Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 國家自然資源稟賦對可再生能源發展與專利新穎性的影響-以歐洲國家為例
The Impact of National Natural Resource Endowments on Renewable Energy Development and Patent Novelty: A Case Study of European Countries
作者 陳品穎
Chen, Pin-Ying
貢獻者 李文傑<br>李浩仲
Lee, Wen-Chieh<br>Li, Hao-Chung
陳品穎
Chen, Pin-Ying
關鍵詞 可再生能源發電
自然資源稟賦
政府政策
專利新穎性
Renewable energy generation
Natural resource endowment
Government policy
Patent novelty
日期 2024
上傳時間 4-Sep-2024 14:38:37 (UTC+8)
摘要 在全球低碳轉型與實現淨零碳排放的共同目標推動下,增加可再生能源的使用已變得迫切。本研究聚焦於太陽能、風力與水力這三種普及性較高的可再生能源發電技術,探討自然資源稟賦及其他相關因素,對這些技術的裝機容量和專利發展的影響,並分析這些因素如何影響新穎性專利(NR、NTO)的發展。研究結果表明,經濟發展、二氧化碳排放量以及碳稅的實施,不僅是推動可再生能源部署與專利創新的關鍵,也是促進NR和NTO專利發展的重要因素。相較之下,稟賦並非所有可再生能源發展的重要關鍵因素。然而,在眾多可再生能源技術中,唯有太陽能稟賦的多寡會影響其裝機部署、技術創新和具新穎性的專利發展,產生正向顯著的影響,而風力的稟賦僅對具有新穎性的專利(NR、NTO)產生影響。整體而言,政府政策對可再生能源的發展起到了顯著作用,異質性的政策效果在本研究中呈現,如配額政策與上網電價都可以促進可再生能源發展。此外,我們還發現,若能依據不同的自然資源條件,制定相應的上網電價政策,則可以進一步刺激技術的創新。
Under the global push for low-carbon transition and achieving net-zero emissions, increasing the use of renewable energy has become urgent. This study focuses on three widely used renewable energy technologies: solar, wind, and hydro power. It examines how natural resource endowments and other related factors impact the installed capacity and patent development of these technologies, and analyzes how these factors influence the development of novelty patents (NR, NTO). The results indicate that economic development, CO₂ emissions, and the implementation of carbon taxes are not only key drivers for the deployment of renewable energy and patent innovation but also important factors for the development of NR and NTO patents. In contrast, endowment is not a crucial factor for the development of all renewable energy sources. However, among various renewable energy technologies, only solar energy's endowment significantly affects its deployment, technological innovation, and development of novelty patents, with a positive significant impact, while wind energy's endowment only affects novelty patents (NR, NTO). Overall, government policies play a significant role in the development of renewable energy, with heterogeneous policy effects presented in this study, such as quota policies and feed-in tariffs, which can promote renewable energy development. Additionally, we found that formulating feed-in tariff policies based on different natural resource conditions can further stimulate technological innovation.
參考文獻 羅佳真 (2024)。利用專利新穎性指標衡量汽車產業的技術創新。國立政治大學 碩博士生論文。 朱妍儒 (2024)。補貼對專利新穎性與研發能力的影響 - 以HORIZON 2020例。國立政治大學碩博士生論文。 Abban, O. J., Xing, Y. H., Nuţă, A. C., Nuţă, F. M., Borah, P. S., Ofori, C., & Jing, Y. J. (2023). Policies for carbon-zero targets: Examining the spillover effects of renewable energy and patent applications on environmental quality in Europe. Energy Economics, 126, 106954. Aguirre, M., & Ibikunle, G. (2014). Determinants of renewable energy growth: A global sample analysis. Energy policy, 69, 374-384. Al Riza, D. F., & Gilani, S. I.-H. (2014). Standalone photovoltaic system sizing using peak sun hour method and evaluation by TRNSYS simulation. International Journal of Renewable Energy Research, 4(1), 109-114. Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment, 822, 153645. Altinbilek, D., Seelos, K., & Taylor, R. (2005). Hydropower's role in delivering sustainability. Energy & environment, 16(5), 815-824. Bamati, N., & Raoofi, A. (2020). Development level and the impact of technological factor on renewable energy production. Renewable Energy, 151, 946-955. Bartle, A. (2002). Hydropower potential and development activities. Energy policy, 30(14), 1231-1239. Bayer, P., Dolan, L., & Urpelainen, J. (2013). Global patterns of renewable energy innovation, 1990–2009. Energy for Sustainable Development, 17(3), 288-295. Belabes, B., Youcefi, A., Guerri, O., Djamai, M., & Kaabeche, A. (2015). Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria. Renewable and sustainable energy reviews, 51, 1245-1255. Beurskens, H. (1999). Trends in the development and implementation of wind energy technology. Bilgili, M., Yasar, A., & Simsek, E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and sustainable energy reviews, 15(2), 905-915. Castillo, C. P., e Silva, F. B., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy policy, 88, 86-99. Chimres, N., & Wongwises, S. (2016). Critical review of the current status of solar energy in Thailand. Renewable and sustainable energy reviews, 58, 198-207. Dimas, F., Gillani, S., & Ans, M. (2011). Preliminary Investigation into the use of Solar PV Systems for Residential Application in Bandar Sri Iskandar, Malaysia. Journal of Applied Sciences, 11(11), 2012-2017. Enevoldsen, P., & Jacobson, M. Z. (2021). Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide. Energy for Sustainable Development, 60, 40-51. Grubb, M. J., & Meyer, N. I. (1993). Wind energy: resources, systems, and regional strategies. Hatziargyriou, N., & Zervos, A. (2001). Wind power development in Europe. Proceedings of the IEEE, 89(12), 1765-1782. Helm, S., Tannock, Q., & Iliev, I. (2014). Renewable energy technology: evolution and policy implications–evidence from patent literature. Global Challenges Report. WIPO, Geneva. Hille, E., Althammer, W., & Diederich, H. (2020). Environmental regulation and innovation in renewable energy technologies: does the policy instrument matter? Technological Forecasting and Social Change, 153, 119921. Hoogwijk, M., De Vries, B., & Turkenburg, W. (2004). Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Economics, 26(5), 889-919. Johnstone, N., Haščič, I., & Popp, D. (2010). Renewable energy policies and technological innovation: evidence based on patent counts. Environmental and resource economics, 45, 133-155. la Tour, M.-A. D. (2023). Photovoltaic and wind energy potential in Europe–A systematic review. Renewable and sustainable energy reviews, 179, 113189. Lehner, B., Czisch, G., & Vassolo, S. (2005). The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy policy, 33(7), 839-855. Liu, J., Zuo, J., Sun, Z., Zillante, G., & Chen, X. (2013). Sustainability in hydropower development—A case study. Renewable and sustainable energy reviews, 19, 230-237. Liu, W., Zhang, X., & Feng, S. (2019). Does renewable energy policy work? Evidence from a panel data analysis. Renewable Energy, 135, 635-642. Lopes, F. M., Silva, H. G., Salgado, R., Cavaco, A., Canhoto, P., & Collares-Pereira, M. (2018). Short-term forecasts of GHI and DNI for solar energy systems operation: assessment of the ECMWF integrated forecasting system in southern Portugal. Solar energy, 170, 14-30. Maasoumi, E., Heshmati, A., & Lee, I. (2021). Green innovations and patenting renewable energy technologies. Empirical economics, 60(1), 513-538. Madsen, D. N., & Hansen, J. P. (2019). Outlook of solar energy in Europe based on economic growth characteristics. Renewable and sustainable energy reviews, 114, 109306. Manzano-Agugliaro, F., Taher, M., Zapata-Sierra, A., Juaidi, A., & Montoya, F. G. (2017). An overview of research and energy evolution for small hydropower in Europe. Renewable and sustainable energy reviews, 75, 476-489. Muhammed, G., & Tekbiyik-Ersoy, N. (2020). Development of renewable energy in China, USA, and Brazil: A comparative study on renewable energy policies. Sustainability, 12(21), 9136. Nesta, L., Vona, F., & Nicolli, F. (2014). Environmental policies, competition and innovation in renewable energy. Journal of Environmental Economics and Management, 67(3), 396-411. Papież, M., Śmiech, S., & Frodyma, K. (2018). Determinants of renewable energy development in the EU countries. A 20-year perspective. Renewable and sustainable energy reviews, 91, 918-934. Przychodzen, W. (2024). Political factors in renewable energy generation: Do populism, carbon tax and feed-in tariffs matter? Energy Research & Social Science, 115, 103628. Renné, D. S. (2022). Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables. Solar Compass, 1, 100007. Ryberg, D. S., Caglayan, D. G., Schmitt, S., Linßen, J., Stolten, D., & Robinius, M. (2019). The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs. Energy, 182, 1222-1238. Salam, M. A., & Noguchi, T. (2005). Impact of human activities on carbon dioxide (CO 2) emissions: A statistical analysis. Environmentalist, 25, 19-30. Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., & Shelby, J. (2018). The national solar radiation data base (NSRDB). Renewable and sustainable energy reviews, 89, 51-60. Shahzadi, I., Yaseen, M. R., Khan, M. T. I., Makhdum, M. S. A., & Ali, Q. (2022). The nexus between research and development, renewable energy and environmental quality: Evidence from developed and developing countries. Renewable Energy, 190, 1089-1099. Sharma, S. S. (2011). Determinants of carbon dioxide emissions: empirical evidence from 69 countries. Applied energy, 88(1), 376-382. Solangi, K., Islam, M., Saidur, R., Rahim, N., & Fayaz, H. (2011). A review on global solar energy policy. Renewable and sustainable energy reviews, 15(4), 2149-2163. Šúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar energy, 81(10), 1295-1305. Tee, W.-S., Chin, L., & Abdul-Rahim, A. S. (2021). Determinants of renewable energy production: do intellectual property rights matter? Energies, 14(18), 5707. Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research policy, 45(3), 707-723. Vinhoza, A., & Schaeffer, R. (2021). Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renewable and sustainable energy reviews, 146, 111185. Zhao, Z.-Y., & Chen, Y.-L. (2018). Critical factors affecting the development of renewable energy power generation: Evidence from China. Journal of Cleaner Production, 184, 466-480. Zhou, C. (2019). Can intellectual property rights within climate technology transfer work for the UNFCCC and the Paris Agreement? International Environmental Agreements: Politics, Law and Economics, 19(1), 107-122.
描述 碩士
國立政治大學
經濟學系
111258020
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111258020
資料類型 thesis
dc.contributor.advisor 李文傑<br>李浩仲zh_TW
dc.contributor.advisor Lee, Wen-Chieh<br>Li, Hao-Chungen_US
dc.contributor.author (Authors) 陳品穎zh_TW
dc.contributor.author (Authors) Chen, Pin-Yingen_US
dc.creator (作者) 陳品穎zh_TW
dc.creator (作者) Chen, Pin-Yingen_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-Sep-2024 14:38:37 (UTC+8)-
dc.date.available 4-Sep-2024 14:38:37 (UTC+8)-
dc.date.issued (上傳時間) 4-Sep-2024 14:38:37 (UTC+8)-
dc.identifier (Other Identifiers) G0111258020en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153292-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟學系zh_TW
dc.description (描述) 111258020zh_TW
dc.description.abstract (摘要) 在全球低碳轉型與實現淨零碳排放的共同目標推動下,增加可再生能源的使用已變得迫切。本研究聚焦於太陽能、風力與水力這三種普及性較高的可再生能源發電技術,探討自然資源稟賦及其他相關因素,對這些技術的裝機容量和專利發展的影響,並分析這些因素如何影響新穎性專利(NR、NTO)的發展。研究結果表明,經濟發展、二氧化碳排放量以及碳稅的實施,不僅是推動可再生能源部署與專利創新的關鍵,也是促進NR和NTO專利發展的重要因素。相較之下,稟賦並非所有可再生能源發展的重要關鍵因素。然而,在眾多可再生能源技術中,唯有太陽能稟賦的多寡會影響其裝機部署、技術創新和具新穎性的專利發展,產生正向顯著的影響,而風力的稟賦僅對具有新穎性的專利(NR、NTO)產生影響。整體而言,政府政策對可再生能源的發展起到了顯著作用,異質性的政策效果在本研究中呈現,如配額政策與上網電價都可以促進可再生能源發展。此外,我們還發現,若能依據不同的自然資源條件,制定相應的上網電價政策,則可以進一步刺激技術的創新。zh_TW
dc.description.abstract (摘要) Under the global push for low-carbon transition and achieving net-zero emissions, increasing the use of renewable energy has become urgent. This study focuses on three widely used renewable energy technologies: solar, wind, and hydro power. It examines how natural resource endowments and other related factors impact the installed capacity and patent development of these technologies, and analyzes how these factors influence the development of novelty patents (NR, NTO). The results indicate that economic development, CO₂ emissions, and the implementation of carbon taxes are not only key drivers for the deployment of renewable energy and patent innovation but also important factors for the development of NR and NTO patents. In contrast, endowment is not a crucial factor for the development of all renewable energy sources. However, among various renewable energy technologies, only solar energy's endowment significantly affects its deployment, technological innovation, and development of novelty patents, with a positive significant impact, while wind energy's endowment only affects novelty patents (NR, NTO). Overall, government policies play a significant role in the development of renewable energy, with heterogeneous policy effects presented in this study, such as quota policies and feed-in tariffs, which can promote renewable energy development. Additionally, we found that formulating feed-in tariff policies based on different natural resource conditions can further stimulate technological innovation.en_US
dc.description.tableofcontents 第一章 緒論 7 第一節 研究背景 7 第二節 研究動機 10 第三節 研究範圍 11 第二章 文獻回顧 13 第一節 可再生能源驅動因素與挑戰 13 第二節 專利的價值與影響 14 第三節 區域發電潛力評估 15 一、 太陽能潛力 15 二、 風力潛力 16 三、 水力潛力 18 第三章 研究方法 19 第一節 可再生能源潛力計算 19 一、 太陽能潛力評估 19 二、 風力潛力評估 21 三、 水力潛力評估 22 第二節 專利新穎性衡量指標 22 第三節 模型設定 24 第四章 資料 27 第一節 變數資料說明 27 第二節 敘述統計 34 一、 各國可再生能源專利分布 34 二、 各國專利新穎性比率 37 三、 可再生能源裝機容量 39 第五章 研究結果 42 第一節 不同可再生能源的潛力 42 第二節 迴歸結果 44 一、 稟賦對於可再生能源的裝機容量與專利的影響 44 二、 稟賦是否可以增強可再生能源的政策效果 47 三、 發展具新穎性專利所受到的驅動因素 49 第六章 結論與建議 52 參考文獻 53zh_TW
dc.format.extent 2571928 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111258020en_US
dc.subject (關鍵詞) 可再生能源發電zh_TW
dc.subject (關鍵詞) 自然資源稟賦zh_TW
dc.subject (關鍵詞) 政府政策zh_TW
dc.subject (關鍵詞) 專利新穎性zh_TW
dc.subject (關鍵詞) Renewable energy generationen_US
dc.subject (關鍵詞) Natural resource endowmenten_US
dc.subject (關鍵詞) Government policyen_US
dc.subject (關鍵詞) Patent noveltyen_US
dc.title (題名) 國家自然資源稟賦對可再生能源發展與專利新穎性的影響-以歐洲國家為例zh_TW
dc.title (題名) The Impact of National Natural Resource Endowments on Renewable Energy Development and Patent Novelty: A Case Study of European Countriesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 羅佳真 (2024)。利用專利新穎性指標衡量汽車產業的技術創新。國立政治大學 碩博士生論文。 朱妍儒 (2024)。補貼對專利新穎性與研發能力的影響 - 以HORIZON 2020例。國立政治大學碩博士生論文。 Abban, O. J., Xing, Y. H., Nuţă, A. C., Nuţă, F. M., Borah, P. S., Ofori, C., & Jing, Y. J. (2023). Policies for carbon-zero targets: Examining the spillover effects of renewable energy and patent applications on environmental quality in Europe. Energy Economics, 126, 106954. Aguirre, M., & Ibikunle, G. (2014). Determinants of renewable energy growth: A global sample analysis. Energy policy, 69, 374-384. Al Riza, D. F., & Gilani, S. I.-H. (2014). Standalone photovoltaic system sizing using peak sun hour method and evaluation by TRNSYS simulation. International Journal of Renewable Energy Research, 4(1), 109-114. Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment, 822, 153645. Altinbilek, D., Seelos, K., & Taylor, R. (2005). Hydropower's role in delivering sustainability. Energy & environment, 16(5), 815-824. Bamati, N., & Raoofi, A. (2020). Development level and the impact of technological factor on renewable energy production. Renewable Energy, 151, 946-955. Bartle, A. (2002). Hydropower potential and development activities. Energy policy, 30(14), 1231-1239. Bayer, P., Dolan, L., & Urpelainen, J. (2013). Global patterns of renewable energy innovation, 1990–2009. Energy for Sustainable Development, 17(3), 288-295. Belabes, B., Youcefi, A., Guerri, O., Djamai, M., & Kaabeche, A. (2015). Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria. Renewable and sustainable energy reviews, 51, 1245-1255. Beurskens, H. (1999). Trends in the development and implementation of wind energy technology. Bilgili, M., Yasar, A., & Simsek, E. (2011). Offshore wind power development in Europe and its comparison with onshore counterpart. Renewable and sustainable energy reviews, 15(2), 905-915. Castillo, C. P., e Silva, F. B., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy policy, 88, 86-99. Chimres, N., & Wongwises, S. (2016). Critical review of the current status of solar energy in Thailand. Renewable and sustainable energy reviews, 58, 198-207. Dimas, F., Gillani, S., & Ans, M. (2011). Preliminary Investigation into the use of Solar PV Systems for Residential Application in Bandar Sri Iskandar, Malaysia. Journal of Applied Sciences, 11(11), 2012-2017. Enevoldsen, P., & Jacobson, M. Z. (2021). Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide. Energy for Sustainable Development, 60, 40-51. Grubb, M. J., & Meyer, N. I. (1993). Wind energy: resources, systems, and regional strategies. Hatziargyriou, N., & Zervos, A. (2001). Wind power development in Europe. Proceedings of the IEEE, 89(12), 1765-1782. Helm, S., Tannock, Q., & Iliev, I. (2014). Renewable energy technology: evolution and policy implications–evidence from patent literature. Global Challenges Report. WIPO, Geneva. Hille, E., Althammer, W., & Diederich, H. (2020). Environmental regulation and innovation in renewable energy technologies: does the policy instrument matter? Technological Forecasting and Social Change, 153, 119921. Hoogwijk, M., De Vries, B., & Turkenburg, W. (2004). Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Economics, 26(5), 889-919. Johnstone, N., Haščič, I., & Popp, D. (2010). Renewable energy policies and technological innovation: evidence based on patent counts. Environmental and resource economics, 45, 133-155. la Tour, M.-A. D. (2023). Photovoltaic and wind energy potential in Europe–A systematic review. Renewable and sustainable energy reviews, 179, 113189. Lehner, B., Czisch, G., & Vassolo, S. (2005). The impact of global change on the hydropower potential of Europe: a model-based analysis. Energy policy, 33(7), 839-855. Liu, J., Zuo, J., Sun, Z., Zillante, G., & Chen, X. (2013). Sustainability in hydropower development—A case study. Renewable and sustainable energy reviews, 19, 230-237. Liu, W., Zhang, X., & Feng, S. (2019). Does renewable energy policy work? Evidence from a panel data analysis. Renewable Energy, 135, 635-642. Lopes, F. M., Silva, H. G., Salgado, R., Cavaco, A., Canhoto, P., & Collares-Pereira, M. (2018). Short-term forecasts of GHI and DNI for solar energy systems operation: assessment of the ECMWF integrated forecasting system in southern Portugal. Solar energy, 170, 14-30. Maasoumi, E., Heshmati, A., & Lee, I. (2021). Green innovations and patenting renewable energy technologies. Empirical economics, 60(1), 513-538. Madsen, D. N., & Hansen, J. P. (2019). Outlook of solar energy in Europe based on economic growth characteristics. Renewable and sustainable energy reviews, 114, 109306. Manzano-Agugliaro, F., Taher, M., Zapata-Sierra, A., Juaidi, A., & Montoya, F. G. (2017). An overview of research and energy evolution for small hydropower in Europe. Renewable and sustainable energy reviews, 75, 476-489. Muhammed, G., & Tekbiyik-Ersoy, N. (2020). Development of renewable energy in China, USA, and Brazil: A comparative study on renewable energy policies. Sustainability, 12(21), 9136. Nesta, L., Vona, F., & Nicolli, F. (2014). Environmental policies, competition and innovation in renewable energy. Journal of Environmental Economics and Management, 67(3), 396-411. Papież, M., Śmiech, S., & Frodyma, K. (2018). Determinants of renewable energy development in the EU countries. A 20-year perspective. Renewable and sustainable energy reviews, 91, 918-934. Przychodzen, W. (2024). Political factors in renewable energy generation: Do populism, carbon tax and feed-in tariffs matter? Energy Research & Social Science, 115, 103628. Renné, D. S. (2022). Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables. Solar Compass, 1, 100007. Ryberg, D. S., Caglayan, D. G., Schmitt, S., Linßen, J., Stolten, D., & Robinius, M. (2019). The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs. Energy, 182, 1222-1238. Salam, M. A., & Noguchi, T. (2005). Impact of human activities on carbon dioxide (CO 2) emissions: A statistical analysis. Environmentalist, 25, 19-30. Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., & Shelby, J. (2018). The national solar radiation data base (NSRDB). Renewable and sustainable energy reviews, 89, 51-60. Shahzadi, I., Yaseen, M. R., Khan, M. T. I., Makhdum, M. S. A., & Ali, Q. (2022). The nexus between research and development, renewable energy and environmental quality: Evidence from developed and developing countries. Renewable Energy, 190, 1089-1099. Sharma, S. S. (2011). Determinants of carbon dioxide emissions: empirical evidence from 69 countries. Applied energy, 88(1), 376-382. Solangi, K., Islam, M., Saidur, R., Rahim, N., & Fayaz, H. (2011). A review on global solar energy policy. Renewable and sustainable energy reviews, 15(4), 2149-2163. Šúri, M., Huld, T. A., Dunlop, E. D., & Ossenbrink, H. A. (2007). Potential of solar electricity generation in the European Union member states and candidate countries. Solar energy, 81(10), 1295-1305. Tee, W.-S., Chin, L., & Abdul-Rahim, A. S. (2021). Determinants of renewable energy production: do intellectual property rights matter? Energies, 14(18), 5707. Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research policy, 45(3), 707-723. Vinhoza, A., & Schaeffer, R. (2021). Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renewable and sustainable energy reviews, 146, 111185. Zhao, Z.-Y., & Chen, Y.-L. (2018). Critical factors affecting the development of renewable energy power generation: Evidence from China. Journal of Cleaner Production, 184, 466-480. Zhou, C. (2019). Can intellectual property rights within climate technology transfer work for the UNFCCC and the Paris Agreement? International Environmental Agreements: Politics, Law and Economics, 19(1), 107-122.zh_TW