Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 政策效率與公平之權衡-以運具脫碳為例
The Discretion of Policy Efficiency and Equity: A Case Study of Decarbonizing Transportation
作者 陳樹儒
Chen, Shu-Ju
貢獻者 蕭代基
Shaw, Dai-Gee
陳樹儒
Chen, Shu-Ju
關鍵詞 綠色運具政策
碳稅及能源稅
貨物稅補貼
E3ME模型
所得分配
Green Transportation Policy
Carbon Tax and Energy Tax
Commodity Tax Subsidies
E3ME Model
Income Distribution
日期 2024
上傳時間 4-Sep-2024 14:44:29 (UTC+8)
摘要 運具脫碳政策之目的係為解決空氣汙染及氣候變遷問題。運具脫碳能改善空氣品質進而降低罹患呼吸系統和心血管等疾病的風險。此外,車輛行駛中所產生之二氧化碳,亦是政府淨零政策目標有關運輸部門所必須解決最為重要的一環。本研究之目的係評估政府當前運具脫碳政策之公平性及比較不同政策之效率性,進而提供可執行之權衡政策供執政者參考。 首先,本研究使用我國107年至111年的家庭收支調查原始資料,分析我國不同所得組家戶之運具使用及所得關聯性,結果顯示有三:第一,目前僅高所得組家戶能取得當前電動車政策補貼紅利;第二,交通支出占低所得組家戶之可支配所得比例較高;第三,各等分位家戶車輛持有數皆有逐年上升趨勢。再者,本研究透過E3ME模型模擬不同政策情境下對不同運具使用及排放之長短期影響,結果顯示以降低車輛二氧化碳當量排放量效率而言,強制性政策效率最佳,惟實務上可能流失政治支持不易執行;補貼節能政策僅在2031年以前有微幅初期紅利,惟此等能源節約之補貼僅能減少污染者的外部成本,並未增加外部效益,在長期下非為適當政策。以模型估計2040年之結果為例,相較於未施以其他政策之情境,施加碳稅政策之情境較補貼節能政策情境對車輛總體二氧化碳當量排放量降低效果差異15.77%,結果顯示在長期碳稅政策明顯優於補貼節能政策。此外,電動車電能提供的來源亦非常重要,若未計算電能來源之間接排放,結果顯示將高估降低車輛總體排放量效益8.27%。 最後,研究建議有三:第一,設定貨物稅之電動車稅式支出上限;第二,強化老車汰舊換新政策避免市場擴張;第三,引入漸進式碳稅及能源稅,並輔以回饋機制。
The objective of transportation decarbonization policies is to address air pollution and climate change issues. Decarbonizing transportation can improve air quality, thereby reducing the risk of respiratory and cardiovascular diseases. Additionally, carbon dioxide emissions from vehicles are a crucial aspect that must be addressed by the government's net-zero policy targets within the transportation sector. This study aims to assess the equity of the current transportation decarbonization policies and compare the efficiency of different policies, providing actionable trade-off policies for policymakers. This study utilizes raw data from the 2018 to 2022 Household Income and Expenditure Survey to analyze the relationship between vehicle usage and income among households of different income groups in Taiwan. The analysis reveals three key findings: (1) Only high-income households can benefit from existing electric vehicle subsidy policies; (2) Transportation expenditures are regressive, with a higher proportion of disposable income spent on transportation by low-income households; (3) The number of vehicles owned by households across all income quintiles has shown a yearly upward trend. Furthermore, this study employs the E3ME model to simulate the short- and long-term impacts of different policy scenarios on vehicle usage and emissions. The results show that, in terms of efficiency in reducing vehicle CO2-equivalent emissions, mandatory policies are the most effective. However, they may lose political support and be difficult to implement in practice. Energy-saving subsidy policies provide only slight initial benefits before 2031; these subsidies merely reduce the external costs for polluters without increasing external benefits, making them unsuitable as a long-term policy. For instance, the model estimates for 2040 indicate that the scenario with a carbon tax policy results in a 15.77% greater reduction in total vehicle CO2-equivalent emissions compared to the energy-saving subsidy policy scenario, demonstrating the long-term superiority of the carbon tax policy. Additionally, the source of electricity for electric vehicles is also critical. If the indirect emissions from electricity sources are not accounted for, the benefits of reducing total vehicle emissions will be overestimated by 8.27%. The study offers three policy recommendations: (1) Establish a cap on electric vehicle tax expenditures within the commodity tax framework; (2) Strengthen policies for replacing old vehicles to prevent market expansion; (3) Introduce a gradual carbon tax and energy tax, complemented by a rebate mechanism.
參考文獻 左峻德主持(2013)。我國減碳目標下之市場機制政策與配套措施設計及評估(行政院原子能委員會委託研究計畫研究報告,1022001INER043)。 交通部(2023)。臺灣 2050 淨零轉型「運具電動化及無碳化」關鍵戰略行動計畫。 行政院主計總處(2008)。所得分配測度新思維。 2008年社會指標統計年報,17–20。 行政院主計總處(2023)。111年家庭收支調查(AA170047)【原始數據】取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://doi.org/10.6141/TW-SRDA-AA170047-1 宋雅珍(2021)。新能源運具之租稅優惠探討 -以我國電動機車為例。經濟研究, 21,365–390。 李昕(2023)。主要國家發展運具電動化策略對臺灣之啟示。經濟研究,23,1–38。 李惠卿(2014)。能源稅開徵與貨物稅整合相關問題探討。財稅研究,43(6), 95–119。 周濟主持(2007)。溫室氣體減量政策對運輸及住商部門之影響及因應對策(行政院經濟建設委員會委託之報告,(96)052.209)。 林元興(2015)。課徵環境稅所面臨的問題。財稅研究,44(2),94-111。 林玲如、劉錦龍(2017)。強制性能源效率分級政策的成效—以冷氣機產品為例。臺灣能源期刊,4(4),465–487. 林晉勗主持(2018)。我國新能源政策下碳稅對 3E 及所得分配之影響分析(行政院原子能委員會委託研究計畫研究報告,107A003)。 孫克難(2017)。臺灣三次賦稅改革之政經分析。財稅研究,46(2),1–30。 曹美慧主持(2023)。推動運輸部門溫室氣體減量事項及深化減碳路徑評估。交通部運輸研究所。 陳宛君、陳奕均、森晶寿(2022)。碳定價政策、日本全球暖化對策稅與台灣能源稅制。臺灣銀行季刊,73(1)。 黃耀輝(2007)。能源稅之設計與動態規劃。財團法人中技社。 曾佩如主持(2023)。建構運輸部門2050深度減碳評估模型及推動溫室氣體減量(1/2)—模型建構與減碳工作推動。交通部運輸研究所。 經濟部工業局(2016)。汽機車汰舊換新暨中古車出口稅式支出評估報告。 經濟部工業局(2017)。電動車輛免徵貨物稅(106~110 年)稅式支出評估報告。 經濟部工業局(2021)。電動車輛免徵貨物稅及使用牌照稅(111~114 年)稅式支出評估報告。 蕭代基、傅俞瑄、林師模、黃琝琇(2020),減碳政策在台灣:補貼或課稅?, 綠色經濟期刊,第 6 卷,第 A1-23 頁。 蕭代基主持(2009)。綠色稅制之研究(行政院賦稅改革委員會委託研究報告)。 Allcott, H., & Greenstone, M. (2012). Is there an energy efficiency gap?. Journal of Economic perspectives, 26(1), 3-28. Andersen, P., & Skou, M. (2010). Europe’s experience with carbon-energy taxation. SAPI EN. S. Surveys and perspectives integrating environment and society, (3.2). Bailey, E. E., & Friedlaender, A. F. (1982). Market structure and multiproduct industries. Journal of economic literature, 20(3), 1024-1048. Baranzini, A., Goldemberg, J., & Speck, S. (2000). A future for carbon taxes. Ecological economics, 32(3), 395-412. Baranzini, A., Goldemberg, J., & Speck, S. (2000). A future for carbon taxes. Ecological economics, 32(3), 395-412. Bardazzi, R., & Pazienza, M. G. (2023). Vulnerable Households in the Energy Transition. In Vulnerable Households in the Energy Transition: Energy Poverty, Demographics and Policies (pp. 1-8). Cham: Springer International Publishing. Beck, M., Rivers, N., Wigle, R., & Yonezawa, H. (2015). Carbon tax and revenue recycling: Impacts on households in British Columbia. Resource and Energy Economics, 41, 40-69. Berry, A. (2019). The distributional effects of a carbon tax and its impact on fuel poverty: A microsimulation study in the French context. Energy Policy, 124, 81-94. Bian, J., & Zhao, X. (2020). Tax or subsidy? An analysis of environmental policies in supply chains with retail competition. European Journal of Operational Research, 283(3), 901-914. Black, M. S., Liu, A. A., Parry, I. W., & Vernon, N. (2023). IMF fossil fuel subsidies data: 2023 update. International Monetary Fund. BloombergNEF. (2024). Energy Transition Investment Trends. https://about.bnef.com/energy-transition-investment/ Caulfield, B., Furszyfer, D., Stefaniec, A., & Foley, A. (2022). Measuring the equity impacts of government subsidies for electric vehicles. Energy, 248, 123588. Chuang, Y., Delmas, M. A., & Pincetl, S. (2022). Are residential energy efficiency upgrades effective? An empirical analysis in Southern California. Journal of the Association of Environmental and Resource Economists, 9(4), 641-679. Coady, M. D., Parry, I. W., Sears, L., & Shang, B. (2015). How large are global energy subsidies?. International Monetary Fund. Diamond, D. (2009). The impact of government incentives for hybrid-electric vehicles: Evidence from US states. Energy policy, 37(3), 972-983. Eisner, A., Kulmer, V., & Kortschak, D. (2021). Distributional effects of carbon pricing when considering household heterogeneity: An EASI application for Austria. Energy Policy, 156, 112478. eurelectric (2021). E-quality: Shaping an inclusive energy transition. https://www.eurelectric.org/e-quality Fischer, C., & Newell, R. G. (2008). Environmental and technology policies for climate mitigation. Journal of environmental economics and management, 55(2), 142-162. Gallagher, K. S., & Muehlegger, E. (2011). Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. Journal of Environmental Economics and management, 61(1), 1-15. Gerarden, T. D., Newell, R. G., & Stavins, R. N. (2017). Assessing the energy-efficiency gap. Journal of economic literature, 55(4), 1486-1525. Gerarden, T. D., Newell, R. G., Stavins, R. N., & Stowe, R. C. (2015). An assessment of the energy-efficiency gap and its implications for climate-change policy (No. w20905). National Bureau of economic research. Hardman, S., Fleming, K. L., Khare, E., & Ramadan, M. M. (2021). A perspective on equity in the transition to electric vehicle. MIT Sci. Policy Rev, 2, 46-54. Holtsmark, B., & Skonhoft, A. (2014). The Norwegian support and subsidy policy of electric cars. Should it be adopted by other countries?. Environmental science & policy, 42, 160-168. IEA (2021), World Energy Outlook 2021, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2021 IEA (2023), Global EV Outlook 2023, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2023, Licence: CC BY 4.0 IEA (2024), Global EV Outlook 2024, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2024, Licence: CC BY 4.0 Jacobs, L., Quack, L., & Mechtel, M. (2022). Distributional effects of carbon pricing by transport fuel taxation. Energy Economics, 114, 106290. Kaufman, N. (2018). Putting a Price on Vehicle Emissions Is Better Policy Than It Seems. Columbia SIPA Center on Global Energy Policy. August. Kverndokk, S., & Rosendahl, K. E. (2007). Climate policies and learning by doing: Impacts and timing of technology subsidies. Resource and Energy Economics, 29(1), 58-82. Lam, A., Lee, S., Mercure, J. F., Cho, Y., Lin, C. H., Pollitt, H., ... & Billington, S. (2018). Policies and predictions for a low-carbon transition by 2050 in passenger vehicles in East Asia: Based on an analysis using the E3ME-FTT model. Sustainability, 10(5), 1612. Li, N., Chen, J. P., Tsai, I. C., He, Q., Chi, S. Y., Lin, Y. C., & Fu, T. M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of The Total Environment, 566, 919-928. London, J., Metz, M., Rosler, P., & Dietrich, T. (2023). GASOLINE SUPERUSERS 2.0: Supporting Gasoline-Burdened Families’ Transition. Mathur, A., & Morris, A. C. (2014). Distributional effects of a carbon tax in broader US fiscal reform. Energy Policy, 66, 326-334. Mercure, J. F., Lam, A., Billington, S., & Pollitt, H. (2018). Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2∘ C. Climatic Change, 151, 109-129. Mersky, A. C., Sprei, F., Samaras, C., & Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46, 56-68. Moayed, T., Guggenheim, S., & von Chamier, P. (2021). From regressive subsidies to progressive redistribution: the role of redistribution and recognition in energy subsidy reform. Research Paper. Center on International Cooperation, New York University. Muehlegger, E., & Rapson, D. S. (2022). Subsidizing low-and middle-income adoption of electric vehicles: Quasi-experimental evidence from California. Journal of Public Economics, 216, 104752. Okun, A. M. (2015). Equality and efficiency: The big tradeoff. Brookings Institution Press. Popp, D. (2006). R&D subsidies and climate policy: is there a “free lunch”?. Climatic Change, 77, 311-341. Rausch, S., Metcalf, G. E., & Reilly, J. M. (2011). Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households. Energy economics, 33, S20-S33. Santos, G., & Rembalski, S. (2021). Do electric vehicles need subsidies in the UK?. Energy Policy, 149, 111890. Sheldon, T. L., & Dua, R. (2019). Assessing the effectiveness of California's “Replace Your Ride”. Energy Policy, 132, 318-323. Sheldon, T. L., & Dua, R. (2019). Measuring the cost-effectiveness of electric vehicle subsidies. Energy Economics, 84, 104545. Sierzchula, W., Bakker, S., Maat, K., & Van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy policy, 68, 183-194. Smith, A. (1937). The wealth of nations [1776] (Vol. 11937). na. Tesla, inc (2021). ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934. World Bank. (2024). State and Trends of Carbon Pricing. Washington, DC: World Bank. DOI: 10.1596/978-1-4648-2127-1. License: Creative Commons Attribution CC BY 3.0 IGO. World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Xing, J., Leard, B., & Li, S. (2021). What does an electric vehicle replace?. Journal of Environmental Economics and Management, 107, 102432.
描述 碩士
國立政治大學
財政學系
110255031
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110255031
資料類型 thesis
dc.contributor.advisor 蕭代基zh_TW
dc.contributor.advisor Shaw, Dai-Geeen_US
dc.contributor.author (Authors) 陳樹儒zh_TW
dc.contributor.author (Authors) Chen, Shu-Juen_US
dc.creator (作者) 陳樹儒zh_TW
dc.creator (作者) Chen, Shu-Juen_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-Sep-2024 14:44:29 (UTC+8)-
dc.date.available 4-Sep-2024 14:44:29 (UTC+8)-
dc.date.issued (上傳時間) 4-Sep-2024 14:44:29 (UTC+8)-
dc.identifier (Other Identifiers) G0110255031en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153320-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 財政學系zh_TW
dc.description (描述) 110255031zh_TW
dc.description.abstract (摘要) 運具脫碳政策之目的係為解決空氣汙染及氣候變遷問題。運具脫碳能改善空氣品質進而降低罹患呼吸系統和心血管等疾病的風險。此外,車輛行駛中所產生之二氧化碳,亦是政府淨零政策目標有關運輸部門所必須解決最為重要的一環。本研究之目的係評估政府當前運具脫碳政策之公平性及比較不同政策之效率性,進而提供可執行之權衡政策供執政者參考。 首先,本研究使用我國107年至111年的家庭收支調查原始資料,分析我國不同所得組家戶之運具使用及所得關聯性,結果顯示有三:第一,目前僅高所得組家戶能取得當前電動車政策補貼紅利;第二,交通支出占低所得組家戶之可支配所得比例較高;第三,各等分位家戶車輛持有數皆有逐年上升趨勢。再者,本研究透過E3ME模型模擬不同政策情境下對不同運具使用及排放之長短期影響,結果顯示以降低車輛二氧化碳當量排放量效率而言,強制性政策效率最佳,惟實務上可能流失政治支持不易執行;補貼節能政策僅在2031年以前有微幅初期紅利,惟此等能源節約之補貼僅能減少污染者的外部成本,並未增加外部效益,在長期下非為適當政策。以模型估計2040年之結果為例,相較於未施以其他政策之情境,施加碳稅政策之情境較補貼節能政策情境對車輛總體二氧化碳當量排放量降低效果差異15.77%,結果顯示在長期碳稅政策明顯優於補貼節能政策。此外,電動車電能提供的來源亦非常重要,若未計算電能來源之間接排放,結果顯示將高估降低車輛總體排放量效益8.27%。 最後,研究建議有三:第一,設定貨物稅之電動車稅式支出上限;第二,強化老車汰舊換新政策避免市場擴張;第三,引入漸進式碳稅及能源稅,並輔以回饋機制。zh_TW
dc.description.abstract (摘要) The objective of transportation decarbonization policies is to address air pollution and climate change issues. Decarbonizing transportation can improve air quality, thereby reducing the risk of respiratory and cardiovascular diseases. Additionally, carbon dioxide emissions from vehicles are a crucial aspect that must be addressed by the government's net-zero policy targets within the transportation sector. This study aims to assess the equity of the current transportation decarbonization policies and compare the efficiency of different policies, providing actionable trade-off policies for policymakers. This study utilizes raw data from the 2018 to 2022 Household Income and Expenditure Survey to analyze the relationship between vehicle usage and income among households of different income groups in Taiwan. The analysis reveals three key findings: (1) Only high-income households can benefit from existing electric vehicle subsidy policies; (2) Transportation expenditures are regressive, with a higher proportion of disposable income spent on transportation by low-income households; (3) The number of vehicles owned by households across all income quintiles has shown a yearly upward trend. Furthermore, this study employs the E3ME model to simulate the short- and long-term impacts of different policy scenarios on vehicle usage and emissions. The results show that, in terms of efficiency in reducing vehicle CO2-equivalent emissions, mandatory policies are the most effective. However, they may lose political support and be difficult to implement in practice. Energy-saving subsidy policies provide only slight initial benefits before 2031; these subsidies merely reduce the external costs for polluters without increasing external benefits, making them unsuitable as a long-term policy. For instance, the model estimates for 2040 indicate that the scenario with a carbon tax policy results in a 15.77% greater reduction in total vehicle CO2-equivalent emissions compared to the energy-saving subsidy policy scenario, demonstrating the long-term superiority of the carbon tax policy. Additionally, the source of electricity for electric vehicles is also critical. If the indirect emissions from electricity sources are not accounted for, the benefits of reducing total vehicle emissions will be overestimated by 8.27%. The study offers three policy recommendations: (1) Establish a cap on electric vehicle tax expenditures within the commodity tax framework; (2) Strengthen policies for replacing old vehicles to prevent market expansion; (3) Introduce a gradual carbon tax and energy tax, complemented by a rebate mechanism.en_US
dc.description.tableofcontents 第一章 緒論 p.1 第一節 研究背景 p.1 第二節 研究動機與目的 p.3 第三節 研究架構 p.7 第二章 文獻回顧 p.8 第一節 綠色運具政策分類 p.8 第二節 課稅與補貼之競合 p.18 第三節 能源稅、碳稅與貨物稅之競合 p.21 第四節 綠色運具政策對所得分配之影響 p.26 第三章 政策背景 p.30 第一節 國際電動車補貼及稅費政策現況 p.30 第二節 台灣電動車補貼及稅費政策現況 p.36 第四章 政策之公平性分析-以家庭收支調查為基礎 p.45 第一節 家庭收支調查之運用 p.45 第二節 家庭收支調查運具使用分析 p.50 第五章 政策之效率性分析-以E3ME模型為基礎 p.63 第一節 E3ME模型之運用 p.63 第二節 FTT:TRANSPORT p.66 第三節 情境設定 p.72 第四節 實證結果 p.74 第六章 結論與建議 p.86 參考文獻 p.89 附錄 軌道運輸用電間接排放之驗證 p.96zh_TW
dc.format.extent 5457929 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110255031en_US
dc.subject (關鍵詞) 綠色運具政策zh_TW
dc.subject (關鍵詞) 碳稅及能源稅zh_TW
dc.subject (關鍵詞) 貨物稅補貼zh_TW
dc.subject (關鍵詞) E3ME模型zh_TW
dc.subject (關鍵詞) 所得分配zh_TW
dc.subject (關鍵詞) Green Transportation Policyen_US
dc.subject (關鍵詞) Carbon Tax and Energy Taxen_US
dc.subject (關鍵詞) Commodity Tax Subsidiesen_US
dc.subject (關鍵詞) E3ME Modelen_US
dc.subject (關鍵詞) Income Distributionen_US
dc.title (題名) 政策效率與公平之權衡-以運具脫碳為例zh_TW
dc.title (題名) The Discretion of Policy Efficiency and Equity: A Case Study of Decarbonizing Transportationen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 左峻德主持(2013)。我國減碳目標下之市場機制政策與配套措施設計及評估(行政院原子能委員會委託研究計畫研究報告,1022001INER043)。 交通部(2023)。臺灣 2050 淨零轉型「運具電動化及無碳化」關鍵戰略行動計畫。 行政院主計總處(2008)。所得分配測度新思維。 2008年社會指標統計年報,17–20。 行政院主計總處(2023)。111年家庭收支調查(AA170047)【原始數據】取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://doi.org/10.6141/TW-SRDA-AA170047-1 宋雅珍(2021)。新能源運具之租稅優惠探討 -以我國電動機車為例。經濟研究, 21,365–390。 李昕(2023)。主要國家發展運具電動化策略對臺灣之啟示。經濟研究,23,1–38。 李惠卿(2014)。能源稅開徵與貨物稅整合相關問題探討。財稅研究,43(6), 95–119。 周濟主持(2007)。溫室氣體減量政策對運輸及住商部門之影響及因應對策(行政院經濟建設委員會委託之報告,(96)052.209)。 林元興(2015)。課徵環境稅所面臨的問題。財稅研究,44(2),94-111。 林玲如、劉錦龍(2017)。強制性能源效率分級政策的成效—以冷氣機產品為例。臺灣能源期刊,4(4),465–487. 林晉勗主持(2018)。我國新能源政策下碳稅對 3E 及所得分配之影響分析(行政院原子能委員會委託研究計畫研究報告,107A003)。 孫克難(2017)。臺灣三次賦稅改革之政經分析。財稅研究,46(2),1–30。 曹美慧主持(2023)。推動運輸部門溫室氣體減量事項及深化減碳路徑評估。交通部運輸研究所。 陳宛君、陳奕均、森晶寿(2022)。碳定價政策、日本全球暖化對策稅與台灣能源稅制。臺灣銀行季刊,73(1)。 黃耀輝(2007)。能源稅之設計與動態規劃。財團法人中技社。 曾佩如主持(2023)。建構運輸部門2050深度減碳評估模型及推動溫室氣體減量(1/2)—模型建構與減碳工作推動。交通部運輸研究所。 經濟部工業局(2016)。汽機車汰舊換新暨中古車出口稅式支出評估報告。 經濟部工業局(2017)。電動車輛免徵貨物稅(106~110 年)稅式支出評估報告。 經濟部工業局(2021)。電動車輛免徵貨物稅及使用牌照稅(111~114 年)稅式支出評估報告。 蕭代基、傅俞瑄、林師模、黃琝琇(2020),減碳政策在台灣:補貼或課稅?, 綠色經濟期刊,第 6 卷,第 A1-23 頁。 蕭代基主持(2009)。綠色稅制之研究(行政院賦稅改革委員會委託研究報告)。 Allcott, H., & Greenstone, M. (2012). Is there an energy efficiency gap?. Journal of Economic perspectives, 26(1), 3-28. Andersen, P., & Skou, M. (2010). Europe’s experience with carbon-energy taxation. SAPI EN. S. Surveys and perspectives integrating environment and society, (3.2). Bailey, E. E., & Friedlaender, A. F. (1982). Market structure and multiproduct industries. Journal of economic literature, 20(3), 1024-1048. Baranzini, A., Goldemberg, J., & Speck, S. (2000). A future for carbon taxes. Ecological economics, 32(3), 395-412. Baranzini, A., Goldemberg, J., & Speck, S. (2000). A future for carbon taxes. Ecological economics, 32(3), 395-412. Bardazzi, R., & Pazienza, M. G. (2023). Vulnerable Households in the Energy Transition. In Vulnerable Households in the Energy Transition: Energy Poverty, Demographics and Policies (pp. 1-8). Cham: Springer International Publishing. Beck, M., Rivers, N., Wigle, R., & Yonezawa, H. (2015). Carbon tax and revenue recycling: Impacts on households in British Columbia. Resource and Energy Economics, 41, 40-69. Berry, A. (2019). The distributional effects of a carbon tax and its impact on fuel poverty: A microsimulation study in the French context. Energy Policy, 124, 81-94. Bian, J., & Zhao, X. (2020). Tax or subsidy? An analysis of environmental policies in supply chains with retail competition. European Journal of Operational Research, 283(3), 901-914. Black, M. S., Liu, A. A., Parry, I. W., & Vernon, N. (2023). IMF fossil fuel subsidies data: 2023 update. International Monetary Fund. BloombergNEF. (2024). Energy Transition Investment Trends. https://about.bnef.com/energy-transition-investment/ Caulfield, B., Furszyfer, D., Stefaniec, A., & Foley, A. (2022). Measuring the equity impacts of government subsidies for electric vehicles. Energy, 248, 123588. Chuang, Y., Delmas, M. A., & Pincetl, S. (2022). Are residential energy efficiency upgrades effective? An empirical analysis in Southern California. Journal of the Association of Environmental and Resource Economists, 9(4), 641-679. Coady, M. D., Parry, I. W., Sears, L., & Shang, B. (2015). How large are global energy subsidies?. International Monetary Fund. Diamond, D. (2009). The impact of government incentives for hybrid-electric vehicles: Evidence from US states. Energy policy, 37(3), 972-983. Eisner, A., Kulmer, V., & Kortschak, D. (2021). Distributional effects of carbon pricing when considering household heterogeneity: An EASI application for Austria. Energy Policy, 156, 112478. eurelectric (2021). E-quality: Shaping an inclusive energy transition. https://www.eurelectric.org/e-quality Fischer, C., & Newell, R. G. (2008). Environmental and technology policies for climate mitigation. Journal of environmental economics and management, 55(2), 142-162. Gallagher, K. S., & Muehlegger, E. (2011). Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. Journal of Environmental Economics and management, 61(1), 1-15. Gerarden, T. D., Newell, R. G., & Stavins, R. N. (2017). Assessing the energy-efficiency gap. Journal of economic literature, 55(4), 1486-1525. Gerarden, T. D., Newell, R. G., Stavins, R. N., & Stowe, R. C. (2015). An assessment of the energy-efficiency gap and its implications for climate-change policy (No. w20905). National Bureau of economic research. Hardman, S., Fleming, K. L., Khare, E., & Ramadan, M. M. (2021). A perspective on equity in the transition to electric vehicle. MIT Sci. Policy Rev, 2, 46-54. Holtsmark, B., & Skonhoft, A. (2014). The Norwegian support and subsidy policy of electric cars. Should it be adopted by other countries?. Environmental science & policy, 42, 160-168. IEA (2021), World Energy Outlook 2021, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2021 IEA (2023), Global EV Outlook 2023, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2023, Licence: CC BY 4.0 IEA (2024), Global EV Outlook 2024, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2024, Licence: CC BY 4.0 Jacobs, L., Quack, L., & Mechtel, M. (2022). Distributional effects of carbon pricing by transport fuel taxation. Energy Economics, 114, 106290. Kaufman, N. (2018). Putting a Price on Vehicle Emissions Is Better Policy Than It Seems. Columbia SIPA Center on Global Energy Policy. August. Kverndokk, S., & Rosendahl, K. E. (2007). Climate policies and learning by doing: Impacts and timing of technology subsidies. Resource and Energy Economics, 29(1), 58-82. Lam, A., Lee, S., Mercure, J. F., Cho, Y., Lin, C. H., Pollitt, H., ... & Billington, S. (2018). Policies and predictions for a low-carbon transition by 2050 in passenger vehicles in East Asia: Based on an analysis using the E3ME-FTT model. Sustainability, 10(5), 1612. Li, N., Chen, J. P., Tsai, I. C., He, Q., Chi, S. Y., Lin, Y. C., & Fu, T. M. (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of The Total Environment, 566, 919-928. London, J., Metz, M., Rosler, P., & Dietrich, T. (2023). GASOLINE SUPERUSERS 2.0: Supporting Gasoline-Burdened Families’ Transition. Mathur, A., & Morris, A. C. (2014). Distributional effects of a carbon tax in broader US fiscal reform. Energy Policy, 66, 326-334. Mercure, J. F., Lam, A., Billington, S., & Pollitt, H. (2018). Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2∘ C. Climatic Change, 151, 109-129. Mersky, A. C., Sprei, F., Samaras, C., & Qian, Z. S. (2016). Effectiveness of incentives on electric vehicle adoption in Norway. Transportation Research Part D: Transport and Environment, 46, 56-68. Moayed, T., Guggenheim, S., & von Chamier, P. (2021). From regressive subsidies to progressive redistribution: the role of redistribution and recognition in energy subsidy reform. Research Paper. Center on International Cooperation, New York University. Muehlegger, E., & Rapson, D. S. (2022). Subsidizing low-and middle-income adoption of electric vehicles: Quasi-experimental evidence from California. Journal of Public Economics, 216, 104752. Okun, A. M. (2015). Equality and efficiency: The big tradeoff. Brookings Institution Press. Popp, D. (2006). R&D subsidies and climate policy: is there a “free lunch”?. Climatic Change, 77, 311-341. Rausch, S., Metcalf, G. E., & Reilly, J. M. (2011). Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households. Energy economics, 33, S20-S33. Santos, G., & Rembalski, S. (2021). Do electric vehicles need subsidies in the UK?. Energy Policy, 149, 111890. Sheldon, T. L., & Dua, R. (2019). Assessing the effectiveness of California's “Replace Your Ride”. Energy Policy, 132, 318-323. Sheldon, T. L., & Dua, R. (2019). Measuring the cost-effectiveness of electric vehicle subsidies. Energy Economics, 84, 104545. Sierzchula, W., Bakker, S., Maat, K., & Van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy policy, 68, 183-194. Smith, A. (1937). The wealth of nations [1776] (Vol. 11937). na. Tesla, inc (2021). ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934. World Bank. (2024). State and Trends of Carbon Pricing. Washington, DC: World Bank. DOI: 10.1596/978-1-4648-2127-1. License: Creative Commons Attribution CC BY 3.0 IGO. World Health Organization. (2021). WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Xing, J., Leard, B., & Li, S. (2021). What does an electric vehicle replace?. Journal of Environmental Economics and Management, 107, 102432.zh_TW