2005). Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low- rate (DRL) operant schedule. Neuroscience and Biobehavioral Reviews, 29(4-5), 785–798.
Passingham, R. E., & Steven, P. W. (2012). The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford University Press.
Pattij, T., & Vanderschuren, L. J. (2008). The neuropharmacology of impulsive behaviour. Trends in Pharmacological Sciences, 29(4), 192–199.
Paxinos, G., & Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates. UK: Academic Press.
Pezze, M. A., Dalley, J. W., & Robbins, T. W. (2009). Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D(2/3) receptor antagonist sulpiride. Psychopharmacology, 202(1-3), 307–313.
Pothuizen, H. H., Jongen-Rêlo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. The European Journal of Neuroscience, 22(10), 2605–2616.
Rawlins, J. N., Winocur, G., & Gray, J. A. (1983). The hippocampus, collateral behavior, and timing. Behavioral Neuroscience, 97(6), 857–872.
Riddell, W. I., Malinchoc, M., Reimers, R. O., (1973). Shift and retention deficits in hippocampectomized and neodecorticate rats. Physiology and Behavior, 10(5), 869-878.
Roesch, M. R., Bryden, D. W., Cerri, D. H., Haney, Z. R., & Schoenbaum, G. (2012). Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(16), 5525–5533.
Rogers, R. D., Baunez, C., Everitt B. J., & Robbins, T. W. (2001). Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behavioral Neuroscience, 115, 799-811.
Scott, T. L., & Vonder Haar, C. (2019). Frontal brain injury chronically impairs timing behavior in rats. Behavioural Brain Research, 356, 408–414.
Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. Oxford, England: Appleton-Century.
St. Onge, J. R., & Floresco S.B. (2010). Prefrontal cortical contribution to risk-based decision making. Cereb Cortex, 20, 1816-1828.
Turner K.M., & Parkes S. L. (2020). Prefrontal regulation of behavioural control: evidence from learning theory and translational approaches in rodents. Neuroscience and Biobehavioral Reviews, 118, 27–41.
Uslaner, J. M., & Robinson, T. E. (2006). Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice - mediation by enhanced incentive motivation?. The European Journal of Neuroscience, 24(8), 2345– 2354.
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex?. Behavioural Brain Research, 146(1-2), 3–17.
Volkow, N. D., Gillespie, H., Mullani, N., Tancredi, L., Grant, C., Valentine, A., & Hollister, L. (1996). Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Research, 67(1), 29–38.
Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27(8), 468–474.
Wenzel, J. M., Zlebnik, N. E., Patton, M. H., Smethells, J. R., Ayvazian, V. M., Dantrassy, H. M., Zhang, L. Y., Mathur, B. N., & Cheer, J. F. (2023). Selective chemogenetic inactivation of corticoaccumbal projections disrupts trait choice impulsivity. Neuropsychopharmacolog, 10.1038/s41386-023-01604-5. Advance online publication.
Wu, S. Y. (2023). Lesion effects of prefrontal cortex subareas on operant behavior trained by differential reinforcement of low-rate response schedule. Unpublished master’s thesis, National Cheng-Chi University.
Yang, J. H., Cheng, C. P., & Liao, R. M. (2018). Effects of d-amphetamine on risk choice in rats depend on the manner in which the expected reward value is varied. Pharmacology, Biochemistry, and Behavior, 171, 20–29.
描述 碩士
國立政治大學
心理學系
110752011
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110752011
資料類型 thesis
dc.contributor.advisor 楊立行zh_TW
dc.contributor.advisor Yang, Lee-Xiengen_US
dc.contributor.author (Authors) 吳舒婷zh_TW
dc.contributor.author (Authors) Wu, Shu-Tingen_US
dc.creator (作者) 吳舒婷zh_TW
dc.creator (作者) Wu, Shu-Tingen_US
dc.date (日期) 2023en_US
dc.date.accessioned 3-Oct-2023 10:46:11 (UTC+8)-
dc.date.available 3-Oct-2023 10:46:11 (UTC+8)-
dc.date.issued (上傳時間) 3-Oct-2023 10:46:11 (UTC+8)-
dc.identifier (Other Identifiers) G0110752011en_US
dc.identifier.uri (URI) http://nccur.lib.nccu.edu.tw/handle/140.119/147738-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 心理學系zh_TW
dc.description (描述) 110752011zh_TW
dc.description.abstract (摘要) 在大腦掌管的高階認知功能中,前額葉、紋狀體,和海馬迴等多個腦區共 同針對衝動控制和時間感知這兩個功能扮演著重要角色。而在操作式制約行為 中,區辨性低反應頻率增強模式作業 (Differential Reinforcement of Low-rate Response task; DRL)被認為需要涉及上述兩個認知歷程。然而,過去對於此些腦 區的研究主要是使用消融、興奮性毒素破壞、或藥理方式所進行單一或雙側破 壞腦區的方式,很少有研究運用功能性連結破壞的方法探索衝動行為的神經機 制。本研究透過功能性連結破壞方法探討前額葉中兩個子腦區的連結、前額葉- 紋狀體、前額葉-伏隔核,和前額葉-海馬迴的神經連結機制對 DRL 衝動行為的 影響。實驗 1 針對外側眼眶前額葉(lateral orbitofrontal cortex; lOFC)與內側前 額葉(medial prefrontal cortex; mPFC)之間的功能聯繫進行破壞。實驗 2 則針 對外側眼眶前額葉與基底核或海馬迴進行功能性破壞。實驗 2-1 針對 lOFC 與背 側紋狀體(dorsal striatum; DS),實驗 2-2 為 lOFC 與伏隔核(Nucleus accumbens; NAc),以及實驗 2-3 為 lOFC 和海馬迴(Hippocampus; HIP)等三連結進行功能性破壞。實驗 3 則針對 mPFC 與 NAc 之間的連接進行了功能性破壞。然而,因連結破壞的實驗方式可能在學習階段的不同時間發生,因此本研 究測量了學習的不同階段,包含 DRL 10 秒與 DRL 15 秒的習得,DRL 15 秒消 除,與 DRL 15 秒再習得。研究結果顯示,在針對 lOFC-DS 連接迴路操弄的實 驗中,功能性破壞組在再習得階段的表現優於實驗控制組,其他階段則無此影 響。而在針對 lOFC-NAc 連接迴路操弄的實驗中,功能性破壞組則在習得 DRL 10 秒與 DRL 15 秒的表現較控制組差。然而在針對 lOFC-mPFC、lOFC-HIP 和 mPFC-NAc 這三個迴路操弄的研究中沒有組間的差異。綜合以上結果,實驗支 持皮質-紋狀體間的神經網絡參與衝動行為,並有助於實驗者對不同學習階段的 DRL 作業在行為抑制相關的時間感知中進行更深入的了解。zh_TW
dc.description.abstract (摘要) In the brain, the prefrontal, striatal, and hippocampal areas together are important for high-level cognition functions, including impulsive control and timing. Operant behavior trained by differential reinforcement of low-rate response (DRL) schedule of reinforcement requires these two processes. Previous studies investigated the functions of these brain areas using aspiration, excitotoxic lesion, or pharmacological treatment mainly through a manner of bilateral interventions, few studies applied the functional disconnection approach to explore the neural substrates of impulsive action. This study evaluated the roles of fronto-striatal and fronto-hippocampal circuits on DRL behavior via the approach of functional disconnection. Experiment 1 manipulated the functional disconnection between the lateral orbitofrontal cortex (lOFC) and medial prefrontal cortex (mPFC). Experiment 2 intervened the lOFC connecting to the dorsal striatum (DS; Experiment 2-1), to the nucleus accumbens (NAc; Experiment 2-2), and to the hippocampus (HIP; Experiment 2-3). And, Experiment 3 manipulated the functional disconnection between the mPFC and NAc. In consideration of the potential impacts of disconnection lesions that could affect distinct processes in different learning stages. Behavioral assessments were conducted in the acquisition of DRL 10s and DRL 15s which were followed by the extinction and spontaneous recovery. The results showed that rats with disconnection lesions of lOFC-DS performed better in the recovery stage than those with control lesions, but had no impact on the other stages. Moreover, rats with disconnection lesions of lOFC- NAc disrupted the acquisition of DRL 10s and DRL 15s. No significant influence was produced by the functional disconnection of lOFC-mPFC, lOFC-HIP, or mPFC-NAc. Together, the current data are in general agreement with the notion of the cortico- striatal circuit involved in impulsive action and provide insights of timing associated with behavioral inhibition in the acquisition of DRL behavior at different learning stages.en_US
dc.description.tableofcontents CHAPTER 1: INTRODUCTION 1
IMPULSIVITY 1
THE DRL BEHA VIOR 2
THE 5-CSRTT AND SSRT 3
BRAIN AREAS ASSOCIATED WITH IMPULSIVE ACTION 5
The PFC subregions 5
Striatal subregions 7
Hippocampus 8
FUNCTIONAL DISCONNECTION APPROACH WITH EXCITOTOXIC LESION 9
HYPOTHESES 11

CHAPTER 2: MATERIALS AND METHODS 13
SUBJECTS 13
STEREOTAXIC SURGERY FOR IBOTENATE LESION 13
APPARATUS 15
PROCEDURES OF BEHAVIORAL TESTS 16
EXPERIMENTAL PROTOCOLS 17
Experiment 1: Effects of functional disconnection of the lOFC and mPFC 17
Experiment 2-1: Effects of functional disconnection of the lOFC and DS 17
Experiment 2-2: Effects of functional disconnection of the lOFC and NAc 18
Experiment 2-3: Effects of functional disconnection of the lOFC and HIP 18
Experiment 3: Effects of functional disconnection of mPFC and NAc 18
HISTOLOGY 19
DATA COLLECTION AND STATISTICAL ANALYSIS 19
CHAPTER 3: RESULTS 21
EXPERIMENT 1: EFFECTS OF FUNCTIONAL DISCONNECTION OF THE LOFC AND MPFC 21
The acquisition of DRL 10-s behavior 21
The acquisition of DRL 15-s behavior 21
The extinction of DRL 15-s behavior 22
The recovery of DRL 15-s behavior after extinction 22
EXPERIMENT 2-1: EFFECTS OF FUNCTIONAL DISCONNECTION OF THE LOFC AND DS 22
The acquisition of DRL 10-s behavior 23
The acquisition of DRL 15-s behavior 23
The extinction of DRL 15-s behavior 24
The recovery of DRL 15-s after extinction 24
EXPERIMENT 2-2: EFFECTS OF FUNCTIONAL DISCONNECTION OF THE LOFC AND NAC 25
The acquisition of DRL 10-s behavior 25
The acquisition of DRL 15-s behavior 26
The extinction of DRL 15-s behavior 26
The recovery of DRL 15-s after extinction 26
EXPERIMENT 2-3: EFFECTS OF FUNCTIONAL DISCONNECTION OF THE LOFC AND HIP 27
The acquisition of DRL 10-s behavior 27
The acquisition of DRL 15-s behavior 28
The extinction of DRL 15-s behavior 28
The recovery of DRL 15-s behavior after extinction 29
EXPERIMENT 3: EFFECTS OF FUNCTIONAL DISCONNECTION OF THE MPFC AND NAC 29
The acquisition of DRL 10-s behavior 29
The acquisition of DRL 15-s behavior 30
The extinction of DRL 15-s 30
The recovery of DRL 15-s after extinction 30
RESULTS OF THE LOCOMOTOR ACTIVITY 31
CHAPTER 4: DISCUSSION 32
LACK OF BEHAVIORAL CHANGES ON DRL TASK FOLLOWING THE MPFC-LOFC DISCONNECTION 32
BEHAVIORAL EFFECTS OF CORTICO-STRIATAL DISCONNECTION 33
BEHAVIORAL EFFECTS OF CORTICO-HIPPOCAMPAL DISCONNECTION 35
LIMITATIONS 36
CONCLUSION 38
CHAPTER 5: REFERENCES 39
FIGURES 51
zh_TW
dc.format.extent 33399720 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110752011en_US
dc.subject (關鍵詞) 操作式制約行為zh_TW
dc.subject (關鍵詞) 功能性連結破壞zh_TW
dc.subject (關鍵詞) 鵝膏蕈酸zh_TW
dc.subject (關鍵詞) 額葉紋狀體zh_TW
dc.subject (關鍵詞) 額葉海馬體zh_TW
dc.title (題名) 額葉紋狀體與額葉海馬體迴路功能性破壞對區辨性增強低頻反應操作式制約行為的影響zh_TW
dc.title (題名) Effects of fronto-striatal and fronto-hippocampal functional disconnection on operant behavior trained by differential reinforcement of low-rate response scheduleen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Aron, A. R., & Poldrack, R. A. (2005). The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biological Psychiatry, 57(11), 1285–1292.
Baker, P. M., & Ragozzino, M. E. (2014). Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching. Learning and Memory, 21(8), 368–379.
Balleine B. W. (2005). Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiology and Behavior, 86(5), 717-730.
Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35(1). 48-69.
Bari A., Dalley J. W., & Robbins T. W. (2008). The application of the 5-choice serial reaction time task for the assessment of visual attentional processes and impulse control in rats. Nature Protocols, 3(5), 759-767.
Bari A., & Robbins T. W. (2013). Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.
Bechara, A., Damasio, H., Tranel, D., & Anderson, S. W. (1998). Dissociation Of working memory from decision making within the human prefrontal cortex. The Journal of Neuroscience, 18(1), 428–437.
Besson, M., Belin, D., McNamara, R., Theobald, D. E., Castel, A., Beckett, V. L., Crittenden, B. M., Newman, A. H., Everitt, B. J., Robbins, T. W., & Dalley, J. W. (2010). Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology, 35(2), 560–569.
Braggio, J. T., & Ellen, P. (1976). Cued DRL training: effects on the permanence of lesion-induced overresponding. Journal of Comparative and Physiological Psychology, 90(7), 694–703.
Broos, N., Schmaal, L., Wiskerke, J., Kostelijk, L., Lam, T., Stoop, N., Weierink, L., Ham, J., de Geus, E. J., Schoffelmeer, A. N., van den Brink, W., Veltman, D. J., de Vries, T. J., Pattij, T., & Goudriaan, A. E. (2012). The relationship between impulsive choice and impulsive action: a cross-species translational study. PloS One, 7(5), e36781.
Carli, M., Robbins, T. W., Evenden, J. L., & Everitt, B. J. (1983). Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research, 9(3), 361– 380.
Cheng R. K., & Liao R. M. (2007). Dopamine receptor antagonist reverse amphetamine-induced behavioral alteration on a differential reinforcement for low-rate (DRL) operant task in the rat. The Chinese Journal of Physiology, 50(2), 77–88.
Cheng, R. K., & Liao, R. M. (2017). Regional differences in dopamine receptor blockade affect timing impulsivity that is altered by d-amphetamine on differential reinforcement of low-rate responding (DRL) behavior in
rats. Behavioural Brain Research, 331, 177–187.
Cheng, R. K., MacDonald, C. J., & Meck, W. H. (2006). Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing. Pharmacology, Biochemistry, and Behavior, 85(1), 114–122.
Cheng, R. K., MacDonald, C. J., Williams, C. L., & Meck, W. H. (2008). Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior. Learning and Memory, 15(3), 153–162.
Chiang, F. K., Cheng, R. K., & Liao, R. M. (2015). Differential effects of dopamine receptor subtype-specific agonists with respect to operant behavior maintained on a differential reinforcement of low-rate responding (DRL) schedule. Pharmacology, Biochemistry, and Behavior, 130, 67–76.
Cho, Y. H., & Jeantet, Y. (2010). Differential involvement of prefrontal cortex, striatum, and hippocampus in DRL performance in mice. Neurobiology of Learning and Memory, 93(1), 85–91.
Christakou A., Robbins T. W., & Everitt B. J. (2001). Functional disconnection of a prefrontal cortical-dorsal striatal system disrupts choice reaction time performance: implications for attentional function. Behavioral Neuroscience, 115(4), 812-825.
Christakou A., Robbins T. W., & Everitt B. J. (2004). Prefrontal cortical-ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. The Journal of Neuroscience, 24(4), 773-780.
Chudasama Y., Doobay V. M., & Liu Y. (2012). Hippocampal-prefrontal cortical circuit mediates inhibitory response control in the rat. The Journal of Neuroscience, 32(32), 10915-10924.
Chudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1-2), 105–119.
Dalley, J. W., Cardinal, R. N., & Robbins, T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical
substrates. Neuroscience and Biobehavioral Reviews, 28(7), 771–784.
Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680–694.
Dalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008).
Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry, and Behavior, 90(2), 250–260.
Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews Neuroscience, 18(3), 158-171.
D`Amour-Horvat, V., & Leyton, M. (2014). Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Frontiers in Behavioral Neuroscience, 8, 432.
Dietrich, A., & Allen, J. D. (1998). Functional dissociation of the prefrontal cortex and the hippocampus in timing behavior. Behavioral Neuroscience, 112(5), 1043–1047.
Dunnett, S. B., & Iversen, S. D. (1982). Neurotoxic lesions of ventrolateral but not anteromedial neostriatum in rats impair differential reinforcement of low rates (DRL) performance. Behavioural Brain Research, 6(3), 213–226.
Dunnett, S. B., Meldrum, A., & Muir, J. L. (2005). Frontal-striatal disconnection disrupts cognitive performance of the frontal-type in the rat. Neuroscience, 135(4), 1055–1065.
Eagle, D. M., & Baunez, C. (2010). Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neuroscience and Biobehavioral Reviews, 34(1), 50-72.
Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., & Robbins, T. W. (2008). Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cerebral Cortex, 18(1), 178-188.
Elcoro, M., Aparicio, C. F., Kelly, S. P., & Thompson, T. (2016). Behavioral inhibition in rats after 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychology and Neuroscience, 9(1), 125.
Ellen, P., & Aitken, W. C., Jr (1970). Absence of overresponding on a DRL schedule by hippocampally-lesioned rats. Physiology and Behavior, 5(4), 489–495.
Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology, 146(4), 348– 361.
Feil, J., Sheppard, D., Fitzgerald, P. B., Yücel, M., Lubman, D. I., & Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience and Biobehavioral
Reviews, 35, 248-275.
Feja, M., & Koch, M. (2015). Frontostriatal systems comprising connections between ventral medial prefrontal cortex and nucleus accumbens subregions differentially regulate motor impulse control in rats. Psychopharmacology, 232(7), 1291– 1302.
Finger, S., Altemus, K. L., Green, L., Wolf, C., Miller, J., & Almli, C. R. (1987). Effects of medial frontal cortex lesions on DRL performance in rats. Physiology and Behavior, 41(4), 387-389.
Fletcher, P. J., Chambers, J. W., Rizos, Z., & Chintoh, A. F. (2009). Effects of 5-HT depletion in the frontal cortex or nucleus accumbens on response inhibition measured in the 5-choice serial reaction time test and on a DRL
schedule. Behavioural Brain Research, 201(1), 88–98.
Fuster, J. M. (1997). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. New York: Raven Press.
Fuster, J. M. (2015). The Prefrontal Cortex. Academic Press.
Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Handbook of Physiology, 5:373-417. Groenewegen, H. J., Wright, C. I., & Uylings, H. B. (1997). The anatomical relationships of the prefrontal cortex with limbic structures and the basal ganglia. Journal of Psychopharmacology, 11(2), 99–106. Haber S. N. (2016). Corticostriatal circuitry. Dialogues in Clinical
Neuroscience, 18(1), 7–21.
Hardung, S., Epple, R., Jäckel, Z., Eriksson, D., Uran, C., Senn, V., Gibor, L., Yizhar,
O., & Diester, I. (2017). A functional gradient in the rodent prefrontal cortex
supports behavioral inhibition. Current Biology, 27(4), 549-555.
Hart, G., Bradfield, L. A., & Balleine, B. W. (2018). Prefrontal Corticostriatal
Disconnection Blocks the Acquisition of Goal-Directed Action. The Journal of Neuroscience, 38(5), 1311–1322.
Hervig, M. E., Fiddian, L., Piilgaard, L., Božič, T., Blanco-Pozo, M., Knudsen, C., Olesen, S. F., Alsiö, J., & Robbins, T. W. (2020). Dissociable and Paradoxical Roles of Rat Medial and Lateral Orbitofrontal Cortex in Visual Serial Reversal Learning. Cerebral Cortex, 30(3), 1016–1029.
Hoover, W. B., & Vertes, R. P. (2011). Projections of the medial orbital and ventral orbital cortex in the rat. The Journal of Comparative Neurology, 519(18), 3766- 3801.
Hsu, T. M., Noble, E. E., Liu, C. M., Cortella, A. M., Konanur, V. R., Suarez, A. N., Reiner, D. J., Hahn, J. D., Hayes, M. R., & Kanoski, S. E. (2018). A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Molecular Psychiatry, 23(7), 1555– 1565.
Jentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., Groman, S. M., James, A. S., & Pennington, Z. T. (2014). Dissecting impulsivity and its relationships to drug addictions. Annals of the New York Academy of Sciences, 1327, 1–26.
Jentsch, J. D., & Taylor, J. R. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward- related stimuli. Psychopharmacology, 146(4), 373–390.
Kesner, R. P., & Churchwell, J. C. (2011). An analysis of rat prefrontal cortex in mediating executive function. Neurobiology of Learning and Memory, 96(3), 417–431.
Kim, S., & Lee, D. (2011). Prefrontal cortex and impulsive decision making. Biological Psychiatry, 69(12), 1140–1146.
Kirby, E. D., Jensen, K., Goosens, K. A., & Kaufer, D. (2012). Stereotaxic surgery for excitotoxic lesion of specific brain areas in the adult rat. Journal of Visualized Experiments: JoVE, (65), e4079.
Kolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research, 320(1), 65–98.
Kolb, B. (1990). Prefrontal cortex. In B. Kolb & R. C. Tees (Eds.), The Cerebral Cortex of the Rat (pp. 437–458). Cambridge, M. A., US: The MIT Press. Kolb, B., Nonneman, A. J., & Singh, R. K. (1974). Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. Journal of Comparative and Physiological Psychology, 87(4), 772.
Kotz, S. A., Brown, R. M., & Schwartze, M. (2016). Cortico-striatal circuits and the timing of action and perception. Current Opinion in Behavioral Sciences, 8, 42-45.
Kramer, T. J., & Rilling, M. (1970). Differential reinforcement of low rates: A
selective critique. Psychological Bulletin, 74(4), 225–254.
Kubos, K. L., Brady, J. V., Moran, T. H., Smith, C. H., & Robinson, R. G. (1985). Asymmetrical effect of unilateral cortical lesions and amphetamine on DRL-20: A time-loss analysis. Pharmacology Biochemistry and Behavior, 22(6), 1001- 1006.
Liao, R. M. (2009). Effects of amphetamine and cocaine on behavior maintained by differential reinforcement of low-rate-response (DRL) schedule. The Chinese Journal of Physiology, 52(4), 250-263.
Liao, R. M., & Cheng, R. K. (2005). Acute effects of d-amphetamine on the differential reinforcement of low-rate (DRL) schedule behavior in the rat: comparison with selective dopamine receptor antagonists. The Chinese Journal of Physiology, 48(1), 41–50.
Liao, R. M., & Lin, H. L. (2008). Differential effects of lesions in the subareas of medial prefrontal cortex on the development of behavioral sensitization to amphetamine: the role of environmental context. The Chinese Journal of Physiology, 51(6), 394–401.
Liao, R. M., & Pattij, T. (2022). Neural basis of operant behaviors maintained on the differential-reinforcement -of-low-rate (DRL) schedule in rodents. Brain Research Bulletin, 185, 1-17.
Lodge D. J. (2011). The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system function. Neuropsychopharmacology, 36(6), 1227– 1236.
Logan, G. D., Cowan, W. B., & Davis, K. A. (1984). On the ability to inhibit simple and choice reaction time responses: a model and a method. Journal of
Experimental Psychology. Human Perception and Performance, 10(2), 276–291. Logue, S. F., & Gould, T. J. (2014). The neural and genetic basis of executive function: attention, cognitive flexibility, and response inhibition. Pharmacology, Biochemistry, and Behavior, 123, 45–54.
Madden, G. J. & Bickel, W. K. (Eds.). (2010). Impulsivity: the Behavioral and Neurological Science of Discounting. American Psychological Association. Washington, DC.
Mar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(17), 6398–6404.
Matell, M. S., & Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognitive Brain Research, 21, 139-170.
Messanvi, F., Perkins, A., du Hoffmann, J., & Chudasama, Y. (2020). Fronto- temporal galanin modulates impulse control. Psychopharmacology, 237(2), 291– 303.
Morein-Zamir, S., & Robbins, T. W. (2015). Fronto-striatal circuits in response- inhibition: Relevance to addiction. Brain Research, 1628(Pt A), 117–129.
Muir, J. L., Everitt, B. J., & Robbins, T. W. (1996). The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task.
Cerebral Cortex, 6, 470-481.
Nalwa, V., & Rao, P. S. (1985). DRL responding under uncertain reinforcement in rats after medial frontal cortical lesions. Behavioural Brain Research, 17(1), 73-76.
Neill, D. B. (1976). Frontal-striatal control of behavioral inhibition in the rat. Brain Research, 105(1), 89-103.
Nonneman, A. J., Voigt, J., & Kolb, B. E. (1974). Comparisons of behavioral effects of hippocampal and prefrontal cortex lesions in the rat. Journal of Comparative and Physiological Psychology, 87(2), 249.
Numan, R., Seifert, A. R., & Lubar, J. F. (1975). Effects of medio-cortical frontal lesions on DRL performance in the rat. Physiological Psychology, 3(4), 390-394.
O`Donnell, J. M., Marek, G. J., & Seiden, L. S. (2005). Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low- rate (DRL) operant schedule. Neuroscience and Biobehavioral Reviews, 29(4-5), 785–798.
Passingham, R. E., & Steven, P. W. (2012). The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight. Oxford University Press.
Pattij, T., & Vanderschuren, L. J. (2008). The neuropharmacology of impulsive behaviour. Trends in Pharmacological Sciences, 29(4), 192–199.
Paxinos, G., & Watson, C. (2007). The Rat Brain in Stereotaxic Coordinates. UK: Academic Press.
Pezze, M. A., Dalley, J. W., & Robbins, T. W. (2009). Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D(2/3) receptor antagonist sulpiride. Psychopharmacology, 202(1-3), 307–313.
Pothuizen, H. H., Jongen-Rêlo, A. L., Feldon, J., & Yee, B. K. (2005). Double dissociation of the effects of selective nucleus accumbens core and shell lesions on impulsive-choice behaviour and salience learning in rats. The European Journal of Neuroscience, 22(10), 2605–2616.
Rawlins, J. N., Winocur, G., & Gray, J. A. (1983). The hippocampus, collateral behavior, and timing. Behavioral Neuroscience, 97(6), 857–872.
Riddell, W. I., Malinchoc, M., Reimers, R. O., (1973). Shift and retention deficits in hippocampectomized and neodecorticate rats. Physiology and Behavior, 10(5), 869-878.
Roesch, M. R., Bryden, D. W., Cerri, D. H., Haney, Z. R., & Schoenbaum, G. (2012). Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(16), 5525–5533.
Rogers, R. D., Baunez, C., Everitt B. J., & Robbins, T. W. (2001). Lesions of the medial and lateral striatum in the rat produce differential deficits in attentional performance. Behavioral Neuroscience, 115, 799-811.
Scott, T. L., & Vonder Haar, C. (2019). Frontal brain injury chronically impairs timing behavior in rats. Behavioural Brain Research, 356, 408–414.
Skinner, B. F. (1938). The Behavior of Organisms: An Experimental Analysis. Oxford, England: Appleton-Century.
St. Onge, J. R., & Floresco S.B. (2010). Prefrontal cortical contribution to risk-based decision making. Cereb Cortex, 20, 1816-1828.
Turner K.M., & Parkes S. L. (2020). Prefrontal regulation of behavioural control: evidence from learning theory and translational approaches in rodents. Neuroscience and Biobehavioral Reviews, 118, 27–41.
Uslaner, J. M., & Robinson, T. E. (2006). Subthalamic nucleus lesions increase impulsive action and decrease impulsive choice - mediation by enhanced incentive motivation?. The European Journal of Neuroscience, 24(8), 2345– 2354.
Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex?. Behavioural Brain Research, 146(1-2), 3–17.
Volkow, N. D., Gillespie, H., Mullani, N., Tancredi, L., Grant, C., Valentine, A., & Hollister, L. (1996). Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Research, 67(1), 29–38.
Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W., & Pennartz, C. M. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends in Neurosciences, 27(8), 468–474.
Wenzel, J. M., Zlebnik, N. E., Patton, M. H., Smethells, J. R., Ayvazian, V. M., Dantrassy, H. M., Zhang, L. Y., Mathur, B. N., & Cheer, J. F. (2023). Selective chemogenetic inactivation of corticoaccumbal projections disrupts trait choice impulsivity. Neuropsychopharmacolog, 10.1038/s41386-023-01604-5. Advance online publication.
Wu, S. Y. (2023). Lesion effects of prefrontal cortex subareas on operant behavior trained by differential reinforcement of low-rate response schedule. Unpublished master’s thesis, National Cheng-Chi University.
Yang, J. H., Cheng, C. P., & Liao, R. M. (2018). Effects of d-amphetamine on risk choice in rats depend on the manner in which the expected reward value is varied. Pharmacology, Biochemistry, and Behavior, 171, 20–29.
zh_TW