Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 具有延遲時間的分支費波納契數列
k-Delayed Branching Fibonacci Sequences
作者 劉軒亦
LIU, XUAN-YI
貢獻者 洪芷漪
Hong, Jyy-I
劉軒亦
LIU, XUAN-YI
關鍵詞 具延遲時間的費波納契數列
費波納契數列
分支過程
K-delayed Fibonacci sequences
Fibonacci sequences
Branching process
日期 2024
上傳時間 5-Aug-2024 14:11:48 (UTC+8)
摘要 考慮一個延遲時間為 k 且每次生產數為服從同一分布的獨立隨機變數的分支費波那契數列,在本文中我們討論在時間趨近於無窮大時,兔子的總對數會成指數成長且相鄰兩代間個數的比值會趨近於定值,而此定值滿足某一由兔子總對數所對應的疊代式所產生的方程式。
Consider a branching Fibonacci sequence with delayed time k time units and a random production quantity each time. In this article, we discuss that, when time approaches infinity, the ratio of the numbers of pairs of rabbits between two successive time points will approach a constant value.
參考文獻 [1] K. B. Athreya and P.E. Ney. Branching Processes. Courier Corporation, 2004. [2] A. F. Horadam. A Generalized Fibonacci Sequence. Amer. Math. Monthly 68 (1961), 455-459. [3] M. Feinberg. Fifonacci-Tribonacci. Fibonacci Quarterly 1.3 (1963), 71-74. [4] C. C. Yalarigi. Properties of the Tribonacci Numbers. Fibonacci Quarterly 15.3 (1977), 193-200. [5] M. E. Waddill. The Tetranacci Sequence and Its Generalizations. Fibonacci Quarterly 30.1 (1992), 9-20. [6] S. Falcon and A. Plaza. On the Fibonacci k-numbers. Chaos, Solitons & Fractols, 32(5) (2007), 1615-1624. [7] S. Falcon. Generalized -Fibonacci Numbers. Gen. Math. Notes, vol.25, No.2.(2014),148-158. [8] C. C. Heyde. On a probabilistic analogue of the Fibonacci sequence. J. Appl. Prob.17. (1980). 1079-1082. [9] C. C. Heyde. On Fibonacci (or lagged Bienaymé-Galton-Watson) branching processes. J. Appl. Prob.18. (1981). 583-591. [10] J. B. MacQueen. A linear extension of the martingale convergence theorem. The Annals of Probability, vol.1, No.2. (1973). 263-271.
描述 碩士
國立政治大學
應用數學系
107751003
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0107751003
資料類型 thesis
dc.contributor.advisor 洪芷漪zh_TW
dc.contributor.advisor Hong, Jyy-Ien_US
dc.contributor.author (Authors) 劉軒亦zh_TW
dc.contributor.author (Authors) LIU, XUAN-YIen_US
dc.creator (作者) 劉軒亦zh_TW
dc.creator (作者) LIU, XUAN-YIen_US
dc.date (日期) 2024en_US
dc.date.accessioned 5-Aug-2024 14:11:48 (UTC+8)-
dc.date.available 5-Aug-2024 14:11:48 (UTC+8)-
dc.date.issued (上傳時間) 5-Aug-2024 14:11:48 (UTC+8)-
dc.identifier (Other Identifiers) G0107751003en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/152818-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 107751003zh_TW
dc.description.abstract (摘要) 考慮一個延遲時間為 k 且每次生產數為服從同一分布的獨立隨機變數的分支費波那契數列,在本文中我們討論在時間趨近於無窮大時,兔子的總對數會成指數成長且相鄰兩代間個數的比值會趨近於定值,而此定值滿足某一由兔子總對數所對應的疊代式所產生的方程式。zh_TW
dc.description.abstract (摘要) Consider a branching Fibonacci sequence with delayed time k time units and a random production quantity each time. In this article, we discuss that, when time approaches infinity, the ratio of the numbers of pairs of rabbits between two successive time points will approach a constant value.en_US
dc.description.tableofcontents 致謝 i 中文摘要 ii Abstract iii Contents 0 Chapter 1 Introduction 1 1.1 Fibonacci sequence 1 1.2 Galton-Watson branching process 3 1.3 Fibonacci branching process 7 Chapter 2 k-Delayed Branching Fibonacci Sequences 10 2.1 The setting for k-delayed branching Fibonacci sequences 10 2.2 Properties of the key equation 12 2.3 Main result on k-delayed brancging Fibonacci sequences 15 2.4 Proof of Theorem2.3.1 16 Chapter 3 Conclusion 27 Appendix A 29 Appendix B 32 Bibliography 34zh_TW
dc.format.extent 1296345 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0107751003en_US
dc.subject (關鍵詞) 具延遲時間的費波納契數列zh_TW
dc.subject (關鍵詞) 費波納契數列zh_TW
dc.subject (關鍵詞) 分支過程zh_TW
dc.subject (關鍵詞) K-delayed Fibonacci sequencesen_US
dc.subject (關鍵詞) Fibonacci sequencesen_US
dc.subject (關鍵詞) Branching processen_US
dc.title (題名) 具有延遲時間的分支費波納契數列zh_TW
dc.title (題名) k-Delayed Branching Fibonacci Sequencesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] K. B. Athreya and P.E. Ney. Branching Processes. Courier Corporation, 2004. [2] A. F. Horadam. A Generalized Fibonacci Sequence. Amer. Math. Monthly 68 (1961), 455-459. [3] M. Feinberg. Fifonacci-Tribonacci. Fibonacci Quarterly 1.3 (1963), 71-74. [4] C. C. Yalarigi. Properties of the Tribonacci Numbers. Fibonacci Quarterly 15.3 (1977), 193-200. [5] M. E. Waddill. The Tetranacci Sequence and Its Generalizations. Fibonacci Quarterly 30.1 (1992), 9-20. [6] S. Falcon and A. Plaza. On the Fibonacci k-numbers. Chaos, Solitons & Fractols, 32(5) (2007), 1615-1624. [7] S. Falcon. Generalized -Fibonacci Numbers. Gen. Math. Notes, vol.25, No.2.(2014),148-158. [8] C. C. Heyde. On a probabilistic analogue of the Fibonacci sequence. J. Appl. Prob.17. (1980). 1079-1082. [9] C. C. Heyde. On Fibonacci (or lagged Bienaymé-Galton-Watson) branching processes. J. Appl. Prob.18. (1981). 583-591. [10] J. B. MacQueen. A linear extension of the martingale convergence theorem. The Annals of Probability, vol.1, No.2. (1973). 263-271.zh_TW