Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 金融 AI 雲 以台灣證券業為例
Financial AI Cloud Take Taiwan's securities industry as an example.作者 吳文舜
WU, WEN-SHUEN貢獻者 蔡瑞煌<br>周行一
Rua-Huan Tsaih<br>Edward Chow
吳文舜
WEN-SHUEN WU關鍵詞 人工智慧
雲服務
金融 AI 雲
AI-enabled services
AI tech-stack model
FinAIC
FinTech
Artificial intelligence
cloud
financial AI cloud
AI-enabled services
AI tech-stack model
financial industry日期 2024 上傳時間 1-Mar-2024 14:10:23 (UTC+8) 摘要 人工智能(Artificial intelligence,簡稱AI)時代來臨,許多產業都出現產業AI化以及AI產業化。在金融領域裡,雖然也出現產業AI化的現象,但卻鮮少有以金融產業為目標客戶(Target Audience)的金融AI雲服務(Finance AI Cloud,簡稱FinAIC)。本研究以台灣新創金融科技公司的定位為出發點,提出以AI技術堆疊框架(AI Tech-Stack Model)為基礎架構的FinAIC服務,並設計開發出AI加值之金融服務,提供給四大類型金融產業用戶:大型金融機構(Large Financial Institutions,簡稱LFIs)、中小型金融機構(Small and Medium-sized Financial Institutions,簡稱SMFIs)、獨立軟體供應商(Independent software vendors,簡稱ISVs)與第三方服務業者(Third-party Service Providers,簡稱TSPs)。 本研究透過三大實驗,驗證FinAIC具備五項整合優勢。實驗一以LFIs & SMFIs現有AI服務導入FinAIC,驗證FinAIC具備軟硬體整合優勢。實驗二以ISVs 導入FinAIC,驗證FinAIC具備易用性優勢、數據管理整合優勢、及軟硬體整合優勢。實驗三以TSPs運用FinAIC新增AI服務,驗證FinAIC具備模型與數據參數整合優勢、資源交換分享優勢、軟硬體整合優勢。 本研究之貢獻有三:(1)提出FinAIC框架,並模擬四種類型 LFIs、SMFIs、ISVs、TSPs參與者的生態系共生應用情境;(2)依據FinAIC框架與生態系共生情境,透過三大實驗,驗證FinAIC具備五項整合優勢;(3)提出FinAIC如何滿足金融監管八大規範,並在法規推動、聯合查核、數據落地、資訊安全議題與FinTech新創發展五種面向有助於金融監管,以及發展成為證券期貨業ITOM雲服務與探討平台形成可能性。
With the advent of the era of artificial intelligence (AI), many industries have opened to industrialized AI and AI industrialization. However, there are rare financial AI industrialization (FinAIInd) services provided through the financial AI cloud (FinAIC) that exclusively cater to the financial community. Through three major experiments, this study verified that FinAIC has five integration advantages. Experiment 1 imported the existing AI services of LFIs & SMFIs into FinAIC to verify that FinAIC has the advantages of software and hardware integration. Experiment 2 uses ISVs to import FinAIC to verify that FinAIC has the advantages of ease of use, data management integration, and software and hardware integration. Experiment 3 uses TSPs to use FinAIC to add new AI services, verifying that FinAIC has the advantages of model and data parameter integration, resource exchange and sharing advantages, and software and hardware integration advantages. The contributions of this study are threefold: (1) Propose the FinAIC framework and simulate the ecosystem symbiosis application scenarios of four types of LFIs, SMFIs, ISVs, and TSPs participants; (2) Through three major Experiments verifyed that FinAIC has five integration advantages; (3) Propose how FinAIC meets the eight major norms of financial supervision and contribute to financial supervision in five aspects: regulatory promotion, joint verification, data implementation, information security issues and FinTech innovation and development. As well as developing into an ITOM cloud service for the securities and futures industry and exploring the possibility of forming a platform.參考文獻 一、中文部分 田裕斌(2016)。「台星通有影 三方簽策略夥伴合約」,中央社財經。檢自 https://tw.stock.yahoo.com/news/%E5%8F%B0%E6%98%9F%E9%80%9A%E6%9C%89%E5%BD%B1-%E4%B8%89%E6%96%B9%E7%B0%BD%E7%AD%96%E7%95%A5%E5%A4%A5%E4%BC%B4%E5%90%88%E7%B4%84-101206618.html(Aug.19.2023) 行政院新聞傳播處(2018)。「台灣的「AI小國大戰略」」,行政院官網。檢自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/50a08776-e33a-4be2-a07c-a6e523f5031b (Feb.12.2022) 行政院新聞傳播處(2018)。「《金融科技發展與創新實驗條例》—鼓勵創新,提升金融競爭力」,行政院官網。檢自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/aa4a0c9d-14be-4664-ac59-fc74a056d1fd (Feb.7.2022) 李智揮(2019)。「提供 AIOT 資料生態鏈,建構政府智慧服務」。政府機關資訊通報,第 362 期。 呂淑美(2016)。「國際通成為新交所會員 台星通 最快Q2啟動」,工商時報。檢自 https://readers.ctee.com.tw/cm/20160324/a29ab5/700228/share 李靜宜(2019)。「銀行資料上雲端,金管會准了!符合條件境外公雲也能用」,ITHome。檢自 https://www.ithome.com.tw/news/131515 (Apr.4.2021) 余至浩(2023)。「金融業開放上雲將有重大鬆綁!未來境外公雲不是重大消金應用免申請」,ITHome。檢自 https://www.ithome.com.tw/news/155815 (Aug.19.2023) 余至浩(2023)。「Google雲端GCP服務應臺灣金融機構上雲需求,完成獨立第三方單位聯合查核」,ITHome。檢自 https://www.ithome.com.tw/news/156170 (Aug.19.2023) 金融監督管理委員會(2016)。成立宗旨,金融監督管理委員會官網。檢自https://www.fsc.gov.tw/ch/home.jsp?id=19&parentpath=0,1,11 (Feb.4.2022) 金融監督管理委員會(2023)。「金管會就金融業運用人工智慧(AI)之原則及政策草案公開徵詢外界意見」,金融監督管理委員會官網。檢自https://www.fsc.gov.tw/ch/home.jsp?id=2&parentpath=0&mcustomize=news_view.jsp&dataserno=202308150001&dtable=News(Aug.19.2023) 陳右怡(2020)。「從「產業AI化」到「AI產業化」台灣的機會與挑戰」,工商時報名家評論。檢自https://view.ctee.com.tw/technology/24819.html (Jan.30.2022) 陳瑞霖(2017)。「Facebook 人工智慧研究院長來臺演講,來看 AI 是怎麼驅動社群平台上可怕的功能」,科技新報。檢自https://technews.tw/2017/06/30/facebook-ai-research-head-talks-about-ai-in-taiwan/(Jun.7.2021) 遠見研究調查中心(2017)。「獨家FinTech業者大調查:評分全都「不及格」」,遠見研究調查中心。檢自https://gvsrc.cwgv.com.tw/articles/index/14771/2(Jun.5.2022) 曾鳴(2019)。Smart Business: What Alibaba’s Success Reveals about the Future of Strategy。中譯版,智能商業模式:阿里巴巴利用數據智能與網絡協同的全新企業策略(李芳齡譯)。天下雜誌,頁31-35,頁90-98。 曾憲立、蕭乃沂、廖興中、黃詩芸、郭毓倫、林映萱(2021)。「資料深化應用與市集機制之研析(結案報告)」,國家發展委員會。檢自 https://www.teg.org.tw/research/Research_View/2020559924261。(May.26.2021) 精誠資訊(2022)。經營理念,精誠資訊官網。檢自https://tw.systex.com/about_vision/ (Feb.4.2022) 楊絡懸(2024)。「遠傳退出開放銀行,兩大難處忍痛斷捨離!開放銀行是什麼?進度到哪了?」,數位時代。檢自https://www.bnext.com.tw/article/77996/fet-open-banking-new-challenge(Jan.04.2024) 楊筱筠(2020)。「金管會第三場FinTech座談會登場 各界拋建議」,經濟日報。檢自https://money.udn.com/money/story/5613/4703933(May.21.2021) 張家嘯(2021)。「首起監理沙盒落地案 好好投資可改制券商」,卡優新聞網。檢自https://www.cardu.com.tw/news/detail.php?42920 (Feb.4.2022) 經濟部工業局(2019)。「AI 產業之創新驅動 人才接軌、產業創新 人才培育計畫(AI GO)介紹」,經濟部工業局。檢自http://www.twcloud.org.tw/files/file_pool/1/0J163409003655132400/1080611-%E9%9B%B2%E5%8D%94AIGO%E4%BB%8B%E7%B4%B9v1.pdf (Jun.7.2021) 錢玉紘(2021)。「台灣首家純網路券商開業!好好證券借鏡Robinhood,如何磨5年讓投資更親民?」,數位時代。檢自https://www.bnext.com.tw/article/64802/fundswap (Feb.4.2022) 歐宇祥(2023)。「算力難追國際巨頭 台AI發展恐受限」,自由財經。檢自https://ec.ltn.com.tw/article/paper/1575789 (Aug.19.2023) 謝方娪(2022)。「金管會推主題式監理沙盒,聚焦數位身分認證」,中央社。檢自https://finance.technews.tw/2022/01/19/themed-supervision-sandbox/ (Feb.4.2022) 翟梓謙(2020)。「螞蟻上市|螞蟻A股遭叫停 港交所:暫緩螞蟻H股上市」,數位時代。檢自https://www.hk01.com/sns/article/544243?utm_source=01articlecopy&utm_medium=referral (Jul.4.2022) IDC(2020)。「2020 H1中國AI雲服務市場規模增長遠超預期」,IDC。檢自https://www.idc.com/getdoc.jsp?containerId=prCHC47212020 (Feb.8.2022) TWCC (2020). 2020_TWCC Brochure_June, https://www.digitimes.com.tw/twcc/whitebook/2020_TWCC%20Brochure_June_0630.pdf (Jun.7.2021) PwC(2017)。2017年全球金融科技調查台灣概要。檢自https://www.pwc.tw/zh/publications/assets/2017-fintech-taiwan-report.pdf(Feb.13.2022) 二、英文部分 Boag, S., Dube, P., El Maghraoui, K., Herta, B., Hummer, W., Jayaram, K.R., Khalaf, R., Muthusamy, V., Kalantar, M., and Verma, A. (2018, June 25-28). Dependability in a Multi-tenant Multi-framework Deep Learning as-a-Service Platform [Conference presentation]. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), 2018, pp. 43-46, Luxembourg, Luxembourg. doi: 10.1109/DSN-W.2018.00022. Brynjolfsson, E., & Mcafee, A. (2016). What’s Driving the Machine Learning Explosion. Harvard Business Review, 18(6), 3–11. Chesbrough, H. (2003). Open innovation:The new imperative for creating and profiting from technology. Boston:Harvard Business School Press. Chesbrough, H. (2006). Open Business Models: How to Thrive in the New Innovation Landscape. Boston: Harvard Business School Press. Davenport, T. H., & Ronanki, R. (2018). Artificial Intelligence for the Real World Don’t start with moon shots. Harvard Business Review, 96(1), 108–116. Elshawi, R., Sakr, S. J, Talia, D., & Trunfio, P. (2018). Big Data Systems Meet Machine Learning Challenges: Towards Big Data Science as a Service. Big Data Research, 14, 1–11. https://doi.org/10.1016/j.bdr.2018.04.004 GEORG VON KROGH, TORBJØRN NETLAND, AND MARTIN WÖRTER (2018). Winning With Open Process Innovation. WINTER 2018 MIT SLOAN MANAGEMENT REVIEW Iansiti, M., & Lakhani, K. R. (2020). Competing in the Age of AI: How Machine Intelligence Changes the Rules of Business. Harvard Business Review, (January–February 2020). Königstorfer, F., & Thalmann, S. (2020). Applications of Artificial Intelligence in Commercial Banks – A Research Agenda for Behavioral Finance. Behavioral and Experimental Finance, 27, 1–15. doi: doi.org/10.1016/j.jbef.2020.100352. Lauder, E. (2017, March 13). Google’s Fei-Fei Li Wants To Democratize AI. AI Business. https://aibusiness.com/document.asp?doc_id=760185(Accessed July 13, 2022) Lins, S., Pandl, K. D., Teigeler, H., Thiebes, S., Bayer, C., & Sunyaev, A. (2021). Artificial Intelligence as a Service Classification and Research Directions. Business & Information Systems Engineering, 63, 441–456. Mcafee, A. (2011). What Every CEO Needs to Know About The Cloud. Harvard Business Review, (November 2011). Moore, J. F. (1993). Predators and prey: A new ecology of competition. Harvard Business Review,71(3), 75-86. Moore, J. F. (1996). The death of competition: Leadership and strategy in the age of business ecosystems. HarperCollins. Narrative Science (2017), “The Rise of AI in Financial Services” .Narrative Science.https://narrativescience.com/resource/whitepaper/the-rise-of-ai-in-financial-services/ (Accessed Feb.5.2022) Pandl, K. D., Teigeler, H., Lins, S., Thiebes, S., & Sunyaev, A. (2021, January 5). Drivers and Inhibitors for Organizations’ Intention to Adopt Artificial Intelligence as a Service [Conference presentation]. Proceedings of the 54th Hawaii International Conference on System Sciences, 2021, pp. 1769-1778, Hawaii, United States. http://hdl.handle.net/10125/70827 Parsaeefard, S., Tabrizian, I., and Leon-Garcia, A. (2019, October 28-30). Artificial Intelligence as a Service (AI-aaS) on Software-Defined Infrastructure [Conference presentation]. 2019 IEEE Conference on Standards for Communications and Networking (CSCN), 2019, pp. 1-7, Granada, Spain. doi: 10.1109/CSCN.2019.8931372. Porter, M. (1996). What Is Strategy? Harvard Business Review, 61–78. Rai, A., Constantinides, P. J, & Sarker, S. (2019). Next-Generation Digital Platforms: Toward Human-AI Hybrids. MIS Q, 43(1). Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping Business With Artificial Intelligence. MIT Sloan Management Review and The Boston Consulting Group (September 06 2017). Reixa, M., Costa, C., & Aparicio, M. (2012). Cloud Services Evaluation Framework. OSDOC ’12: Proceedings of the Workshop on Open Source and Design of Communication, 61–69. Publisher Association for Computing Machinery. https://doi.org/10.1145/2316936.2316948 Rouhani, B. D., hussain, S. U., Lauter, K., & Koushanfar, F. (2018). ReDCrypt: Real-Time Privacy-Preserving Deep Learning Inference in Clouds Using FPGAs. ACM TRETS, 11(3), 1–21. https://doi.org/10.1145/3242899 Singapore Smart Nation and Digital Government Office. (2019), National Artificial Intelligence Strategy. Government of Singapore Publishing. https://www.smartnation.gov.sg/files/publications/national-ai-strategy.pdf Technavio (infiniti research ltd.) . (2021, June 5). Global Artificial Intelligence-as-a-Service (AIaaS) Market 2021-2025. Global Information, Inc. https://www.giiresearch.com/report/infi1018515-global-artificial-intelligence-service-aiaas.html Teece, D., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533. Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13), 1319-1350. Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., & Ristenpart, T. (2016, August 10-12). Stealing machine learning models via Prediction APIs [Conference presentation]. Proceedings of the 25th USENIX Security Symposium, 2019, pp. 1-7, Austin, TX, United States. https://doi.org/10.48550/arXiv.1609.02943 Tsai, W. T., Sun, X., & Balasooriya, J., (2010, April 12-14). Service-Oriented Cloud Computing Architecture [Conference presentation]. Seventh International Conference on Information Technology: New Generations, ITNG, Las Vegas, Nevada, USA. DOI:10.1109/ITNG.2010.214 Tsaih, R. H., Chang, H. L., Hsu, C. C., & Yen, D. C. (2022). The AI Teck-Stack Model. Communications of ACM, to be appeared. Wang, W., Gao, J., Zhang, M., Wang, S., Chen, G., Ng, T.K., Ooi, B.C., Shao, J., and Reyad, M. (2018). Rafiki: Machine Learning As an Analytics Service System. Proceedings of the VLDB Endowment, 12(12), 128–140. https://doi.org/10.14778/3282495.3282499 Xu, D., Wu, D., Xu, X., Zhu, L, & Bass, L. (2015). Making Real Time Data Analytics Available as a Service. QoSA '15: Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, 73–82. Publisher Association for Computing Machinery. https://doi.org/10.1145/2737182.2737186 Zhang, Z., Nandhakumar, J., Hummel, J. T., & Waardenburg, L. (2020). Addressing the Key Challenges of Developing Machine Learning AI Systems for Knowledge-Intensive Work. MIS Quarterly Executive, 19(4). 描述 博士
國立政治大學
資訊管理學系
108356505資料來源 http://thesis.lib.nccu.edu.tw/record/#G0108356505 資料類型 thesis dc.contributor.advisor 蔡瑞煌<br>周行一 zh_TW dc.contributor.advisor Rua-Huan Tsaih<br>Edward Chow en_US dc.contributor.author (Authors) 吳文舜 zh_TW dc.contributor.author (Authors) WEN-SHUEN WU en_US dc.creator (作者) 吳文舜 zh_TW dc.creator (作者) WU, WEN-SHUEN en_US dc.date (日期) 2024 en_US dc.date.accessioned 1-Mar-2024 14:10:23 (UTC+8) - dc.date.available 1-Mar-2024 14:10:23 (UTC+8) - dc.date.issued (上傳時間) 1-Mar-2024 14:10:23 (UTC+8) - dc.identifier (Other Identifiers) G0108356505 en_US dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/150256 - dc.description (描述) 博士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 資訊管理學系 zh_TW dc.description (描述) 108356505 zh_TW dc.description.abstract (摘要) 人工智能(Artificial intelligence,簡稱AI)時代來臨,許多產業都出現產業AI化以及AI產業化。在金融領域裡,雖然也出現產業AI化的現象,但卻鮮少有以金融產業為目標客戶(Target Audience)的金融AI雲服務(Finance AI Cloud,簡稱FinAIC)。本研究以台灣新創金融科技公司的定位為出發點,提出以AI技術堆疊框架(AI Tech-Stack Model)為基礎架構的FinAIC服務,並設計開發出AI加值之金融服務,提供給四大類型金融產業用戶:大型金融機構(Large Financial Institutions,簡稱LFIs)、中小型金融機構(Small and Medium-sized Financial Institutions,簡稱SMFIs)、獨立軟體供應商(Independent software vendors,簡稱ISVs)與第三方服務業者(Third-party Service Providers,簡稱TSPs)。 本研究透過三大實驗,驗證FinAIC具備五項整合優勢。實驗一以LFIs & SMFIs現有AI服務導入FinAIC,驗證FinAIC具備軟硬體整合優勢。實驗二以ISVs 導入FinAIC,驗證FinAIC具備易用性優勢、數據管理整合優勢、及軟硬體整合優勢。實驗三以TSPs運用FinAIC新增AI服務,驗證FinAIC具備模型與數據參數整合優勢、資源交換分享優勢、軟硬體整合優勢。 本研究之貢獻有三:(1)提出FinAIC框架,並模擬四種類型 LFIs、SMFIs、ISVs、TSPs參與者的生態系共生應用情境;(2)依據FinAIC框架與生態系共生情境,透過三大實驗,驗證FinAIC具備五項整合優勢;(3)提出FinAIC如何滿足金融監管八大規範,並在法規推動、聯合查核、數據落地、資訊安全議題與FinTech新創發展五種面向有助於金融監管,以及發展成為證券期貨業ITOM雲服務與探討平台形成可能性。 zh_TW dc.description.abstract (摘要) With the advent of the era of artificial intelligence (AI), many industries have opened to industrialized AI and AI industrialization. However, there are rare financial AI industrialization (FinAIInd) services provided through the financial AI cloud (FinAIC) that exclusively cater to the financial community. Through three major experiments, this study verified that FinAIC has five integration advantages. Experiment 1 imported the existing AI services of LFIs & SMFIs into FinAIC to verify that FinAIC has the advantages of software and hardware integration. Experiment 2 uses ISVs to import FinAIC to verify that FinAIC has the advantages of ease of use, data management integration, and software and hardware integration. Experiment 3 uses TSPs to use FinAIC to add new AI services, verifying that FinAIC has the advantages of model and data parameter integration, resource exchange and sharing advantages, and software and hardware integration advantages. The contributions of this study are threefold: (1) Propose the FinAIC framework and simulate the ecosystem symbiosis application scenarios of four types of LFIs, SMFIs, ISVs, and TSPs participants; (2) Through three major Experiments verifyed that FinAIC has five integration advantages; (3) Propose how FinAIC meets the eight major norms of financial supervision and contribute to financial supervision in five aspects: regulatory promotion, joint verification, data implementation, information security issues and FinTech innovation and development. As well as developing into an ITOM cloud service for the securities and futures industry and exploring the possibility of forming a platform. en_US dc.description.tableofcontents 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 4 第三節 預期研究貢獻 11 第四節 研究方法與章節安排 12 第二章 文獻探討 14 第一節 雲計算與AI相關文獻 14 第二節 AIaaS與AI Stack 15 第三節 The AI Tech-Stack Model 17 第四節 開放式創新、動態能耐與生態系 20 第三章 金融AI雲FinAIC 22 第一節 FinAIC框架 22 第二節 FinAIC參與者與應用情境 31 第三節 FinAIC整合優勢 41 第四節 FinAIC如何滿足金融監管 43 第四章 PoC實驗背景和訪談專家背景 51 第一節 LFIs & SMFIs現有AI服務導入FinAIC實驗背景 53 第二節 數據ISVs 導入FinAIC實驗背景 59 第三節 TSPs運用FinAIC新增AI服務實驗背景 63 第四節 專家訪談設計 66 第五章 PoC實驗結果與專家訪談 67 第一節 LFIs & SMFIs 現有AI服務導入FinAIC實驗結果 68 第二節 數據ISVs 導入FinAIC實驗結果 75 第三節 TSPs運用FinAIC新增AI服務實驗結果 85 第四節 專家訪談結果 88 第六章 討論與建議 92 第一節 本研究實務意涵與理論貢獻 92 第二節 FinAIC生態系形成的論述路徑 94 第三節FinAIC生態系對實務界的延伸價值 99 第四節 FinAIC平台形成可能性探討 104 第五節 研究限制與後續研究建議 106 參考文獻 109 zh_TW dc.format.extent 6229108 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0108356505 en_US dc.subject (關鍵詞) 人工智慧 zh_TW dc.subject (關鍵詞) 雲服務 zh_TW dc.subject (關鍵詞) 金融 AI 雲 zh_TW dc.subject (關鍵詞) AI-enabled services zh_TW dc.subject (關鍵詞) AI tech-stack model zh_TW dc.subject (關鍵詞) FinAIC zh_TW dc.subject (關鍵詞) FinTech zh_TW dc.subject (關鍵詞) Artificial intelligence en_US dc.subject (關鍵詞) cloud en_US dc.subject (關鍵詞) financial AI cloud en_US dc.subject (關鍵詞) AI-enabled services en_US dc.subject (關鍵詞) AI tech-stack model en_US dc.subject (關鍵詞) financial industry en_US dc.title (題名) 金融 AI 雲 以台灣證券業為例 zh_TW dc.title (題名) Financial AI Cloud Take Taiwan's securities industry as an example. en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 一、中文部分 田裕斌(2016)。「台星通有影 三方簽策略夥伴合約」,中央社財經。檢自 https://tw.stock.yahoo.com/news/%E5%8F%B0%E6%98%9F%E9%80%9A%E6%9C%89%E5%BD%B1-%E4%B8%89%E6%96%B9%E7%B0%BD%E7%AD%96%E7%95%A5%E5%A4%A5%E4%BC%B4%E5%90%88%E7%B4%84-101206618.html(Aug.19.2023) 行政院新聞傳播處(2018)。「台灣的「AI小國大戰略」」,行政院官網。檢自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/50a08776-e33a-4be2-a07c-a6e523f5031b (Feb.12.2022) 行政院新聞傳播處(2018)。「《金融科技發展與創新實驗條例》—鼓勵創新,提升金融競爭力」,行政院官網。檢自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/aa4a0c9d-14be-4664-ac59-fc74a056d1fd (Feb.7.2022) 李智揮(2019)。「提供 AIOT 資料生態鏈,建構政府智慧服務」。政府機關資訊通報,第 362 期。 呂淑美(2016)。「國際通成為新交所會員 台星通 最快Q2啟動」,工商時報。檢自 https://readers.ctee.com.tw/cm/20160324/a29ab5/700228/share 李靜宜(2019)。「銀行資料上雲端,金管會准了!符合條件境外公雲也能用」,ITHome。檢自 https://www.ithome.com.tw/news/131515 (Apr.4.2021) 余至浩(2023)。「金融業開放上雲將有重大鬆綁!未來境外公雲不是重大消金應用免申請」,ITHome。檢自 https://www.ithome.com.tw/news/155815 (Aug.19.2023) 余至浩(2023)。「Google雲端GCP服務應臺灣金融機構上雲需求,完成獨立第三方單位聯合查核」,ITHome。檢自 https://www.ithome.com.tw/news/156170 (Aug.19.2023) 金融監督管理委員會(2016)。成立宗旨,金融監督管理委員會官網。檢自https://www.fsc.gov.tw/ch/home.jsp?id=19&parentpath=0,1,11 (Feb.4.2022) 金融監督管理委員會(2023)。「金管會就金融業運用人工智慧(AI)之原則及政策草案公開徵詢外界意見」,金融監督管理委員會官網。檢自https://www.fsc.gov.tw/ch/home.jsp?id=2&parentpath=0&mcustomize=news_view.jsp&dataserno=202308150001&dtable=News(Aug.19.2023) 陳右怡(2020)。「從「產業AI化」到「AI產業化」台灣的機會與挑戰」,工商時報名家評論。檢自https://view.ctee.com.tw/technology/24819.html (Jan.30.2022) 陳瑞霖(2017)。「Facebook 人工智慧研究院長來臺演講,來看 AI 是怎麼驅動社群平台上可怕的功能」,科技新報。檢自https://technews.tw/2017/06/30/facebook-ai-research-head-talks-about-ai-in-taiwan/(Jun.7.2021) 遠見研究調查中心(2017)。「獨家FinTech業者大調查:評分全都「不及格」」,遠見研究調查中心。檢自https://gvsrc.cwgv.com.tw/articles/index/14771/2(Jun.5.2022) 曾鳴(2019)。Smart Business: What Alibaba’s Success Reveals about the Future of Strategy。中譯版,智能商業模式:阿里巴巴利用數據智能與網絡協同的全新企業策略(李芳齡譯)。天下雜誌,頁31-35,頁90-98。 曾憲立、蕭乃沂、廖興中、黃詩芸、郭毓倫、林映萱(2021)。「資料深化應用與市集機制之研析(結案報告)」,國家發展委員會。檢自 https://www.teg.org.tw/research/Research_View/2020559924261。(May.26.2021) 精誠資訊(2022)。經營理念,精誠資訊官網。檢自https://tw.systex.com/about_vision/ (Feb.4.2022) 楊絡懸(2024)。「遠傳退出開放銀行,兩大難處忍痛斷捨離!開放銀行是什麼?進度到哪了?」,數位時代。檢自https://www.bnext.com.tw/article/77996/fet-open-banking-new-challenge(Jan.04.2024) 楊筱筠(2020)。「金管會第三場FinTech座談會登場 各界拋建議」,經濟日報。檢自https://money.udn.com/money/story/5613/4703933(May.21.2021) 張家嘯(2021)。「首起監理沙盒落地案 好好投資可改制券商」,卡優新聞網。檢自https://www.cardu.com.tw/news/detail.php?42920 (Feb.4.2022) 經濟部工業局(2019)。「AI 產業之創新驅動 人才接軌、產業創新 人才培育計畫(AI GO)介紹」,經濟部工業局。檢自http://www.twcloud.org.tw/files/file_pool/1/0J163409003655132400/1080611-%E9%9B%B2%E5%8D%94AIGO%E4%BB%8B%E7%B4%B9v1.pdf (Jun.7.2021) 錢玉紘(2021)。「台灣首家純網路券商開業!好好證券借鏡Robinhood,如何磨5年讓投資更親民?」,數位時代。檢自https://www.bnext.com.tw/article/64802/fundswap (Feb.4.2022) 歐宇祥(2023)。「算力難追國際巨頭 台AI發展恐受限」,自由財經。檢自https://ec.ltn.com.tw/article/paper/1575789 (Aug.19.2023) 謝方娪(2022)。「金管會推主題式監理沙盒,聚焦數位身分認證」,中央社。檢自https://finance.technews.tw/2022/01/19/themed-supervision-sandbox/ (Feb.4.2022) 翟梓謙(2020)。「螞蟻上市|螞蟻A股遭叫停 港交所:暫緩螞蟻H股上市」,數位時代。檢自https://www.hk01.com/sns/article/544243?utm_source=01articlecopy&utm_medium=referral (Jul.4.2022) IDC(2020)。「2020 H1中國AI雲服務市場規模增長遠超預期」,IDC。檢自https://www.idc.com/getdoc.jsp?containerId=prCHC47212020 (Feb.8.2022) TWCC (2020). 2020_TWCC Brochure_June, https://www.digitimes.com.tw/twcc/whitebook/2020_TWCC%20Brochure_June_0630.pdf (Jun.7.2021) PwC(2017)。2017年全球金融科技調查台灣概要。檢自https://www.pwc.tw/zh/publications/assets/2017-fintech-taiwan-report.pdf(Feb.13.2022) 二、英文部分 Boag, S., Dube, P., El Maghraoui, K., Herta, B., Hummer, W., Jayaram, K.R., Khalaf, R., Muthusamy, V., Kalantar, M., and Verma, A. (2018, June 25-28). Dependability in a Multi-tenant Multi-framework Deep Learning as-a-Service Platform [Conference presentation]. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), 2018, pp. 43-46, Luxembourg, Luxembourg. doi: 10.1109/DSN-W.2018.00022. Brynjolfsson, E., & Mcafee, A. (2016). What’s Driving the Machine Learning Explosion. Harvard Business Review, 18(6), 3–11. Chesbrough, H. (2003). Open innovation:The new imperative for creating and profiting from technology. Boston:Harvard Business School Press. Chesbrough, H. (2006). Open Business Models: How to Thrive in the New Innovation Landscape. Boston: Harvard Business School Press. Davenport, T. H., & Ronanki, R. (2018). Artificial Intelligence for the Real World Don’t start with moon shots. Harvard Business Review, 96(1), 108–116. Elshawi, R., Sakr, S. J, Talia, D., & Trunfio, P. (2018). Big Data Systems Meet Machine Learning Challenges: Towards Big Data Science as a Service. Big Data Research, 14, 1–11. https://doi.org/10.1016/j.bdr.2018.04.004 GEORG VON KROGH, TORBJØRN NETLAND, AND MARTIN WÖRTER (2018). Winning With Open Process Innovation. WINTER 2018 MIT SLOAN MANAGEMENT REVIEW Iansiti, M., & Lakhani, K. R. (2020). Competing in the Age of AI: How Machine Intelligence Changes the Rules of Business. Harvard Business Review, (January–February 2020). Königstorfer, F., & Thalmann, S. (2020). Applications of Artificial Intelligence in Commercial Banks – A Research Agenda for Behavioral Finance. Behavioral and Experimental Finance, 27, 1–15. doi: doi.org/10.1016/j.jbef.2020.100352. Lauder, E. (2017, March 13). Google’s Fei-Fei Li Wants To Democratize AI. AI Business. https://aibusiness.com/document.asp?doc_id=760185(Accessed July 13, 2022) Lins, S., Pandl, K. D., Teigeler, H., Thiebes, S., Bayer, C., & Sunyaev, A. (2021). Artificial Intelligence as a Service Classification and Research Directions. Business & Information Systems Engineering, 63, 441–456. Mcafee, A. (2011). What Every CEO Needs to Know About The Cloud. Harvard Business Review, (November 2011). Moore, J. F. (1993). Predators and prey: A new ecology of competition. Harvard Business Review,71(3), 75-86. Moore, J. F. (1996). The death of competition: Leadership and strategy in the age of business ecosystems. HarperCollins. Narrative Science (2017), “The Rise of AI in Financial Services” .Narrative Science.https://narrativescience.com/resource/whitepaper/the-rise-of-ai-in-financial-services/ (Accessed Feb.5.2022) Pandl, K. D., Teigeler, H., Lins, S., Thiebes, S., & Sunyaev, A. (2021, January 5). Drivers and Inhibitors for Organizations’ Intention to Adopt Artificial Intelligence as a Service [Conference presentation]. Proceedings of the 54th Hawaii International Conference on System Sciences, 2021, pp. 1769-1778, Hawaii, United States. http://hdl.handle.net/10125/70827 Parsaeefard, S., Tabrizian, I., and Leon-Garcia, A. (2019, October 28-30). Artificial Intelligence as a Service (AI-aaS) on Software-Defined Infrastructure [Conference presentation]. 2019 IEEE Conference on Standards for Communications and Networking (CSCN), 2019, pp. 1-7, Granada, Spain. doi: 10.1109/CSCN.2019.8931372. Porter, M. (1996). What Is Strategy? Harvard Business Review, 61–78. Rai, A., Constantinides, P. J, & Sarker, S. (2019). Next-Generation Digital Platforms: Toward Human-AI Hybrids. MIS Q, 43(1). Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping Business With Artificial Intelligence. MIT Sloan Management Review and The Boston Consulting Group (September 06 2017). Reixa, M., Costa, C., & Aparicio, M. (2012). Cloud Services Evaluation Framework. OSDOC ’12: Proceedings of the Workshop on Open Source and Design of Communication, 61–69. Publisher Association for Computing Machinery. https://doi.org/10.1145/2316936.2316948 Rouhani, B. D., hussain, S. U., Lauter, K., & Koushanfar, F. (2018). ReDCrypt: Real-Time Privacy-Preserving Deep Learning Inference in Clouds Using FPGAs. ACM TRETS, 11(3), 1–21. https://doi.org/10.1145/3242899 Singapore Smart Nation and Digital Government Office. (2019), National Artificial Intelligence Strategy. Government of Singapore Publishing. https://www.smartnation.gov.sg/files/publications/national-ai-strategy.pdf Technavio (infiniti research ltd.) . (2021, June 5). Global Artificial Intelligence-as-a-Service (AIaaS) Market 2021-2025. Global Information, Inc. https://www.giiresearch.com/report/infi1018515-global-artificial-intelligence-service-aiaas.html Teece, D., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533. Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13), 1319-1350. Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., & Ristenpart, T. (2016, August 10-12). Stealing machine learning models via Prediction APIs [Conference presentation]. Proceedings of the 25th USENIX Security Symposium, 2019, pp. 1-7, Austin, TX, United States. https://doi.org/10.48550/arXiv.1609.02943 Tsai, W. T., Sun, X., & Balasooriya, J., (2010, April 12-14). Service-Oriented Cloud Computing Architecture [Conference presentation]. Seventh International Conference on Information Technology: New Generations, ITNG, Las Vegas, Nevada, USA. DOI:10.1109/ITNG.2010.214 Tsaih, R. H., Chang, H. L., Hsu, C. C., & Yen, D. C. (2022). The AI Teck-Stack Model. Communications of ACM, to be appeared. Wang, W., Gao, J., Zhang, M., Wang, S., Chen, G., Ng, T.K., Ooi, B.C., Shao, J., and Reyad, M. (2018). Rafiki: Machine Learning As an Analytics Service System. Proceedings of the VLDB Endowment, 12(12), 128–140. https://doi.org/10.14778/3282495.3282499 Xu, D., Wu, D., Xu, X., Zhu, L, & Bass, L. (2015). Making Real Time Data Analytics Available as a Service. QoSA '15: Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, 73–82. Publisher Association for Computing Machinery. https://doi.org/10.1145/2737182.2737186 Zhang, Z., Nandhakumar, J., Hummel, J. T., & Waardenburg, L. (2020). Addressing the Key Challenges of Developing Machine Learning AI Systems for Knowledge-Intensive Work. MIS Quarterly Executive, 19(4). zh_TW