Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

Title離散時間鞅及其在卡爾曼濾波之應用研究
A Study of Discrete Time Martingales with Applications in the Kalman Filter
Creator陳慬瑜
Chen, Cin-Yu
Contributor許順吉<br>陳隆奇
Sheu, Shuenn-Jyi<br>Chen, Lung-Chi
陳慬瑜
Chen, Cin-Yu
Key Words鞅理論
卡爾曼濾波器
遞迴估計
隨機過程
控制理論
線性二次高斯問題
應用機率
隨機控制
Martingale theory
Kalman filter
Recursive estimation
Stochastic processes
Control theory
Linear Quadratic Gaussian (LQG) problem
Applied probability
Stochastic control
Date2024
Date Issued4-Sep-2024 16:11:52 (UTC+8)
Summary在此篇論文中介紹了鞅理論與卡爾曼濾波器的關聯,可以做為探索應用機率與隨機控制的入門。從一些關於鞅的定義以及基本性質開始,接著闡述這些機率的觀念如何應用在卡爾曼濾波上。當系統有噪音干擾時,卡爾曼濾波器是一個最基本的方法可以提供對於系統狀態的估計。接著介紹一些隨機控制的內容,特別是卡爾曼濾波提供的估計可以視作一個具體的應用在線性二次高斯問題(LQG)上 。此篇論文為初學者提供一個清晰、易懂的基礎,連結機率論的核心概念與濾波和控制的應用。
This thesis serves as an introductory guide for beginners in applied probability and stochastic control, focusing on the connection between martingale theory and the Kalman filter. By starting with the basics of martingales, the thesis explains how these probabilistic concepts can be applied to understand the Kalman filter, a fundamental tool for estimating the state of a system in the presence of noise. The thesis then introduces control theory, specifically the Linear Quadratic Gaussian (LQG) problem, to demonstrate the practical use of the Kalman filter in optimizing system performance. This work aims to provide a clear and accessible foundation for those new to these topics, linking key ideas in probability with their applications in filtering and control.
參考文獻 [1] Masanao Aoki. Optimization of Stochastic Systems: Topics in Discrete-Time Systems. Academic Press, 1989. [2] Karl J Åström. Introduction to Stochastic Control Theory. Courier Corporation, 2012. [3] Krishna B Athreya and Soumendra N Lahiri. Measure Theory and Probability Theory, volume 19. Springer, 2006. [4] Stephen P. Boyd. Ee363: Lecture slides 1. linear quadratic regulator: Discrete time finite horizon. https://web.stanford.edu/class/ee363/lectures/dlqr.pdf, 2008. Accessed: 2024-08-25. [5] Stephen P. Boyd. Ee363: Lecture slides 10. linear quadratic stochastic control with partially observed states. https://web.stanford.edu/class/ee363/lectures/lqg.pdf, 2008. Accessed: 2024-08-25. [6] Stephen P. Boyd. Ee363: Lecture slides 5. linear quadratic stochastic control. https://web.stanford.edu/class/ee363/lectures/stoch_lqr.pdf, 2008. Accessed: 2024-08-25. [7] Stephen P. Boyd. Ee363: Lecture slides 8. the kalman filter. https://stanford. edu/class/ee363/lectures/kf.pdf, 2008. Accessed: 2024-08-25. [8] Peter E. Caines. Linear Stochastic Systems. John Wiley & Sons, 1988. [9] Xu Chen and Masayoshi Tomizuka. Lecture notes for uc berkeley advanced control systems ii (me233). Accessed: 2024-08-25. http://www.me.berkeley.edu/ME233/sp14, 2014. 75 [10] M.H.A. Davis and R.B. Vinter. Stochastic Modelling and Control. Chapman and Hall, 1985. [11] Rick Durrett. Probability: Theory and Examples. Self-published, 2019. [12] SvanteJanson. Gaussian Hilbert Spaces. Number129.CambridgeUniversity Press, 1997. [13] Jean-François Le Gall. Brownian Motion, Martingales, and Stochastic Calculus. Springer, 2016. [14] Hamed Masnadi-Shirazi, Alireza Masnadi-Shirazi, and Mohammad-Amir Dastgheib. A step by step mathematical derivation and tutorial on kalman filters. arXiv preprint arXiv:1910.03558, 2019. [15] Ian R. Reid. Estimation ii. https://api.semanticscholar.org/CorpusID: 7460075, 2010. Accessed: 2024-08-25. [16] Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties. 2004. [17] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995. [18] David Williams. Probability with Martingales. Cambridge University Press, 1991.
Description碩士
國立政治大學
應用數學系
111751005
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111751005
Typethesis
dc.contributor.advisor 許順吉<br>陳隆奇zh_TW
dc.contributor.advisor Sheu, Shuenn-Jyi<br>Chen, Lung-Chien_US
dc.contributor.author (Authors) 陳慬瑜zh_TW
dc.contributor.author (Authors) Chen, Cin-Yuen_US
dc.creator (作者) 陳慬瑜zh_TW
dc.creator (作者) Chen, Cin-Yuen_US
dc.date (日期) 2024en_US
dc.date.accessioned 4-Sep-2024 16:11:52 (UTC+8)-
dc.date.available 4-Sep-2024 16:11:52 (UTC+8)-
dc.date.issued (上傳時間) 4-Sep-2024 16:11:52 (UTC+8)-
dc.identifier (Other Identifiers) G0111751005en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153579-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學系zh_TW
dc.description (描述) 111751005zh_TW
dc.description.abstract (摘要) 在此篇論文中介紹了鞅理論與卡爾曼濾波器的關聯,可以做為探索應用機率與隨機控制的入門。從一些關於鞅的定義以及基本性質開始,接著闡述這些機率的觀念如何應用在卡爾曼濾波上。當系統有噪音干擾時,卡爾曼濾波器是一個最基本的方法可以提供對於系統狀態的估計。接著介紹一些隨機控制的內容,特別是卡爾曼濾波提供的估計可以視作一個具體的應用在線性二次高斯問題(LQG)上 。此篇論文為初學者提供一個清晰、易懂的基礎,連結機率論的核心概念與濾波和控制的應用。zh_TW
dc.description.abstract (摘要) This thesis serves as an introductory guide for beginners in applied probability and stochastic control, focusing on the connection between martingale theory and the Kalman filter. By starting with the basics of martingales, the thesis explains how these probabilistic concepts can be applied to understand the Kalman filter, a fundamental tool for estimating the state of a system in the presence of noise. The thesis then introduces control theory, specifically the Linear Quadratic Gaussian (LQG) problem, to demonstrate the practical use of the Kalman filter in optimizing system performance. This work aims to provide a clear and accessible foundation for those new to these topics, linking key ideas in probability with their applications in filtering and control.en_US
dc.description.tableofcontents 1 Introduction 1 2 Martingales 3 2.1 Martingales 3 2.2 Almost Sure Convergence of Martingales 7 2.2.1 Upcrossings 7 2.3 Uniformly Integrable Martingales 10 2.3.1 Uniformly integrable property 10 2.3.2 Convergence of UI martingale 14 3 Application: The Kalman Filter 17 3.1 State-Space Model 17 3.2 Filtering Problem 19 3.3 Recursive Estimation: Bayesian Case 20 3.3.1 Some Preparations 20 3.3.2 Noisy Observation of a Single Variable 28 3.3.3 Consistency in RLS 29 3.4 Kalman filter 32 3.4.1 Overview of the Calculation 33 3.4.2 Derivations 34 3.4.3 Summary of key equations 38 3.4.4 The Best Linear Filter: minimize the mean-squared error 39 4 The Use of Kalman Filter 46 4.1 Innovation Representation of Kalman Filter 46 4.2 Control problem 51 4.2.1 Linear Quadratic Regulator (LQR) 51 4.2.2 Duality 57 4.2.3 Stochastic Linear Quadratic Regulator (SLQR) 59 4.2.4 Linear Quadratic Gaussian Regulator (LQG) 64 5 Conclusion 69 A Appendix: Gaussian Space 72 A.1 Gaussian Space 72 A.1.1 Joint Normal 72 A.1.2 Gaussian Spaces from Joint Normal 73 Bibliography 75zh_TW
dc.format.extent 718099 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111751005en_US
dc.subject (關鍵詞) 鞅理論zh_TW
dc.subject (關鍵詞) 卡爾曼濾波器zh_TW
dc.subject (關鍵詞) 遞迴估計zh_TW
dc.subject (關鍵詞) 隨機過程zh_TW
dc.subject (關鍵詞) 控制理論zh_TW
dc.subject (關鍵詞) 線性二次高斯問題zh_TW
dc.subject (關鍵詞) 應用機率zh_TW
dc.subject (關鍵詞) 隨機控制zh_TW
dc.subject (關鍵詞) Martingale theoryen_US
dc.subject (關鍵詞) Kalman filteren_US
dc.subject (關鍵詞) Recursive estimationen_US
dc.subject (關鍵詞) Stochastic processesen_US
dc.subject (關鍵詞) Control theoryen_US
dc.subject (關鍵詞) Linear Quadratic Gaussian (LQG) problemen_US
dc.subject (關鍵詞) Applied probabilityen_US
dc.subject (關鍵詞) Stochastic controlen_US
dc.title (題名) 離散時間鞅及其在卡爾曼濾波之應用研究zh_TW
dc.title (題名) A Study of Discrete Time Martingales with Applications in the Kalman Filteren_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Masanao Aoki. Optimization of Stochastic Systems: Topics in Discrete-Time Systems. Academic Press, 1989. [2] Karl J Åström. Introduction to Stochastic Control Theory. Courier Corporation, 2012. [3] Krishna B Athreya and Soumendra N Lahiri. Measure Theory and Probability Theory, volume 19. Springer, 2006. [4] Stephen P. Boyd. Ee363: Lecture slides 1. linear quadratic regulator: Discrete time finite horizon. https://web.stanford.edu/class/ee363/lectures/dlqr.pdf, 2008. Accessed: 2024-08-25. [5] Stephen P. Boyd. Ee363: Lecture slides 10. linear quadratic stochastic control with partially observed states. https://web.stanford.edu/class/ee363/lectures/lqg.pdf, 2008. Accessed: 2024-08-25. [6] Stephen P. Boyd. Ee363: Lecture slides 5. linear quadratic stochastic control. https://web.stanford.edu/class/ee363/lectures/stoch_lqr.pdf, 2008. Accessed: 2024-08-25. [7] Stephen P. Boyd. Ee363: Lecture slides 8. the kalman filter. https://stanford. edu/class/ee363/lectures/kf.pdf, 2008. Accessed: 2024-08-25. [8] Peter E. Caines. Linear Stochastic Systems. John Wiley & Sons, 1988. [9] Xu Chen and Masayoshi Tomizuka. Lecture notes for uc berkeley advanced control systems ii (me233). Accessed: 2024-08-25. http://www.me.berkeley.edu/ME233/sp14, 2014. 75 [10] M.H.A. Davis and R.B. Vinter. Stochastic Modelling and Control. Chapman and Hall, 1985. [11] Rick Durrett. Probability: Theory and Examples. Self-published, 2019. [12] SvanteJanson. Gaussian Hilbert Spaces. Number129.CambridgeUniversity Press, 1997. [13] Jean-François Le Gall. Brownian Motion, Martingales, and Stochastic Calculus. Springer, 2016. [14] Hamed Masnadi-Shirazi, Alireza Masnadi-Shirazi, and Mohammad-Amir Dastgheib. A step by step mathematical derivation and tutorial on kalman filters. arXiv preprint arXiv:1910.03558, 2019. [15] Ian R. Reid. Estimation ii. https://api.semanticscholar.org/CorpusID: 7460075, 2010. Accessed: 2024-08-25. [16] Maria Isabel Ribeiro. Kalman and extended kalman filters: Concept, derivation and properties. 2004. [17] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995. [18] David Williams. Probability with Martingales. Cambridge University Press, 1991.zh_TW