Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 具有狀態轉換的擴散過程及其大離差行為之研究
A study of large deviations of diffusion processes with regime switching
作者 許慧儀
Hsu, Hui-Yi
貢獻者 許順吉<br>姜祖恕<br>洪芷漪
Sheu, Shuenn-Jyi<br>Chiang, Tzuu-Shuh<br>Hong, Jyy-I
許慧儀
Hsu, Hui-Yi
關鍵詞 大離差原則
收縮原則
Schilder定理
Wentzell-Freidlin定理
擴散過程
Markov跳躍過程
Large Deviation Principle
Contraction Principle
Schilder's Theorem
Wentzell-Freidlin Theorem
Diffusion Processes
Markov Jump Process
日期 2024
上傳時間 1-Jul-2024 12:56:06 (UTC+8)
摘要 我們考慮以下的d維隨機微分方程系統: dX^ε(t) = b(X^ε(t),Y(t))dt + √ε dW(t), t在[0,T]之間, X^ε(0) = x在R^d中, 其中W是標準的d維布朗運動,b: R^d × {1,2,...,n} → R^d是有界的,且對於i在{1,2,...,n}中,b(·,i)在全域上滿足Lipschitz連續。狀態轉換過程Y是一個有n個狀態的連續時間馬爾可夫過程,並且與W獨立。我們將考慮當ε趨近於0時,此方程解所形成的擴散過程的大離差原則。 在1987年,Carol Bezuidenhout(參見[2])推導了{X^ε}的大離差原則,其中Y為一般的隨機過程,並將其樣本路徑視為L^1空間中的一個元素。該結果包括了Y為n個狀態馬爾可夫過程的情形。在本論文中,我們將Y的樣本路徑視為具有Skorokhod拓撲的D空間中的一個元素。
We consider the following system of d-dimensional stochastic differential equations, dX^ε(t) = b(X^ε(t),Y(t))dt + √ε dW(t), t ∈ [0,T], X^ε(0) = x ∈ R^d, where W is a standard d-dimensional Brownian motion, b:R^d × {1,2,...,n} → R^d is bounded and each component b(·,i) is Lipschitz continuous for i in {1,2,...,n}. Also, the switching process Y is modeled by an n-state continuous time Markov jump process and is independent of W. We shall consider the large deviation principle for the law of the solution diffusion process as ϵ → 0. In 1987, Carol Bezuidenhout (cf. [2]) derived the large deviations principle of these processes {X^ε} for a general random process Y which is considered the sample path of Y as an element of the L^1-space . The result includes the case where Y is an n-state Markov process. In this thesis, we consider the sample path of Y as an element of the D-space with the Skorokhod topology.
參考文獻 [1] Carol Bezuidenhout. Small random perturbation of stochastic systems, Thesis. University of Minnesota, 1985. [2] Carol Bezuidenhout. A large deviations principle for small perturbations of random evolution equations. The Annals of Probability, pages 646–658, 1987. [3] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013. [4] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications, volume 38. Springer Science & Business Media, 2009. [5] Alexander Eizenberg and Mark Freidlin. Large deviations for markov processes corresponding to pde systems. The Annals of Probability, pages 1015–1044, 1993. [6] MI Freidlin, AD Wentzell, et al. Random perturbations of dynamical systems [electronic resource]. [7] Qi He and G Yin. Large deviations for multi-scale markovian switching systems with a small diffusion. Asymptotic Analysis, 87(3-4):123–145, 2014. [8] Frank Hollander. Large deviations, volume 14. American Mathematical Soc., 2000. [9] Hu Y J. A unified approach to the large deviations for small perturbations of random evolution equations with small perturbations. Sci China Ser A, (7):302–310, 1997. [10] Vitalii Konarovskyi. An introduction to large deviations. 2019. [11] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus. Springer, 2016. [12] Xiaocui Ma and Fubao Xi. Large deviations for empirical measures of switching diffusion processes with small parameters. Frontiers of Mathematics in China, 10:949–963, 2015. [13] Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 2. Macmillan New York, 1968. [14] Anatoly V Skorokhod. Limit theorems for stochastic processes. Theory of Probability & Its Applications, 1(3):261–290, 1956. [15] Varadhan and SR Srinivasa. Asymptotic probabilities and differential equations. Communications on Pure and Applied Mathematics, 19(3):261–286, 1966.
描述 碩士
國立政治大學
應用數學系
110751003
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110751003
資料類型 thesis
dc.contributor.advisor 許順吉<br>姜祖恕<br>洪芷漪zh_TW
dc.contributor.advisor Sheu, Shuenn-Jyi<br>Chiang, Tzuu-Shuh<br>Hong, Jyy-Ien_US
dc.contributor.author (Authors) 許慧儀zh_TW
dc.contributor.author (Authors) Hsu, Hui-Yien_US
dc.creator (作者) 許慧儀zh_TW
dc.creator (作者) Hsu, Hui-Yien_US
dc.date (日期) 2024en_US
dc.date.accessioned 1-Jul-2024 12:56:06 (UTC+8)-
dc.date.available 1-Jul-2024 12:56:06 (UTC+8)-
dc.date.issued (上傳時間) 1-Jul-2024 12:56:06 (UTC+8)-
dc.identifier (Other Identifiers) G0110751003en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/152098-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 110751003zh_TW
dc.description.abstract (摘要) 我們考慮以下的d維隨機微分方程系統: dX^ε(t) = b(X^ε(t),Y(t))dt + √ε dW(t), t在[0,T]之間, X^ε(0) = x在R^d中, 其中W是標準的d維布朗運動,b: R^d × {1,2,...,n} → R^d是有界的,且對於i在{1,2,...,n}中,b(·,i)在全域上滿足Lipschitz連續。狀態轉換過程Y是一個有n個狀態的連續時間馬爾可夫過程,並且與W獨立。我們將考慮當ε趨近於0時,此方程解所形成的擴散過程的大離差原則。 在1987年,Carol Bezuidenhout(參見[2])推導了{X^ε}的大離差原則,其中Y為一般的隨機過程,並將其樣本路徑視為L^1空間中的一個元素。該結果包括了Y為n個狀態馬爾可夫過程的情形。在本論文中,我們將Y的樣本路徑視為具有Skorokhod拓撲的D空間中的一個元素。zh_TW
dc.description.abstract (摘要) We consider the following system of d-dimensional stochastic differential equations, dX^ε(t) = b(X^ε(t),Y(t))dt + √ε dW(t), t ∈ [0,T], X^ε(0) = x ∈ R^d, where W is a standard d-dimensional Brownian motion, b:R^d × {1,2,...,n} → R^d is bounded and each component b(·,i) is Lipschitz continuous for i in {1,2,...,n}. Also, the switching process Y is modeled by an n-state continuous time Markov jump process and is independent of W. We shall consider the large deviation principle for the law of the solution diffusion process as ϵ → 0. In 1987, Carol Bezuidenhout (cf. [2]) derived the large deviations principle of these processes {X^ε} for a general random process Y which is considered the sample path of Y as an element of the L^1-space . The result includes the case where Y is an n-state Markov process. In this thesis, we consider the sample path of Y as an element of the D-space with the Skorokhod topology.en_US
dc.description.tableofcontents 致謝 i 中文摘要 ii Abstract iii Contents iv 1 Introduction 1 2 Preliminary 4 2.1 Large Deviation Principle and Contraction Principle 4 2.2 Schilder's Theorem 11 2.3 Wentzell–Freidlin Theorem 12 3 Main Result 18 3.1 Formulation of The Problem 18 3.2 Main Theorem 19 3.3 Some Properties 21 3.4 Proof of The Bounds 27 3.5 Proof of Theorem 3.2.1 31 3.6 A Counterexample 47 Appendix A The Skorokhod Topology 51 Appendix B Arzelà–Ascoli Theorem 53 Appendix C Grönwall's Inequality 58 Bibliography 60zh_TW
dc.format.extent 576889 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110751003en_US
dc.subject (關鍵詞) 大離差原則zh_TW
dc.subject (關鍵詞) 收縮原則zh_TW
dc.subject (關鍵詞) Schilder定理zh_TW
dc.subject (關鍵詞) Wentzell-Freidlin定理zh_TW
dc.subject (關鍵詞) 擴散過程zh_TW
dc.subject (關鍵詞) Markov跳躍過程zh_TW
dc.subject (關鍵詞) Large Deviation Principleen_US
dc.subject (關鍵詞) Contraction Principleen_US
dc.subject (關鍵詞) Schilder's Theoremen_US
dc.subject (關鍵詞) Wentzell-Freidlin Theoremen_US
dc.subject (關鍵詞) Diffusion Processesen_US
dc.subject (關鍵詞) Markov Jump Processen_US
dc.title (題名) 具有狀態轉換的擴散過程及其大離差行為之研究zh_TW
dc.title (題名) A study of large deviations of diffusion processes with regime switchingen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Carol Bezuidenhout. Small random perturbation of stochastic systems, Thesis. University of Minnesota, 1985. [2] Carol Bezuidenhout. A large deviations principle for small perturbations of random evolution equations. The Annals of Probability, pages 646–658, 1987. [3] Patrick Billingsley. Convergence of probability measures. John Wiley & Sons, 2013. [4] Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications, volume 38. Springer Science & Business Media, 2009. [5] Alexander Eizenberg and Mark Freidlin. Large deviations for markov processes corresponding to pde systems. The Annals of Probability, pages 1015–1044, 1993. [6] MI Freidlin, AD Wentzell, et al. Random perturbations of dynamical systems [electronic resource]. [7] Qi He and G Yin. Large deviations for multi-scale markovian switching systems with a small diffusion. Asymptotic Analysis, 87(3-4):123–145, 2014. [8] Frank Hollander. Large deviations, volume 14. American Mathematical Soc., 2000. [9] Hu Y J. A unified approach to the large deviations for small perturbations of random evolution equations with small perturbations. Sci China Ser A, (7):302–310, 1997. [10] Vitalii Konarovskyi. An introduction to large deviations. 2019. [11] Jean-François Le Gall. Brownian motion, martingales, and stochastic calculus. Springer, 2016. [12] Xiaocui Ma and Fubao Xi. Large deviations for empirical measures of switching diffusion processes with small parameters. Frontiers of Mathematics in China, 10:949–963, 2015. [13] Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 2. Macmillan New York, 1968. [14] Anatoly V Skorokhod. Limit theorems for stochastic processes. Theory of Probability & Its Applications, 1(3):261–290, 1956. [15] Varadhan and SR Srinivasa. Asymptotic probabilities and differential equations. Communications on Pure and Applied Mathematics, 19(3):261–286, 1966.zh_TW