Publications-Theses
Article View/Open
Publication Export
-
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
題名 揭露還是不揭露?探討AIGC廣告揭露對消費者廣告雙歧態度、廣告可信度、品牌態度的影響
To Disclose or Not to Disclose? An Empirical Study on the Impact of AIGC Advertising Disclosure on Consumer Advertising Ambivalence, Advertising Credibility, and Brand Attitudes作者 唐友友
Tang, Yu-Yu貢獻者 張郁敏
Chang, Yuh-Miin
唐友友
Tang, Yu-Yu關鍵詞 人工智慧生成內容
AIGC廣告
AIGC廣告揭露
廣告雙歧態度
廣告訊息可信度
廣告來源可信度
品牌態度
網路實驗法
AIGC advertisement
AIGC advertising disclosure
ambivalent attitude
ad message credibility
ad source credibility
brand attitude
experimental research日期 2024 上傳時間 4-Oct-2024 11:06:12 (UTC+8) 摘要 隨著數位技術的快速發展,廣告製作的方式正在進入AI輔助合作(AI-assisted collaboration)時代,影像可以使用演算法進行編輯並生成內容,為廣告產業帶來了新的篇章。人工智慧生成內容(AIGC)的應用顯著加速了決策過程,提高了整體行銷效率。本研究探討AIGC廣告揭露及所帶來的廣告效果,將分為AIGC廣告不揭露組別和AIGC廣告揭露組別,以廣告雙歧態度(即同時存在正面和負面態度)、廣告訊息可信度、廣告來源可信度以及對品牌態度的影響。初步探討AIGC廣告揭露如何從態度面和認知面影響品牌態度。 實驗設計採用組間單因子實驗法(One-factor experimental method),採用網路實驗法,研究對象鎖定在年齡在18歲至30歲、熟悉中文的消費者進行調查。最終共收集158份有效問卷,分別為AIGC廣告揭露組別59位、AIGC廣告不揭露組別59位。通過研究分析AIGC廣告揭露不會產生廣告雙歧態度,廣告雙歧態度的消費者會對於廣告訊息產生較低的可信度,以及廣告雙歧態度的消費者會對於廣告來源產生較低的可信度以及後續較低的品牌態度。學術上,消費者對於AIGC廣告產生廣告雙歧態度,則降低對於廣告訊息可信度,且同時降低對於廣告來源可信度,最後負面影響品牌態度。實務上,廣告主應避免讓消費者在觀看AIGC廣告過程中產生廣告雙歧態度,並且AIGC廣告操弄的複雜性和廣告可信度兩者取得平衡。最後根據廣告概念、研究變項、研究方法提出研究的限制,同時研究者認為探索不同形式的AIGC廣告揭露效果、不同形式的廣告形式以及廣告主題選擇,為後續的研究給予研究建議。
With the rapid development of digital technology, advertising production is entering an era of AI-assisted collaboration. The application of AI-generated content (AIGC) has significantly accelerated decision-making processes and improved overall marketing efficiency, ushering in a new chapter for the advertising industry. This study explores the impact of AIGC ad disclosure on advertising effectiveness, this study will compare two groups: non-disclosure of AIGC ads and disclosure of AIGC ads. The research will examine the effects on ambivalence in advertising attitudes (the coexistence of both positive and negative attitudes), the ad message attitudes, ad source attitudes, and the impact on brand attitude. This preliminary exploration investigates how AIGC ad disclosure influences brand attitudes from both attitudinal and cognitive perspectives. The experimental design adopts a between-groups one-factor experimental method. To align with real consumer ad-watching scenarios, an online experimental approach is used. The study targets consumers aged 18 to 30 who are familiar with the Chinese language. A total of 158 valid questionnaires were collected, with 59 participants in the AIGC ad disclosure group and 59 in the non-disclosure group. The research analysis shows that AIGC ad disclosure does not generate ambivalence in advertising attitudes. However, consumers with ambivalent attitudes toward ads tend to perceive lower credibility in the ad message and ad source, leading to a lower subsequent brand attitude. Academically, the study found that when consumers experience ambivalence toward AIGC ads, it lowers their perceived credibility of the ad message and source, ultimately negatively affecting brand attitude. Practically, advertisers should avoid creating ambivalence in consumers when they are exposed to AIGC ads and strive to balance the complexity of AIGC manipulation with the credibility of the ads. This study also discusses the limitations of the selected ad concept, research variables, and methods. The researchers suggest that future studies explore the effects of different forms of AIGC disclosure, different ad formats, and theme selections for advertisers.參考文獻 中文書目 參考書目 7-ElevenHongKong. (2023). 〈拆解 「7-SELECT AI 生成廣告片」之謎. 〉 https://www.youtube.com/watch?v=BKyBa9xljSM&ab_channel=7- ElevenHongKong 台北市廣告代理商業同業公會. (2023). 〈AI 生成式廣告帶來的效益和未來趨 勢. 〉 http://www.taaa.org.tw/news/article/8866 江義平, 莊承展, & 黃智彙. (2019). 社〈群媒體廣告衡量研究 [Measuring the Effects of Social Media Advertising]. 〉 《中原企管評論》, 17(1), 1-37. 何英煒. (2023). 〈資策會:AI 生成內容有 3 挑戰、2 趨勢. 〉《Yahoo 股市. 李佳樺. (2024). 〈GPT-4與 Chat GPT 差在哪?怎麼下指令?Chat GPT 使用全攻 略. 〉《快樂工作人 Cheers》 https://www.cheers.com.tw/article/article.action?id=5101741 林芷圓. (2023). 〈AI 懂下關鍵字、還大省 75%工作時間!Vpon 開發 AI 生成廣告 系統,優勢是什麼?. 〉 《數位時代》 https://www.bnext.com.tw/article/75066/vpon-invnity-ai 洪釗雯. (2004). 〈瘦身廣告的強弱論點如何透過瘦身的雙歧態度影響廣告效果 政 治大學]. https://ndltd.ncl.edu.tw/cgi- bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22092NCCU5071005%22.&searchmod e=basic 科技橘報. (2022). 〈讓 AI 自動生成文章、程式、圖片!一文看懂自然語言處理 (NLP)是什麼?. 〉 《科技橘報》 https://buzzorange.com/techorange/2022/08/29/nlp-ai/ 張卿卿. (2014). 〈從認知與情感雙歧檢視台灣民眾的廣告規避與趨近行為. 〉 《中華傳播學刊(25) 》, 71-98. 隋昱嬋. (2023). 〈華碩找虛擬 KOL 代言,摺疊筆電飆價 10 萬元!鎖定「口袋 深、愛酷東西」Z 世代. 〉 《數位時代》 https://www.bnext.com.tw/article/74246/asus-vr-inf-mar-23-mag 隋昱嬋. (2024). 〈【圖解】搶黃金 5 秒吸引力,短影音該怎麼用?一篇看懂 Reels、TikTok、Shorts 優勢在哪. 〉 《數位時代》 https://www.bnext.com.tw/article/76005/shortvideo-marketing-advertising- youtube-shorts-instagram-reels-tiktok 黃士育. (2023). 〈全由 AI 生成的電影!畫面不自然、角色表情詭異,但「最大問 題」克服了⋯. 〉 《數位時代》 https://www.bnext.com.tw/article/75538/ai- gererated-movie-the-frost? 62 黃馨嬅. (2010). 〈動畫廣告的視覺呈現對於廣告價值與娛樂性之探討. 〉 資策會產業情報研究所. (2024). 【影音觀看行為調查】串流影音觀眾已超越非串 流 45 歲為偏好度分水嶺 前三大國際串流平台訂閱 Netflix、YouTube 與 Disney+.〉 https://mic.iii.org.tw/news.aspx?id=679 劉慶侯. (2019). 〈Deepfake 換臉 假到有夠真/歐巴馬被黑辱罵川普. 〉 https://news.ltn.com.tw/news/society/paper/1317954 數位時代. (2023). 〈DALL·E 2 怎麼玩?怎麼讓 AI 幫你生成圖片?步驟懶人包一 次看懂. https://www.bnext.com.tw/article/73621/dall-e-0105 Accucrazy. (2023). 〈從 AI 到 AIGC :一場革命性的科技進化論,正活生生在 我們眼前上演!. 〉《Accucrazy》. https://www.accucrazy.com/aigc-info/ Chen, J. (2024). 〈多芬抵制 AI 生成人像,品牌用 AI 生成廣告有何隱憂?. 〉 https://tw.news.yahoo.com/%E4%B8%8D%E8%A6%81%E8%A2%AB-ai- %E7%89%BD%E8%91%97%E9%BC%BB%E5%AD%90%E8%B5%B0- %E5%A4%9A%E8%8A%AC%E6%8A%B5%E5%88%B6-ai-111326137.html Chien, C. (2023a). 〈可口可樂最新創意廣告《Masterpiece》讓名畫動起來!同推 「Create Real Magic」限時 AI 繪圖競賽平台. 〉 https://www.wowlavie.com/article/ae2300355 Chien, C. (2023b). 〈由 AI 撰寫的創意廣告腳本!日本 SUNTORY 對麥茶風味的另 類趣味呈現. 〉 https://www.wowlavie.com/amp/ae2300626 Digitspark. (2023). 〈AIGC 爆炸下,企業&工作者與 AI 趨勢共處的方法. 〉 https://digitspark.co/blog/aigc- %E7%88%86%E7%82%B8%E4%B8%8B%EF%BC%8C%E4%BC%81%E6% A5%AD%EF%BC%86%E5%B7%A5%E4%BD%9C%E8%80%85%E8%88%8 7-ai- %E8%B6%A8%E5%8B%A2%E5%85%B1%E8%99%95%E7%9A%84%E6% 96%B9%E6%B3%95/ E-ICP. (2021). 〈2021 東方消費者行銷資料庫部份書面年鑑. 〉 IORG, 台. (2023). 2023 年 2 月 IORG 台灣 YouTube 使用者習慣調查. 〉 https://iorg.tw/_en/a/youtube-in-tw-232 Su, H. (2023). 〈除了 Chat GPT 外,生成式 AI 能為企業帶來什麼?. 〉 《未來 商務》 https://fc.bnext.com.tw/articles/view/2701? Yahoo. (2023). 〈Yahoo 生成式 AI 消費者大調查.〉 https://drive.google.com/file/d/1MwCQo5239BoLgi7vsJ- Ghy_06ELGKaGY/view YouTube. (2024). 〈關於影片廣告格式〉 https://support.google.com/youtube/answer/2375464?hl=zh-Hant#nonskippable- instream 日文書目 63 KTV_NEWS. (2023). 【飲料メーカー「伊藤園」CM に"AI タレント"を起用】低 コストでハイクオリティ タレントは戦々恐々?【関西テレビ・news ラ ンナー】. KTV NEWS. https://www.youtube.com/watch?v=H2Tphiu6hUk&t=74s&ab_channel=%E3% 82%AB%E3%83%B3%E3%83%86%E3%83%ACNEWS 外語書目 Adams, L. C., Busch, F., Truhn, D., Makowski, M. R., Aerts, H. J., & Bressem, K. K. (2023). What Does DALL-E 2 Know About Radiology? Journal of Medical Internet Research, 25, e43110. Alvarez, R. M., & Brehm, J. (1997). Are Americans Ambivalent Towards Racial Policies? American Journal of Political Science, 41(2), 345-374. https://doi.org/10.2307/2111768 Appelman, A., & Sundar, S. S. (2015). Measuring Message Credibility: Construction and Validation of an Exclusive Scale. Journalism & Mass Communication Quarterly, 93(1), 59-79. https://doi.org/10.1177/1077699015606057 Appelman, A., & Sundar, S. S. (2016). Measuring message credibility: Construction and validation of an exclusive scale. Journalism & Mass Communication Quarterly, 93(1), 59-79. Arango, L., Singaraju, S. P., & Niininen, O. (2023). Consumer Responses to AI- Generated Charitable Giving Ads. Journal of Advertising, 1-18. https://doi.org/10.1080/00913367.2023.2183285 Babbie, E. R. (2020). The practice of social research. Cengage AU. Balaban, D. C., Mucundorfeanu, M., & Naderer, B. (2022). The role of trustworthiness in social media influencer advertising: Investigating users’ appreciation of advertising transparency and its effects. Communications, 47(3), 395-421. https://doi.org/doi:10.1515/commun-2020-0053 Balasubramanian, S. K., & Gistri, G. (2022). Priming movie product placements: New insights from a Cross-National case study. International Journal of Advertising, 41(6), 1064-1094. https://doi.org/10.1080/02650487.2021.1930349 Baldassarri, D., & Abascal, M. (2017). Field Experiments Across the Social Sciences. Annual Review of Sociology, 43. https://doi.org/10.1146/annurev-soc-073014- 112445 Bargh, J. A., Chaiken, S., Govender, R., & Pratto, F. (1992). The generality of the automatic attitude activation effect. Journal of Personality and Social Psychology, 62(6), 893. Belch, G. E., & Belch, M. A. (2018). Advertising and promotion: An integrated marketing communications perspective. mcgraw-hill. 64 Beltramini, R. F. (1988). Perceived believability of warning label information presented in cigarette advertising. Journal of Advertising, 17(2), 26-32. Boerman, S. C., Rozendaal, E., & van Reijmersdal, E. A. (2024). The development and testing of a pictogram signaling advertising in online videos. International Journal of Advertising, 43(4), 672-691. https://doi.org/10.1080/02650487.2023.2242673 Bohner, G., Moskowitz, G. B., & Chaiken, S. (1995). The interplay of heuristic and systematic processing of social information. European review of social psychology, 6(1), 33-68. Campbell, C., & Evans, N. J. (2018). The Role of a Companion Banner and Sponsorship Transparency in Recognizing and Evaluating Article-style Native Advertising. Journal of Interactive Marketing, 43(1), 17-32. https://doi.org/10.1016/j.intmar.2018.02.002 Campbell, C., Plangger, K., Sands, S., & Kietzmann, J. (2022). Preparing for an Era of Deepfakes and AI-Generated Ads: A Framework for Understanding Responses to Manipulated Advertising. Journal of Advertising, 51(1), 22-38. https://doi.org/10.1080/00913367.2021.1909515 Campbell, C., Plangger, K., Sands, S., Kietzmann, J. A. N., & Bates, K. (2022). How Deepfakes and Artificial Intelligence Could Reshape the Advertising Industry: The Coming Reality of AI Fakes and Their Potential Impact on Consumer Behavior [Article]. Journal of Advertising Research, 62(3), 241-251. https://doi.org/10.2501/JAR-2022-017 Campbell, M. C. (1995). When Attention-Getting Advertising Tactics Elicit Consumer Inferences of Manipulative Intent: The Importance of Balancing Benefits and Investments. Journal of Consumer Psychology, 4(3), 225-254. https://doi.org/https://doi.org/10.1207/s15327663jcp0403_02 Chan, F. Y., Chan, H. F., & Tang, F. (2017). The effect of perceived advertising effort on brand perception: implication for retailers in Hong Kong. The International Review of Retail, Distribution and Consumer Research, 27(1), 78-93. https://doi.org/10.1080/09593969.2016.1221843 Chang, C. (2004). Country of Origin as a Heuristic Cue: The Effects of Message Ambiguity and Product Involvement. Media Psychology, 6(2), 169-192. https://doi.org/10.1207/s1532785xmep0602_3 Chang, C. (2007). The Relative Effectiveness of Comparative and Noncomparative Advertising: Evidence for Gender Differences in Information-Processing Strategies. Journal of Advertising - J ADVERTISING, 36, 21-35. https://doi.org/10.2753/JOA0091-3367360102 Chang, C. (2008). Ad framing effects for consumption products: An affect priming process. Psychology & Marketing, 25(1), 24-46. 65 Chang, C. (2011). Feeling ambivalent about going green. Journal of Advertising, 40(4), 19-32. Chang, Y., & Thorson, E. (2004). TELEVISION AND WEB ADVERTISING SYNERGIES. Journal of Advertising, 33(2), 75-84. https://doi.org/10.1080/00913367.2004.10639161 Chang, Y., & Thorson, E. (2013). Television and Web advertising synergies. Journal of Advertising, 33, 75-84. https://doi.org/10.1080/00913367.2004.10639161 Choi, H., Mela, C. F., Balseiro, S. R., & Leary, A. (2020). Online display advertising markets: A literature review and future directions. Information Systems Research, 31(2), 556-575. Conner, M., & Sparks, P. (2002). Ambivalence and Attitudes. European review of social psychology, 12(1), 37-70. https://doi.org/10.1080/14792772143000012 Contentfy, A. (2023). AI-generated content for online marketing and advertising. https://aicontentfy.com/en/blog/ai-generated-content-for-online-marketing-and- advertising Curry, A. L., & Stroud, N. J. (2021). The effects of journalistic transparency on credibility assessments and engagement intentions. Journalism, 22(4), 901-918. Dewey, C. (2015). How 25 years of Photoshop changed the way we see reality. The Washington Post. https://www.washingtonpost.com/news/the- intersect/wp/2015/02/19/how-25-years-of-photoshop-changed-the-way-we-see- reality/ Dias, N., & Pennycook, G. (2020). Emphasizing publishers does not effectively reduce susceptibility to misinformation on social media. Harvard Kennedy School Misinformation Review, 1. https://doi.org/10.37016/mr-2020-001 Diaz, A. C. (2020). SEE JEFF GOODBY DO THE DORITOS COOL RANCH DANCE TO HELP PROMOTE THE BRAND'S SUPER BOWL AD. ad age. https://adage.com/creativity/work/doritos-jeff-goodby-does-cool-ranch- dance/2232491 Djafarova, E., & Rushworth, C. (2017). Exploring the credibility of online celebrities' Instagram profiles in influencing the purchase decisions of young female users. Computers in Human Behavior, 68, 1-7. Du, D., Zhang, Y., & Ge, J. (2023, 2023//). Effect of AI Generated Content Advertising on Consumer Engagement. HCI in Business, Government and Organizations, Cham. Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Harcourt brace Jovanovich college publishers. 66 Echterhoff, G., Hirst, W., & Hussy, W. (2005). How eyewitnesses resist misinformation: Social postwarnings and the monitoring of memory characteristics. Memory & Cognition, 33, 770-782. Elgammal, A. (2019). AI Is Blurring the Definition of Artist. American Scientist. https://www.americanscientist.org/article/ai-is-blurring-the-definition-of-artist Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: a three-factor theory of anthropomorphism. Psychol Rev, 114(4), 864-886. https://doi.org/10.1037/0033-295x.114.4.864 Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co. Fan, Y.-W., Miao, Y.-F., Fang, Y.-H., & Lin, R.-Y. (2013). Establishing the Adoption of Electronic Word-of-Mouth through Consumers’ Perceived Credibility. International Business Research, 6. https://doi.org/10.5539/ibr.v6n3p58 Feldman, L., & Borum Chattoo, C. (2019). Comedy as a route to social change: The effects of satire and news on persuasion about Syrian refugees. Mass Communication and Society, 22(3), 277-300. Festinger, L., & Carlsmith, J. M. (1959). Cognitive consequences of forced compliance. The journal of abnormal and social psychology, 58(2), 203. Fransen, M. L., Smit, E. G., & Verlegh, P. W. J. (2015). Strategies and motives for resistance to persuasion: an integrative framework [Hypothesis and Theory]. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01201 Freidlin, B., & Salvucci, S. (1995). Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used in NCES Surveys. Working Paper Series. Friedman, T. (2005). The World is Flat: A Brief History of the Twenty-first Century. Farrar, Straus and Giroux. Friestad, M., & Wright, P. (1994). The Persuasion Knowledge Model: How People Cope with Persuasion Attempts. Journal of Consumer Research, 21(1), 1-31. https://doi.org/10.1086/209380 Gatys, L., Ecker, A. S., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. Advances in neural information processing systems, 28. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. Haim, M., & Graefe, A. (2017). Automated news: Better than expected? Digital journalism, 5(8), 1044-1059. Hansen, T. (2005). Perspectives on consumer decision making: An integrated approach. Journal of Consumer Behaviour: An International Research Review, 4(6), 420- 437. 67 Hayes, A. S., Singer, J. B., & Ceppos, J. (2007). Shifting roles, enduring values: The credible journalist in a digital age. Journal of mass media ethics, 22(4), 262-279. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60(3), 50-68. Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion. Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public opinion quarterly, 15(4), 635-650. Huh, J., Nelson, M. R., & Russell, C. A. (2023). ChatGPT, AI Advertising, and Advertising Research and Education. Journal of Advertising, 52(4), 477-482. https://doi.org/10.1080/00913367.2023.2227013 Hung, M. C., Nakatsu, R., Tosa, N., & Kusumi, T. (2020). Evaluation of Art Style Using AI and Psychological Experiments. Proceedings of ADADA2020. Jäger, A.-K., & Weber, A. (2020). Can you believe it? The effects of benefit type versus construal level on advertisement credibility and purchase intention for organic food. Journal of Cleaner Production, 257, 120543. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120543 Jain, S. P., & Posavac, S. S. (2004). Valenced Comparisons. Journal of Marketing Research, 41(1), 46-58. https://doi.org/10.1509/jmkr.41.1.46.25080 Jiao, J., Levin, I. P., Gaeth, G. J., & Chatterjee, S. (2022). Sincere or exciting? Brand personality and argument quality on brand attitude. Journal of Consumer Behaviour, 21(6), 1268-1279. https://doi.org/https://doi.org/10.1002/cb.2078 Jiménez-Castillo, D., & Sánchez-Fernández, R. (2019). The role of digital influencers in brand recommendation: Examining their impact on engagement, expected value and purchase intention. International journal of information management, 49, 366-376. Johnson, D. S., Bardhi, F., & Dunn, D. T. (2008). Understanding how technology paradoxes affect customer satisfaction with self-service technology: The role of performance ambiguity and trust in technology. Psychology & Marketing, 25(5), 416-443. https://doi.org/https://doi.org/10.1002/mar.20218 Kaplan, K. J. (1972). On the ambivalence-indifference problem in attitude theory and measurement: A suggested modification of the semantic differential technique. Psychological bulletin, 77(5), 361. Keele, L., & Wolak, J. (2008). Contextual Sources of Ambivalence. Political Psychology, 29(5), 653-673. https://doi.org/https://doi.org/10.1111/j.1467- 9221.2008.00659.x Keh, H. T., & Sun, J. (2018). The differential effects of online peer review and expert review on service evaluations: the roles of confidence and information convergence. Journal of Service Research, 21(4), 474-489. 68 Khan, M. A., & Lee, M. S. (2014). Prepurchase determinants of brand avoidance: The moderating role of country-of-origin familiarity. Journal of global marketing, 27(5), 329-343. Kietzmann, J., Lee, L., McCarthy, I., & Kietzmann, T. (2019). Deepfakes: Trick or treat? Business Horizons, 63. https://doi.org/10.1016/j.bushor.2019.11.006 Kietzmann, J., Mills, A., & Plangger, K. (2020). Deepfakes: perspectives on the future “reality” of advertising and branding. International Journal of Advertising, 40, 1-13. https://doi.org/10.1080/02650487.2020.1834211 Kietzmann, J., Mills, A. J., & Plangger, K. (2021). Deepfakes: perspectives on the future “reality” of advertising and branding. International Journal of Advertising, 40(3), 473-485. https://doi.org/10.1080/02650487.2020.1834211 Kim, K., King, K. W., & Kim, J. (2018). Processing contradictory brand information from advertising and social media: an application of the multiple-motive heuristic-systematic model. Journal of Marketing Communications, 24(8), 801- 822. https://doi.org/10.1080/13527266.2015.1129356 Kington, R. S., Arnesen, S., Chou, W.-Y. S., Curry, S. J., Lazer, D., & Villarruel, A. M. (2021). Identifying credible sources of health information in social media: principles and attributes. NAM perspectives, 2021. Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med, 15(2), 155- 163. https://doi.org/10.1016/j.jcm.2016.02.012 Kumkale, G. T., Albarracín, D., & Seignourel, P. J. (2010). The effects of source credibility in the presence or absence of prior attitudes: Implications for the design of persuasive communication campaigns. Journal of applied social psychology, 40(6), 1325-1356. Kunda, Z. (1990). The case for motivated reasoning. Psychol Bull, 108(3), 480-498. https://doi.org/10.1037/0033-2909.108.3.480 Leshkevich, T., & Motozhanets, A. (2021). Worldview through the Prism of Personal Life-Meaning Orientations. Philosophia, 49, 1-11. https://doi.org/10.1007/s11406-020-00314-2 Liu, Y., Wang, S., & Yu, G. (2023). The nudging effect of AIGC labeling on users’ perceptions of automated news: evidence from EEG [Original Research]. Frontiers in Psychology, 14. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2023.12 77829 Lou, C., & Yuan, S. (2019). Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. Journal of Interactive Advertising, 19(1), 58-73. https://doi.org/10.1080/15252019.2018.1533501 69 Lowry, P. B., Wilson, D. W., & Haig, W. L. (2014). A Picture is Worth a Thousand Words: Source Credibility Theory Applied to Logo and Website Design for Heightened Credibility and Consumer Trust. International Journal of Human– Computer Interaction, 30(1), 63-93. https://doi.org/10.1080/10447318.2013.839899 Lu, Z., Huang, D., Bai, L., Liu, X., Qu, J., & Ouyang, W. (2023). Seeing is not always believing: A Quantitative Study on Human Perception of AI-Generated Images. arXiv preprint arXiv:2304.13023. Luoma-aho, V., Pirttimäki, T., Maity, D., Munnukka, J., & Reinikainen, H. (2019). Primed Authenticity: How Priming Impacts Authenticity Perception of Social Media Influencers. International Journal of Strategic Communication, 13(4), 352-365. https://doi.org/10.1080/1553118X.2019.1617716 Luttrell, A., Stillman, P. E., Hasinski, A. E., & Cunningham, W. A. (2016). Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty. Journal of Experimental Psychology: General, 145(4), 419-433. https://doi.org/10.1037/xge0000141 Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technology in Society, 75, 102362. https://doi.org/https://doi.org/10.1016/j.techsoc.2023.102362 Malhotra, N., Nunan, D., & Birks, D. (2017). Marketing Research: An Applied Approach. Malodia, S., Dhir, A., Hasni, M. J. S., & Srivastava, S. (2023). Field experiments in marketing research: a systematic methodological review. European Journal of Marketing, 57(7), 1939-1965. https://doi.org/10.1108/EJM-03-2022-0240 Malthouse, E., & Copulsky, J. (2023). Artificial intelligence ecosystems for marketing communications. International Journal of Advertising, 42(1), 128-140. https://doi.org/10.1080/02650487.2022.2122249 McDonald, C., & Scott, J. (2007). The SAGE Handbook of Advertising. In. SAGE Publications Ltd. https://doi.org/10.4135/9781848607897 McKnight, D., Choudhury, V., & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13, 334-359. https://doi.org/10.1287/isre.13.3.334.81 Metin, I., & Camgoz, S. M. (2011). The advances in the history of cognitive dissonance theory. International Journal of Humanities and Social Science, 1(6), 131-136. Metzger, M. J., Flanagin, A. J., Eyal, K., Lemus, D. R., & McCann, R. M. (2003). Credibility for the 21st century: Integrating perspectives on source, message, and media credibility in the contemporary media environment. In 70 Communication yearbook 27. (pp. 293-335). Lawrence Erlbaum Associates Publishers. Miller, A. I. (2019). The artist in the machine: The world of AI-powered creativity. Mit Press. Montal, T., & Reich, Z. (2017). I, robot. You, journalist. Who is the author? Authorship, bylines and full disclosure in automated journalism. Digital journalism, 5(7), 829-849. Morales, A. C., Amir, O., & Lee, L. (2017). Keeping It Real in Experimental Research—Understanding When, Where, and How to Enhance Realism and Measure Consumer Behavior. Journal of Consumer Research, 44(2), 465-476. https://doi.org/10.1093/jcr/ucx048 Moshel, M. L., Robinson, A. K., Carlson, T. A., & Grootswagers, T. (2022). Are you for real? Decoding realistic AI-generated faces from neural activity. Vision Res, 199, 108079. https://doi.org/10.1016/j.visres.2022.108079 Muniz, F., & Guzmán, F. (2023). The impact of brand value co-creation on perceived CSR authenticity and brand equity. Journal of Product & Brand Management, 32(8), 1338-1354. https://doi.org/10.1108/JPBM-02-2023-4340 Mutz, D. (2006). Hearing the Other Side: Deliberative Versus Participatory Democracy. Hearing the Other Side: Deliberative Versus Participatory Democracy, 1-171. https://doi.org/10.1017/CBO9780511617201 Mutz, D. C., & Pemantle, R. (2015). Standards for experimental research: Encouraging a better understanding of experimental methods. Journal of Experimental Political Science, 2(2), 192-215. Nabi, R. L., Moyer-Gusé, E., & Byrne, S. (2007). All joking aside: A serious investigation into the persuasive effect of funny social issue messages. Communication Monographs, 74(1), 29-54. Newby-Clark, I. R., McGregor, I., & Zanna, M. P. (2002). Thinking and caring about cognitive inconsistency: When and for whom does attitudinal ambivalence feel uncomfortable? Journal of Personality and Social Psychology, 82(2), 157. Ohanian, R. (1990). Construction and validation of a scale to measure celebrity endorsers' perceived expertise, trustworthiness, and attractiveness. Journal of Advertising, 19(3), 39-52. Otis, A. (2022). The effects of transparency cues on news source credibility online: An investigation of “opin‐ion labels.” Journalism. Advance online publication. In. Overgoor, G., Chica, M., Rand, W., & Weishampel, A. (2019). Letting the computers take over: Using AI to solve marketing problems. California Management Review, 61(4), 156-185. Pan, P.-L., Meng, J., & Lee, P.-L. (2017). The Mediating Effects of Presumed Influences on Taiwanese Consumers’ Skepticism toward Celebrity Endorsed 71 Advertising. Journal of International Consumer Marketing, 29(1), 48-58. https://doi.org/10.1080/08961530.2016.1236310 Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological science, 31(7), 770-780. Pennycook, G., & Rand, D. G. (2022). Nudging social media toward accuracy. The Annals of the American Academy of Political and Social Science, 700(1), 152- 164. Petty, R., & Cacioppo, J. (1986). The Elaboration Likelihood Model of Persuasion. Advances in experimental social psychology, 19, 123-205. https://doi.org/10.1016/S0065-2601(08)60214-2 Petty, R. E. (1986). John T. Cacioppo (1986),“The Elaboration Likelihood Model of Persuasion,”. Advances in experimental social psychology, 19, 123-205. Phau, I., & Ong, D. (2007). An investigation of the effects of environmental claims in promotional messages for clothing brands. Marketing Intelligence & Planning, 25(7), 772-788. https://doi.org/10.1108/02634500710834214 Pornpitakpan, C. (2004). The persuasiveness of source credibility: A critical review of five decades' evidence. Journal of applied social psychology, 34(2), 243-281. Priester, J. R., & Petty, R. E. (2001). Extending the bases of subjective attitudinal ambivalence: Interpersonal and intrapersonal antecedents of evaluative tension. Journal of Personality and Social Psychology, 80, 19-34. https://doi.org/10.1037/0022-3514.80.1.19 Priester, J. R., Petty, R. E., & Park, K. (2007). Whence Univalent Ambivalence? From the Anticipation of Conflicting Reactions. Journal of Consumer Research, 34(1), 11-21. https://doi.org/10.1086/513042 Qin, X., & Jiang, Z. (2019). The impact of AI on the advertising process: The Chinese experience. Journal of Advertising, 48(4), 338-346. Ramanathan, S., & Williams, P. (2007). Immediate and delayed emotional consequences of indulgence: The moderating influence of personality type on mixed emotions. Journal of Consumer Research, 34(2), 212-223. https://doi.org/10.1086/519149 Raziq, M. M., Ahmed, Q. M., Ahmad, M., Yusaf, S., Sajjad, A., & Waheed, S. (2018). Advertising skepticism, need for cognition and consumers’ attitudes. Marketing Intelligence & Planning, 36(6), 678-693. https://doi.org/10.1108/MIP-11-2017- 0273 Reich, Z., & Klein-Avraham, I. (2014). Textual DNA: The hindered authorship of photojournalists in the Western press. Journalism Practice, 8(5), 619-631. 72 Rosengren, S., Dahlén, M., & Modig, E. (2013). Think outside the ad: Can advertising creativity benefit more than the advertiser? Journal of Advertising, 42(4), 320- 330. Spilski, A., Gröppel-Klein, A., & Gierl, H. (2018). Avoiding Pitfalls in Experimental Research in Marketing. Marketing: ZFP – Journal of Research and Management, 40(2), 58-90. https://www.jstor.org/stable/26426881 Stapels, J. G., & Eyssel, F. (2021). Let’s not be indifferent about robots: Neutral ratings on bipolar measures mask ambivalence in attitudes towards robots. PLOS ONE, 16(1), e0244697. https://doi.org/10.1371/journal.pone.0244697 Statista. (2024). Artificial intelligence (AI)-enabled advertising spending worldwide in 2022 and 2032. Statista. https://www.statista.com/statistics/1301227/ai-enabled- ad-spend-world/ Stein, M.-K., Newell, S., Wagner, E., & Galliers, R. (2015). Coping with Information Technology: Mixed Emotions, Vacillation, and Nonconforming Use Patterns. MIS Quarterly, 39, 367-392. https://doi.org/10.25300/MISQ/2015/39.2.05 Su, B.-C., Wu, L.-W., Lin, H., & Lin, C.-A. (2023). The Mediating Effect of Herd Behavior and Brand Attitude towards the Impact of Spokesman Credibility, Source Fit, and Online Word-of-Mouth on Purchase Intention. Sustainability, 15(1), 888. https://www.mdpi.com/2071-1050/15/1/888 Sun, S., & Evans, N. J. (2022). Effects of Disclosure, Placement Type, and Ad–Context Congruence on Brand and Advertising Recognition: An Exploration of CARE Model Processing. Journal of Current Issues & Research in Advertising, 43(2), 219-235. https://doi.org/10.1080/10641734.2021.1982083 Sundar, S. S. (1999). Exploring Receivers' Criteria for Perception of Print and Online News. Journalism & Mass Communication Quarterly, 76(2), 373-386. https://doi.org/10.1177/107769909907600213 Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology effects on credibility. MacArthur Foundation Digital Media and Learning Initiative Cambridge, MA. Tao, W., Gao, S., & Yuan, Y. (2023). Boundary crossing: an experimental study of individual perceptions toward AIGC. Frontiers in Psychology, 14. Thompson, M. M., Zanna, M. P., & Griffin, D. W. (1995). Let’s not be indifferent about (attitudinal) ambivalence. Attitude strength: Antecedents and consequences, 4, 361-386. Tong, S., Luo, X., & Xu, B. (2020). Personalized mobile marketing strategies. Journal of the Academy of Marketing Science, 48, 64-78. Tucker, E. M., Rifon, N. J., Lee, E. M., & Reece, B. B. (2016). Consumer receptivity to green ads: A test of green claim types and the role of individual consumer 73 characteristics for green ad response. In Green Advertising and the Reluctant Consumer (pp. 4-18). Routledge. Van Boekel, M., Lassonde, K. A., O’Brien, E. J., & Kendeou, P. (2017). Source credibility and the processing of refutation texts. Memory & Cognition, 45, 168- 181. Van Boekel, M., Varma, K., & Varma, S. (2017). A retrieval-based approach to eliminating hindsight bias. Memory, 25(3), 377-390. van der Bend, D. L. M., Gijsman, N., Bucher, T., Shrewsbury, V. A., van Trijp, H., & van Kleef, E. (2023). Can I @handle it? The effects of sponsorship disclosure in TikTok influencer marketing videos with different product integration levels on adolescents’ persuasion knowledge and brand outcomes. Computers in Human Behavior, 144, 107723. https://doi.org/https://doi.org/10.1016/j.chb.2023.107723 Van Reijmersdal, E. A., Brussee, E., Evans, N., & Wojdynski, B. W. (2023). Disclosure-Driven Recognition of Native Advertising: A Test of Two Competing Mechanisms. Journal of Interactive Advertising, 23(2), 85-97. https://doi.org/10.1080/15252019.2022.2146991 Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559 Vrontis, D., Makrides, A., Christofi, M., & Thrassou, A. (2021). Social media influencer marketing: A systematic review, integrative framework and future research agenda. International Journal of Consumer Studies, 45(4), 617-644. Waddell, T. F. (2018). A robot wrote this? How perceived machine authorship affects news credibility. Digital journalism, 6(2), 236-255. Waddell, T. F. (2019). Can an Algorithm Reduce the Perceived Bias of News? Testing the Effect of Machine Attribution on News Readers’ Evaluations of Bias, Anthropomorphism, and Credibility. Journalism & Mass Communication Quarterly, 96(1), 82-100. https://doi.org/10.1177/1077699018815891 Wang, R. (2021). A Study on the Impact of Perceived Value of Art Based on Artificial Intelligence on Consumers. 한국컴퓨터정보학회논문지, 26(1), 275-281. Wang, S. W., Kao, G. H.-Y., & Ngamsiriudom, W. (2017). Consumers' attitude of endorser credibility, brand and intention with respect to celebrity endorsement of the airline sector. Journal of Air Transport Management, 60, 10-17. Wang, S. W., & Scheinbaum, A. C. (2018). Enhancing brand credibility via celebrity endorsement: Trustworthiness trumps attractiveness and expertise. Journal of Advertising Research, 58(1), 16-32. Weismueller, J., Harrigan, P., Wang, S., & Soutar, G. N. (2020). Influencer Endorsements: How Advertising Disclosure and Source Credibility Affect 74 Consumer Purchase Intention on Social Media. Australasian Marketing Journal, 28(4), 160-170. https://doi.org/10.1016/j.ausmj.2020.03.002 Wiles, J. (2023). Beyond ChatGPT: The Future of Generative AI for Enterprises. Gartner. https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of- generative-ai-for-enterprises Wu, L., Dodoo, N. A., & Wen, T. J. (2024). Disclosing AI’s Involvement in Advertising to Consumers: A Task-Dependent Perspective. Journal of Advertising, 1-19. https://doi.org/10.1080/00913367.2024.2309929 Wu, L., & Wen, T. J. (2021). Understanding AI Advertising From the Consumer Perspective. What Factors Determine Consumer Appreciation of AI-Created Advertisements?, 61(2), 133-146. https://doi.org/10.2501/jar-2021-004 Wyer Jr, R. S., & Hong, J. (2010). Chinese consumer behavior: the effects of content, process, and language. Yang, C., & Hu, J. (2022). When do consumers prefer AI-enabled customer service? The interaction effect of brand personality and service provision type on brand attitudes and purchase intentions. Journal of Brand Management, 29(2), 167- 189. https://doi.org/10.1057/s41262-021-00261-7 Zheng, L., Huang, B., Qiu, H., & Bai, H. The role of social media followers’ agency in influencer marketing: a study based on the heuristic–systematic model of information processing. International Journal of Advertising, 1-26. https://doi.org/10.1080/02650487.2023.2229148 Zheng, Y., Zhong, B., & Yang, F. (2018). When algorithms meet journalism: The user perception to automated news in a cross-cultural context. Computers in Human Behavior, 86, 266-275. 描述 碩士
國立政治大學
傳播學院傳播碩士學位學程
110464019資料來源 http://thesis.lib.nccu.edu.tw/record/#G0110464019 資料類型 thesis dc.contributor.advisor 張郁敏 zh_TW dc.contributor.advisor Chang, Yuh-Miin en_US dc.contributor.author (Authors) 唐友友 zh_TW dc.contributor.author (Authors) Tang, Yu-Yu en_US dc.creator (作者) 唐友友 zh_TW dc.creator (作者) Tang, Yu-Yu en_US dc.date (日期) 2024 en_US dc.date.accessioned 4-Oct-2024 11:06:12 (UTC+8) - dc.date.available 4-Oct-2024 11:06:12 (UTC+8) - dc.date.issued (上傳時間) 4-Oct-2024 11:06:12 (UTC+8) - dc.identifier (Other Identifiers) G0110464019 en_US dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/153925 - dc.description (描述) 碩士 zh_TW dc.description (描述) 國立政治大學 zh_TW dc.description (描述) 傳播學院傳播碩士學位學程 zh_TW dc.description (描述) 110464019 zh_TW dc.description.abstract (摘要) 隨著數位技術的快速發展,廣告製作的方式正在進入AI輔助合作(AI-assisted collaboration)時代,影像可以使用演算法進行編輯並生成內容,為廣告產業帶來了新的篇章。人工智慧生成內容(AIGC)的應用顯著加速了決策過程,提高了整體行銷效率。本研究探討AIGC廣告揭露及所帶來的廣告效果,將分為AIGC廣告不揭露組別和AIGC廣告揭露組別,以廣告雙歧態度(即同時存在正面和負面態度)、廣告訊息可信度、廣告來源可信度以及對品牌態度的影響。初步探討AIGC廣告揭露如何從態度面和認知面影響品牌態度。 實驗設計採用組間單因子實驗法(One-factor experimental method),採用網路實驗法,研究對象鎖定在年齡在18歲至30歲、熟悉中文的消費者進行調查。最終共收集158份有效問卷,分別為AIGC廣告揭露組別59位、AIGC廣告不揭露組別59位。通過研究分析AIGC廣告揭露不會產生廣告雙歧態度,廣告雙歧態度的消費者會對於廣告訊息產生較低的可信度,以及廣告雙歧態度的消費者會對於廣告來源產生較低的可信度以及後續較低的品牌態度。學術上,消費者對於AIGC廣告產生廣告雙歧態度,則降低對於廣告訊息可信度,且同時降低對於廣告來源可信度,最後負面影響品牌態度。實務上,廣告主應避免讓消費者在觀看AIGC廣告過程中產生廣告雙歧態度,並且AIGC廣告操弄的複雜性和廣告可信度兩者取得平衡。最後根據廣告概念、研究變項、研究方法提出研究的限制,同時研究者認為探索不同形式的AIGC廣告揭露效果、不同形式的廣告形式以及廣告主題選擇,為後續的研究給予研究建議。 zh_TW dc.description.abstract (摘要) With the rapid development of digital technology, advertising production is entering an era of AI-assisted collaboration. The application of AI-generated content (AIGC) has significantly accelerated decision-making processes and improved overall marketing efficiency, ushering in a new chapter for the advertising industry. This study explores the impact of AIGC ad disclosure on advertising effectiveness, this study will compare two groups: non-disclosure of AIGC ads and disclosure of AIGC ads. The research will examine the effects on ambivalence in advertising attitudes (the coexistence of both positive and negative attitudes), the ad message attitudes, ad source attitudes, and the impact on brand attitude. This preliminary exploration investigates how AIGC ad disclosure influences brand attitudes from both attitudinal and cognitive perspectives. The experimental design adopts a between-groups one-factor experimental method. To align with real consumer ad-watching scenarios, an online experimental approach is used. The study targets consumers aged 18 to 30 who are familiar with the Chinese language. A total of 158 valid questionnaires were collected, with 59 participants in the AIGC ad disclosure group and 59 in the non-disclosure group. The research analysis shows that AIGC ad disclosure does not generate ambivalence in advertising attitudes. However, consumers with ambivalent attitudes toward ads tend to perceive lower credibility in the ad message and ad source, leading to a lower subsequent brand attitude. Academically, the study found that when consumers experience ambivalence toward AIGC ads, it lowers their perceived credibility of the ad message and source, ultimately negatively affecting brand attitude. Practically, advertisers should avoid creating ambivalence in consumers when they are exposed to AIGC ads and strive to balance the complexity of AIGC manipulation with the credibility of the ads. This study also discusses the limitations of the selected ad concept, research variables, and methods. The researchers suggest that future studies explore the effects of different forms of AIGC disclosure, different ad formats, and theme selections for advertisers. en_US dc.description.tableofcontents 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機和目的 5 第二章 文獻探討 8 第一節 AIGC廣告相關研究 8 第二節 AIGC廣告揭露與廣告雙歧態度 15 第三節 廣告雙歧態度、廣告可信度、品牌態度 18 第三章 研究方法 26 第一節 研究架構與研究假設 26 第二節 實驗設計 27 第三節 實驗前測 29 第四節 主實驗 37 第四章 資料分析 48 第一節 樣本輪廓與信度分析 48 第二節 操弄檢定、干擾檢定與假設驗證 50 第五章 研究結果與建議 55 第一節 研究結果與討論 55 第二節 學術與實務貢獻 58 第三節 研究限制與未來建議 60 參考書目 63 附錄 77 附錄一:實驗物一:「AIGC廣告不揭露」之新聞稿 77 附錄二:實驗物二:「AIGC廣告揭露」之新聞稿 78 附錄三:前測問卷 79 附錄四:主實驗問卷 88 zh_TW dc.format.extent 6790638 bytes - dc.format.mimetype application/pdf - dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0110464019 en_US dc.subject (關鍵詞) 人工智慧生成內容 zh_TW dc.subject (關鍵詞) AIGC廣告 zh_TW dc.subject (關鍵詞) AIGC廣告揭露 zh_TW dc.subject (關鍵詞) 廣告雙歧態度 zh_TW dc.subject (關鍵詞) 廣告訊息可信度 zh_TW dc.subject (關鍵詞) 廣告來源可信度 zh_TW dc.subject (關鍵詞) 品牌態度 zh_TW dc.subject (關鍵詞) 網路實驗法 zh_TW dc.subject (關鍵詞) AIGC advertisement en_US dc.subject (關鍵詞) AIGC advertising disclosure en_US dc.subject (關鍵詞) ambivalent attitude en_US dc.subject (關鍵詞) ad message credibility en_US dc.subject (關鍵詞) ad source credibility en_US dc.subject (關鍵詞) brand attitude en_US dc.subject (關鍵詞) experimental research en_US dc.title (題名) 揭露還是不揭露?探討AIGC廣告揭露對消費者廣告雙歧態度、廣告可信度、品牌態度的影響 zh_TW dc.title (題名) To Disclose or Not to Disclose? An Empirical Study on the Impact of AIGC Advertising Disclosure on Consumer Advertising Ambivalence, Advertising Credibility, and Brand Attitudes en_US dc.type (資料類型) thesis en_US dc.relation.reference (參考文獻) 中文書目 參考書目 7-ElevenHongKong. (2023). 〈拆解 「7-SELECT AI 生成廣告片」之謎. 〉 https://www.youtube.com/watch?v=BKyBa9xljSM&ab_channel=7- ElevenHongKong 台北市廣告代理商業同業公會. (2023). 〈AI 生成式廣告帶來的效益和未來趨 勢. 〉 http://www.taaa.org.tw/news/article/8866 江義平, 莊承展, & 黃智彙. (2019). 社〈群媒體廣告衡量研究 [Measuring the Effects of Social Media Advertising]. 〉 《中原企管評論》, 17(1), 1-37. 何英煒. (2023). 〈資策會:AI 生成內容有 3 挑戰、2 趨勢. 〉《Yahoo 股市. 李佳樺. (2024). 〈GPT-4與 Chat GPT 差在哪?怎麼下指令?Chat GPT 使用全攻 略. 〉《快樂工作人 Cheers》 https://www.cheers.com.tw/article/article.action?id=5101741 林芷圓. (2023). 〈AI 懂下關鍵字、還大省 75%工作時間!Vpon 開發 AI 生成廣告 系統,優勢是什麼?. 〉 《數位時代》 https://www.bnext.com.tw/article/75066/vpon-invnity-ai 洪釗雯. (2004). 〈瘦身廣告的強弱論點如何透過瘦身的雙歧態度影響廣告效果 政 治大學]. https://ndltd.ncl.edu.tw/cgi- bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22092NCCU5071005%22.&searchmod e=basic 科技橘報. (2022). 〈讓 AI 自動生成文章、程式、圖片!一文看懂自然語言處理 (NLP)是什麼?. 〉 《科技橘報》 https://buzzorange.com/techorange/2022/08/29/nlp-ai/ 張卿卿. (2014). 〈從認知與情感雙歧檢視台灣民眾的廣告規避與趨近行為. 〉 《中華傳播學刊(25) 》, 71-98. 隋昱嬋. (2023). 〈華碩找虛擬 KOL 代言,摺疊筆電飆價 10 萬元!鎖定「口袋 深、愛酷東西」Z 世代. 〉 《數位時代》 https://www.bnext.com.tw/article/74246/asus-vr-inf-mar-23-mag 隋昱嬋. (2024). 〈【圖解】搶黃金 5 秒吸引力,短影音該怎麼用?一篇看懂 Reels、TikTok、Shorts 優勢在哪. 〉 《數位時代》 https://www.bnext.com.tw/article/76005/shortvideo-marketing-advertising- youtube-shorts-instagram-reels-tiktok 黃士育. (2023). 〈全由 AI 生成的電影!畫面不自然、角色表情詭異,但「最大問 題」克服了⋯. 〉 《數位時代》 https://www.bnext.com.tw/article/75538/ai- gererated-movie-the-frost? 62 黃馨嬅. (2010). 〈動畫廣告的視覺呈現對於廣告價值與娛樂性之探討. 〉 資策會產業情報研究所. (2024). 【影音觀看行為調查】串流影音觀眾已超越非串 流 45 歲為偏好度分水嶺 前三大國際串流平台訂閱 Netflix、YouTube 與 Disney+.〉 https://mic.iii.org.tw/news.aspx?id=679 劉慶侯. (2019). 〈Deepfake 換臉 假到有夠真/歐巴馬被黑辱罵川普. 〉 https://news.ltn.com.tw/news/society/paper/1317954 數位時代. (2023). 〈DALL·E 2 怎麼玩?怎麼讓 AI 幫你生成圖片?步驟懶人包一 次看懂. https://www.bnext.com.tw/article/73621/dall-e-0105 Accucrazy. (2023). 〈從 AI 到 AIGC :一場革命性的科技進化論,正活生生在 我們眼前上演!. 〉《Accucrazy》. https://www.accucrazy.com/aigc-info/ Chen, J. (2024). 〈多芬抵制 AI 生成人像,品牌用 AI 生成廣告有何隱憂?. 〉 https://tw.news.yahoo.com/%E4%B8%8D%E8%A6%81%E8%A2%AB-ai- %E7%89%BD%E8%91%97%E9%BC%BB%E5%AD%90%E8%B5%B0- %E5%A4%9A%E8%8A%AC%E6%8A%B5%E5%88%B6-ai-111326137.html Chien, C. (2023a). 〈可口可樂最新創意廣告《Masterpiece》讓名畫動起來!同推 「Create Real Magic」限時 AI 繪圖競賽平台. 〉 https://www.wowlavie.com/article/ae2300355 Chien, C. (2023b). 〈由 AI 撰寫的創意廣告腳本!日本 SUNTORY 對麥茶風味的另 類趣味呈現. 〉 https://www.wowlavie.com/amp/ae2300626 Digitspark. (2023). 〈AIGC 爆炸下,企業&工作者與 AI 趨勢共處的方法. 〉 https://digitspark.co/blog/aigc- %E7%88%86%E7%82%B8%E4%B8%8B%EF%BC%8C%E4%BC%81%E6% A5%AD%EF%BC%86%E5%B7%A5%E4%BD%9C%E8%80%85%E8%88%8 7-ai- %E8%B6%A8%E5%8B%A2%E5%85%B1%E8%99%95%E7%9A%84%E6% 96%B9%E6%B3%95/ E-ICP. (2021). 〈2021 東方消費者行銷資料庫部份書面年鑑. 〉 IORG, 台. (2023). 2023 年 2 月 IORG 台灣 YouTube 使用者習慣調查. 〉 https://iorg.tw/_en/a/youtube-in-tw-232 Su, H. (2023). 〈除了 Chat GPT 外,生成式 AI 能為企業帶來什麼?. 〉 《未來 商務》 https://fc.bnext.com.tw/articles/view/2701? Yahoo. (2023). 〈Yahoo 生成式 AI 消費者大調查.〉 https://drive.google.com/file/d/1MwCQo5239BoLgi7vsJ- Ghy_06ELGKaGY/view YouTube. (2024). 〈關於影片廣告格式〉 https://support.google.com/youtube/answer/2375464?hl=zh-Hant#nonskippable- instream 日文書目 63 KTV_NEWS. (2023). 【飲料メーカー「伊藤園」CM に"AI タレント"を起用】低 コストでハイクオリティ タレントは戦々恐々?【関西テレビ・news ラ ンナー】. KTV NEWS. https://www.youtube.com/watch?v=H2Tphiu6hUk&t=74s&ab_channel=%E3% 82%AB%E3%83%B3%E3%83%86%E3%83%ACNEWS 外語書目 Adams, L. C., Busch, F., Truhn, D., Makowski, M. R., Aerts, H. J., & Bressem, K. K. (2023). What Does DALL-E 2 Know About Radiology? Journal of Medical Internet Research, 25, e43110. Alvarez, R. M., & Brehm, J. (1997). Are Americans Ambivalent Towards Racial Policies? American Journal of Political Science, 41(2), 345-374. https://doi.org/10.2307/2111768 Appelman, A., & Sundar, S. S. (2015). Measuring Message Credibility: Construction and Validation of an Exclusive Scale. Journalism & Mass Communication Quarterly, 93(1), 59-79. https://doi.org/10.1177/1077699015606057 Appelman, A., & Sundar, S. S. (2016). Measuring message credibility: Construction and validation of an exclusive scale. Journalism & Mass Communication Quarterly, 93(1), 59-79. Arango, L., Singaraju, S. P., & Niininen, O. (2023). Consumer Responses to AI- Generated Charitable Giving Ads. Journal of Advertising, 1-18. https://doi.org/10.1080/00913367.2023.2183285 Babbie, E. R. (2020). The practice of social research. Cengage AU. Balaban, D. C., Mucundorfeanu, M., & Naderer, B. (2022). The role of trustworthiness in social media influencer advertising: Investigating users’ appreciation of advertising transparency and its effects. Communications, 47(3), 395-421. https://doi.org/doi:10.1515/commun-2020-0053 Balasubramanian, S. K., & Gistri, G. (2022). Priming movie product placements: New insights from a Cross-National case study. International Journal of Advertising, 41(6), 1064-1094. https://doi.org/10.1080/02650487.2021.1930349 Baldassarri, D., & Abascal, M. (2017). Field Experiments Across the Social Sciences. Annual Review of Sociology, 43. https://doi.org/10.1146/annurev-soc-073014- 112445 Bargh, J. A., Chaiken, S., Govender, R., & Pratto, F. (1992). The generality of the automatic attitude activation effect. Journal of Personality and Social Psychology, 62(6), 893. Belch, G. E., & Belch, M. A. (2018). Advertising and promotion: An integrated marketing communications perspective. mcgraw-hill. 64 Beltramini, R. F. (1988). Perceived believability of warning label information presented in cigarette advertising. Journal of Advertising, 17(2), 26-32. Boerman, S. C., Rozendaal, E., & van Reijmersdal, E. A. (2024). The development and testing of a pictogram signaling advertising in online videos. International Journal of Advertising, 43(4), 672-691. https://doi.org/10.1080/02650487.2023.2242673 Bohner, G., Moskowitz, G. B., & Chaiken, S. (1995). The interplay of heuristic and systematic processing of social information. European review of social psychology, 6(1), 33-68. Campbell, C., & Evans, N. J. (2018). The Role of a Companion Banner and Sponsorship Transparency in Recognizing and Evaluating Article-style Native Advertising. Journal of Interactive Marketing, 43(1), 17-32. https://doi.org/10.1016/j.intmar.2018.02.002 Campbell, C., Plangger, K., Sands, S., & Kietzmann, J. (2022). Preparing for an Era of Deepfakes and AI-Generated Ads: A Framework for Understanding Responses to Manipulated Advertising. Journal of Advertising, 51(1), 22-38. https://doi.org/10.1080/00913367.2021.1909515 Campbell, C., Plangger, K., Sands, S., Kietzmann, J. A. N., & Bates, K. (2022). How Deepfakes and Artificial Intelligence Could Reshape the Advertising Industry: The Coming Reality of AI Fakes and Their Potential Impact on Consumer Behavior [Article]. Journal of Advertising Research, 62(3), 241-251. https://doi.org/10.2501/JAR-2022-017 Campbell, M. C. (1995). When Attention-Getting Advertising Tactics Elicit Consumer Inferences of Manipulative Intent: The Importance of Balancing Benefits and Investments. Journal of Consumer Psychology, 4(3), 225-254. https://doi.org/https://doi.org/10.1207/s15327663jcp0403_02 Chan, F. Y., Chan, H. F., & Tang, F. (2017). The effect of perceived advertising effort on brand perception: implication for retailers in Hong Kong. The International Review of Retail, Distribution and Consumer Research, 27(1), 78-93. https://doi.org/10.1080/09593969.2016.1221843 Chang, C. (2004). Country of Origin as a Heuristic Cue: The Effects of Message Ambiguity and Product Involvement. Media Psychology, 6(2), 169-192. https://doi.org/10.1207/s1532785xmep0602_3 Chang, C. (2007). The Relative Effectiveness of Comparative and Noncomparative Advertising: Evidence for Gender Differences in Information-Processing Strategies. Journal of Advertising - J ADVERTISING, 36, 21-35. https://doi.org/10.2753/JOA0091-3367360102 Chang, C. (2008). Ad framing effects for consumption products: An affect priming process. Psychology & Marketing, 25(1), 24-46. 65 Chang, C. (2011). Feeling ambivalent about going green. Journal of Advertising, 40(4), 19-32. Chang, Y., & Thorson, E. (2004). TELEVISION AND WEB ADVERTISING SYNERGIES. Journal of Advertising, 33(2), 75-84. https://doi.org/10.1080/00913367.2004.10639161 Chang, Y., & Thorson, E. (2013). Television and Web advertising synergies. Journal of Advertising, 33, 75-84. https://doi.org/10.1080/00913367.2004.10639161 Choi, H., Mela, C. F., Balseiro, S. R., & Leary, A. (2020). Online display advertising markets: A literature review and future directions. Information Systems Research, 31(2), 556-575. Conner, M., & Sparks, P. (2002). Ambivalence and Attitudes. European review of social psychology, 12(1), 37-70. https://doi.org/10.1080/14792772143000012 Contentfy, A. (2023). AI-generated content for online marketing and advertising. https://aicontentfy.com/en/blog/ai-generated-content-for-online-marketing-and- advertising Curry, A. L., & Stroud, N. J. (2021). The effects of journalistic transparency on credibility assessments and engagement intentions. Journalism, 22(4), 901-918. Dewey, C. (2015). How 25 years of Photoshop changed the way we see reality. The Washington Post. https://www.washingtonpost.com/news/the- intersect/wp/2015/02/19/how-25-years-of-photoshop-changed-the-way-we-see- reality/ Dias, N., & Pennycook, G. (2020). Emphasizing publishers does not effectively reduce susceptibility to misinformation on social media. Harvard Kennedy School Misinformation Review, 1. https://doi.org/10.37016/mr-2020-001 Diaz, A. C. (2020). SEE JEFF GOODBY DO THE DORITOS COOL RANCH DANCE TO HELP PROMOTE THE BRAND'S SUPER BOWL AD. ad age. https://adage.com/creativity/work/doritos-jeff-goodby-does-cool-ranch- dance/2232491 Djafarova, E., & Rushworth, C. (2017). Exploring the credibility of online celebrities' Instagram profiles in influencing the purchase decisions of young female users. Computers in Human Behavior, 68, 1-7. Du, D., Zhang, Y., & Ge, J. (2023, 2023//). Effect of AI Generated Content Advertising on Consumer Engagement. HCI in Business, Government and Organizations, Cham. Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Harcourt brace Jovanovich college publishers. 66 Echterhoff, G., Hirst, W., & Hussy, W. (2005). How eyewitnesses resist misinformation: Social postwarnings and the monitoring of memory characteristics. Memory & Cognition, 33, 770-782. Elgammal, A. (2019). AI Is Blurring the Definition of Artist. American Scientist. https://www.americanscientist.org/article/ai-is-blurring-the-definition-of-artist Epley, N., Waytz, A., & Cacioppo, J. T. (2007). On seeing human: a three-factor theory of anthropomorphism. Psychol Rev, 114(4), 864-886. https://doi.org/10.1037/0033-295x.114.4.864 Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co. Fan, Y.-W., Miao, Y.-F., Fang, Y.-H., & Lin, R.-Y. (2013). Establishing the Adoption of Electronic Word-of-Mouth through Consumers’ Perceived Credibility. International Business Research, 6. https://doi.org/10.5539/ibr.v6n3p58 Feldman, L., & Borum Chattoo, C. (2019). Comedy as a route to social change: The effects of satire and news on persuasion about Syrian refugees. Mass Communication and Society, 22(3), 277-300. Festinger, L., & Carlsmith, J. M. (1959). Cognitive consequences of forced compliance. The journal of abnormal and social psychology, 58(2), 203. Fransen, M. L., Smit, E. G., & Verlegh, P. W. J. (2015). Strategies and motives for resistance to persuasion: an integrative framework [Hypothesis and Theory]. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01201 Freidlin, B., & Salvucci, S. (1995). Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used in NCES Surveys. Working Paper Series. Friedman, T. (2005). The World is Flat: A Brief History of the Twenty-first Century. Farrar, Straus and Giroux. Friestad, M., & Wright, P. (1994). The Persuasion Knowledge Model: How People Cope with Persuasion Attempts. Journal of Consumer Research, 21(1), 1-31. https://doi.org/10.1086/209380 Gatys, L., Ecker, A. S., & Bethge, M. (2015). Texture synthesis using convolutional neural networks. Advances in neural information processing systems, 28. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144. Haim, M., & Graefe, A. (2017). Automated news: Better than expected? Digital journalism, 5(8), 1044-1059. Hansen, T. (2005). Perspectives on consumer decision making: An integrated approach. Journal of Consumer Behaviour: An International Research Review, 4(6), 420- 437. 67 Hayes, A. S., Singer, J. B., & Ceppos, J. (2007). Shifting roles, enduring values: The credible journalist in a digital age. Journal of mass media ethics, 22(4), 262-279. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60(3), 50-68. Hovland, C. I., Janis, I. L., & Kelley, H. H. (1953). Communication and persuasion. Hovland, C. I., & Weiss, W. (1951). The influence of source credibility on communication effectiveness. Public opinion quarterly, 15(4), 635-650. Huh, J., Nelson, M. R., & Russell, C. A. (2023). ChatGPT, AI Advertising, and Advertising Research and Education. Journal of Advertising, 52(4), 477-482. https://doi.org/10.1080/00913367.2023.2227013 Hung, M. C., Nakatsu, R., Tosa, N., & Kusumi, T. (2020). Evaluation of Art Style Using AI and Psychological Experiments. Proceedings of ADADA2020. Jäger, A.-K., & Weber, A. (2020). Can you believe it? The effects of benefit type versus construal level on advertisement credibility and purchase intention for organic food. Journal of Cleaner Production, 257, 120543. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120543 Jain, S. P., & Posavac, S. S. (2004). Valenced Comparisons. Journal of Marketing Research, 41(1), 46-58. https://doi.org/10.1509/jmkr.41.1.46.25080 Jiao, J., Levin, I. P., Gaeth, G. J., & Chatterjee, S. (2022). Sincere or exciting? Brand personality and argument quality on brand attitude. Journal of Consumer Behaviour, 21(6), 1268-1279. https://doi.org/https://doi.org/10.1002/cb.2078 Jiménez-Castillo, D., & Sánchez-Fernández, R. (2019). The role of digital influencers in brand recommendation: Examining their impact on engagement, expected value and purchase intention. International journal of information management, 49, 366-376. Johnson, D. S., Bardhi, F., & Dunn, D. T. (2008). Understanding how technology paradoxes affect customer satisfaction with self-service technology: The role of performance ambiguity and trust in technology. Psychology & Marketing, 25(5), 416-443. https://doi.org/https://doi.org/10.1002/mar.20218 Kaplan, K. J. (1972). On the ambivalence-indifference problem in attitude theory and measurement: A suggested modification of the semantic differential technique. Psychological bulletin, 77(5), 361. Keele, L., & Wolak, J. (2008). Contextual Sources of Ambivalence. Political Psychology, 29(5), 653-673. https://doi.org/https://doi.org/10.1111/j.1467- 9221.2008.00659.x Keh, H. T., & Sun, J. (2018). The differential effects of online peer review and expert review on service evaluations: the roles of confidence and information convergence. Journal of Service Research, 21(4), 474-489. 68 Khan, M. A., & Lee, M. S. (2014). Prepurchase determinants of brand avoidance: The moderating role of country-of-origin familiarity. Journal of global marketing, 27(5), 329-343. Kietzmann, J., Lee, L., McCarthy, I., & Kietzmann, T. (2019). Deepfakes: Trick or treat? Business Horizons, 63. https://doi.org/10.1016/j.bushor.2019.11.006 Kietzmann, J., Mills, A., & Plangger, K. (2020). Deepfakes: perspectives on the future “reality” of advertising and branding. International Journal of Advertising, 40, 1-13. https://doi.org/10.1080/02650487.2020.1834211 Kietzmann, J., Mills, A. J., & Plangger, K. (2021). Deepfakes: perspectives on the future “reality” of advertising and branding. International Journal of Advertising, 40(3), 473-485. https://doi.org/10.1080/02650487.2020.1834211 Kim, K., King, K. W., & Kim, J. (2018). Processing contradictory brand information from advertising and social media: an application of the multiple-motive heuristic-systematic model. Journal of Marketing Communications, 24(8), 801- 822. https://doi.org/10.1080/13527266.2015.1129356 Kington, R. S., Arnesen, S., Chou, W.-Y. S., Curry, S. J., Lazer, D., & Villarruel, A. M. (2021). Identifying credible sources of health information in social media: principles and attributes. NAM perspectives, 2021. Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med, 15(2), 155- 163. https://doi.org/10.1016/j.jcm.2016.02.012 Kumkale, G. T., Albarracín, D., & Seignourel, P. J. (2010). The effects of source credibility in the presence or absence of prior attitudes: Implications for the design of persuasive communication campaigns. Journal of applied social psychology, 40(6), 1325-1356. Kunda, Z. (1990). The case for motivated reasoning. Psychol Bull, 108(3), 480-498. https://doi.org/10.1037/0033-2909.108.3.480 Leshkevich, T., & Motozhanets, A. (2021). Worldview through the Prism of Personal Life-Meaning Orientations. Philosophia, 49, 1-11. https://doi.org/10.1007/s11406-020-00314-2 Liu, Y., Wang, S., & Yu, G. (2023). The nudging effect of AIGC labeling on users’ perceptions of automated news: evidence from EEG [Original Research]. Frontiers in Psychology, 14. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2023.12 77829 Lou, C., & Yuan, S. (2019). Influencer Marketing: How Message Value and Credibility Affect Consumer Trust of Branded Content on Social Media. Journal of Interactive Advertising, 19(1), 58-73. https://doi.org/10.1080/15252019.2018.1533501 69 Lowry, P. B., Wilson, D. W., & Haig, W. L. (2014). A Picture is Worth a Thousand Words: Source Credibility Theory Applied to Logo and Website Design for Heightened Credibility and Consumer Trust. International Journal of Human– Computer Interaction, 30(1), 63-93. https://doi.org/10.1080/10447318.2013.839899 Lu, Z., Huang, D., Bai, L., Liu, X., Qu, J., & Ouyang, W. (2023). Seeing is not always believing: A Quantitative Study on Human Perception of AI-Generated Images. arXiv preprint arXiv:2304.13023. Luoma-aho, V., Pirttimäki, T., Maity, D., Munnukka, J., & Reinikainen, H. (2019). Primed Authenticity: How Priming Impacts Authenticity Perception of Social Media Influencers. International Journal of Strategic Communication, 13(4), 352-365. https://doi.org/10.1080/1553118X.2019.1617716 Luttrell, A., Stillman, P. E., Hasinski, A. E., & Cunningham, W. A. (2016). Neural dissociations in attitude strength: Distinct regions of cingulate cortex track ambivalence and certainty. Journal of Experimental Psychology: General, 145(4), 419-433. https://doi.org/10.1037/xge0000141 Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technology in Society, 75, 102362. https://doi.org/https://doi.org/10.1016/j.techsoc.2023.102362 Malhotra, N., Nunan, D., & Birks, D. (2017). Marketing Research: An Applied Approach. Malodia, S., Dhir, A., Hasni, M. J. S., & Srivastava, S. (2023). Field experiments in marketing research: a systematic methodological review. European Journal of Marketing, 57(7), 1939-1965. https://doi.org/10.1108/EJM-03-2022-0240 Malthouse, E., & Copulsky, J. (2023). Artificial intelligence ecosystems for marketing communications. International Journal of Advertising, 42(1), 128-140. https://doi.org/10.1080/02650487.2022.2122249 McDonald, C., & Scott, J. (2007). The SAGE Handbook of Advertising. In. SAGE Publications Ltd. https://doi.org/10.4135/9781848607897 McKnight, D., Choudhury, V., & Kacmar, C. (2002). Developing and Validating Trust Measures for e-Commerce: An Integrative Typology. Information Systems Research, 13, 334-359. https://doi.org/10.1287/isre.13.3.334.81 Metin, I., & Camgoz, S. M. (2011). The advances in the history of cognitive dissonance theory. International Journal of Humanities and Social Science, 1(6), 131-136. Metzger, M. J., Flanagin, A. J., Eyal, K., Lemus, D. R., & McCann, R. M. (2003). Credibility for the 21st century: Integrating perspectives on source, message, and media credibility in the contemporary media environment. In 70 Communication yearbook 27. (pp. 293-335). Lawrence Erlbaum Associates Publishers. Miller, A. I. (2019). The artist in the machine: The world of AI-powered creativity. Mit Press. Montal, T., & Reich, Z. (2017). I, robot. You, journalist. Who is the author? Authorship, bylines and full disclosure in automated journalism. Digital journalism, 5(7), 829-849. Morales, A. C., Amir, O., & Lee, L. (2017). Keeping It Real in Experimental Research—Understanding When, Where, and How to Enhance Realism and Measure Consumer Behavior. Journal of Consumer Research, 44(2), 465-476. https://doi.org/10.1093/jcr/ucx048 Moshel, M. L., Robinson, A. K., Carlson, T. A., & Grootswagers, T. (2022). Are you for real? Decoding realistic AI-generated faces from neural activity. Vision Res, 199, 108079. https://doi.org/10.1016/j.visres.2022.108079 Muniz, F., & Guzmán, F. (2023). The impact of brand value co-creation on perceived CSR authenticity and brand equity. Journal of Product & Brand Management, 32(8), 1338-1354. https://doi.org/10.1108/JPBM-02-2023-4340 Mutz, D. (2006). Hearing the Other Side: Deliberative Versus Participatory Democracy. Hearing the Other Side: Deliberative Versus Participatory Democracy, 1-171. https://doi.org/10.1017/CBO9780511617201 Mutz, D. C., & Pemantle, R. (2015). Standards for experimental research: Encouraging a better understanding of experimental methods. Journal of Experimental Political Science, 2(2), 192-215. Nabi, R. L., Moyer-Gusé, E., & Byrne, S. (2007). All joking aside: A serious investigation into the persuasive effect of funny social issue messages. Communication Monographs, 74(1), 29-54. Newby-Clark, I. R., McGregor, I., & Zanna, M. P. (2002). Thinking and caring about cognitive inconsistency: When and for whom does attitudinal ambivalence feel uncomfortable? Journal of Personality and Social Psychology, 82(2), 157. Ohanian, R. (1990). Construction and validation of a scale to measure celebrity endorsers' perceived expertise, trustworthiness, and attractiveness. Journal of Advertising, 19(3), 39-52. Otis, A. (2022). The effects of transparency cues on news source credibility online: An investigation of “opin‐ion labels.” Journalism. Advance online publication. In. Overgoor, G., Chica, M., Rand, W., & Weishampel, A. (2019). Letting the computers take over: Using AI to solve marketing problems. California Management Review, 61(4), 156-185. Pan, P.-L., Meng, J., & Lee, P.-L. (2017). The Mediating Effects of Presumed Influences on Taiwanese Consumers’ Skepticism toward Celebrity Endorsed 71 Advertising. Journal of International Consumer Marketing, 29(1), 48-58. https://doi.org/10.1080/08961530.2016.1236310 Pennycook, G., McPhetres, J., Zhang, Y., Lu, J. G., & Rand, D. G. (2020). Fighting COVID-19 misinformation on social media: Experimental evidence for a scalable accuracy-nudge intervention. Psychological science, 31(7), 770-780. Pennycook, G., & Rand, D. G. (2022). Nudging social media toward accuracy. The Annals of the American Academy of Political and Social Science, 700(1), 152- 164. Petty, R., & Cacioppo, J. (1986). The Elaboration Likelihood Model of Persuasion. Advances in experimental social psychology, 19, 123-205. https://doi.org/10.1016/S0065-2601(08)60214-2 Petty, R. E. (1986). John T. Cacioppo (1986),“The Elaboration Likelihood Model of Persuasion,”. Advances in experimental social psychology, 19, 123-205. Phau, I., & Ong, D. (2007). An investigation of the effects of environmental claims in promotional messages for clothing brands. Marketing Intelligence & Planning, 25(7), 772-788. https://doi.org/10.1108/02634500710834214 Pornpitakpan, C. (2004). The persuasiveness of source credibility: A critical review of five decades' evidence. Journal of applied social psychology, 34(2), 243-281. Priester, J. R., & Petty, R. E. (2001). Extending the bases of subjective attitudinal ambivalence: Interpersonal and intrapersonal antecedents of evaluative tension. Journal of Personality and Social Psychology, 80, 19-34. https://doi.org/10.1037/0022-3514.80.1.19 Priester, J. R., Petty, R. E., & Park, K. (2007). Whence Univalent Ambivalence? From the Anticipation of Conflicting Reactions. Journal of Consumer Research, 34(1), 11-21. https://doi.org/10.1086/513042 Qin, X., & Jiang, Z. (2019). The impact of AI on the advertising process: The Chinese experience. Journal of Advertising, 48(4), 338-346. Ramanathan, S., & Williams, P. (2007). Immediate and delayed emotional consequences of indulgence: The moderating influence of personality type on mixed emotions. Journal of Consumer Research, 34(2), 212-223. https://doi.org/10.1086/519149 Raziq, M. M., Ahmed, Q. M., Ahmad, M., Yusaf, S., Sajjad, A., & Waheed, S. (2018). Advertising skepticism, need for cognition and consumers’ attitudes. Marketing Intelligence & Planning, 36(6), 678-693. https://doi.org/10.1108/MIP-11-2017- 0273 Reich, Z., & Klein-Avraham, I. (2014). Textual DNA: The hindered authorship of photojournalists in the Western press. Journalism Practice, 8(5), 619-631. 72 Rosengren, S., Dahlén, M., & Modig, E. (2013). Think outside the ad: Can advertising creativity benefit more than the advertiser? Journal of Advertising, 42(4), 320- 330. Spilski, A., Gröppel-Klein, A., & Gierl, H. (2018). Avoiding Pitfalls in Experimental Research in Marketing. Marketing: ZFP – Journal of Research and Management, 40(2), 58-90. https://www.jstor.org/stable/26426881 Stapels, J. G., & Eyssel, F. (2021). Let’s not be indifferent about robots: Neutral ratings on bipolar measures mask ambivalence in attitudes towards robots. PLOS ONE, 16(1), e0244697. https://doi.org/10.1371/journal.pone.0244697 Statista. (2024). Artificial intelligence (AI)-enabled advertising spending worldwide in 2022 and 2032. Statista. https://www.statista.com/statistics/1301227/ai-enabled- ad-spend-world/ Stein, M.-K., Newell, S., Wagner, E., & Galliers, R. (2015). Coping with Information Technology: Mixed Emotions, Vacillation, and Nonconforming Use Patterns. MIS Quarterly, 39, 367-392. https://doi.org/10.25300/MISQ/2015/39.2.05 Su, B.-C., Wu, L.-W., Lin, H., & Lin, C.-A. (2023). The Mediating Effect of Herd Behavior and Brand Attitude towards the Impact of Spokesman Credibility, Source Fit, and Online Word-of-Mouth on Purchase Intention. Sustainability, 15(1), 888. https://www.mdpi.com/2071-1050/15/1/888 Sun, S., & Evans, N. J. (2022). Effects of Disclosure, Placement Type, and Ad–Context Congruence on Brand and Advertising Recognition: An Exploration of CARE Model Processing. Journal of Current Issues & Research in Advertising, 43(2), 219-235. https://doi.org/10.1080/10641734.2021.1982083 Sundar, S. S. (1999). Exploring Receivers' Criteria for Perception of Print and Online News. Journalism & Mass Communication Quarterly, 76(2), 373-386. https://doi.org/10.1177/107769909907600213 Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology effects on credibility. MacArthur Foundation Digital Media and Learning Initiative Cambridge, MA. Tao, W., Gao, S., & Yuan, Y. (2023). Boundary crossing: an experimental study of individual perceptions toward AIGC. Frontiers in Psychology, 14. Thompson, M. M., Zanna, M. P., & Griffin, D. W. (1995). Let’s not be indifferent about (attitudinal) ambivalence. Attitude strength: Antecedents and consequences, 4, 361-386. Tong, S., Luo, X., & Xu, B. (2020). Personalized mobile marketing strategies. Journal of the Academy of Marketing Science, 48, 64-78. Tucker, E. M., Rifon, N. J., Lee, E. M., & Reece, B. B. (2016). Consumer receptivity to green ads: A test of green claim types and the role of individual consumer 73 characteristics for green ad response. In Green Advertising and the Reluctant Consumer (pp. 4-18). Routledge. Van Boekel, M., Lassonde, K. A., O’Brien, E. J., & Kendeou, P. (2017). Source credibility and the processing of refutation texts. Memory & Cognition, 45, 168- 181. Van Boekel, M., Varma, K., & Varma, S. (2017). A retrieval-based approach to eliminating hindsight bias. Memory, 25(3), 377-390. van der Bend, D. L. M., Gijsman, N., Bucher, T., Shrewsbury, V. A., van Trijp, H., & van Kleef, E. (2023). Can I @handle it? The effects of sponsorship disclosure in TikTok influencer marketing videos with different product integration levels on adolescents’ persuasion knowledge and brand outcomes. Computers in Human Behavior, 144, 107723. https://doi.org/https://doi.org/10.1016/j.chb.2023.107723 Van Reijmersdal, E. A., Brussee, E., Evans, N., & Wojdynski, B. W. (2023). Disclosure-Driven Recognition of Native Advertising: A Test of Two Competing Mechanisms. Journal of Interactive Advertising, 23(2), 85-97. https://doi.org/10.1080/15252019.2022.2146991 Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146-1151. https://doi.org/10.1126/science.aap9559 Vrontis, D., Makrides, A., Christofi, M., & Thrassou, A. (2021). Social media influencer marketing: A systematic review, integrative framework and future research agenda. International Journal of Consumer Studies, 45(4), 617-644. Waddell, T. F. (2018). A robot wrote this? How perceived machine authorship affects news credibility. Digital journalism, 6(2), 236-255. Waddell, T. F. (2019). Can an Algorithm Reduce the Perceived Bias of News? Testing the Effect of Machine Attribution on News Readers’ Evaluations of Bias, Anthropomorphism, and Credibility. Journalism & Mass Communication Quarterly, 96(1), 82-100. https://doi.org/10.1177/1077699018815891 Wang, R. (2021). A Study on the Impact of Perceived Value of Art Based on Artificial Intelligence on Consumers. 한국컴퓨터정보학회논문지, 26(1), 275-281. Wang, S. W., Kao, G. H.-Y., & Ngamsiriudom, W. (2017). Consumers' attitude of endorser credibility, brand and intention with respect to celebrity endorsement of the airline sector. Journal of Air Transport Management, 60, 10-17. Wang, S. W., & Scheinbaum, A. C. (2018). Enhancing brand credibility via celebrity endorsement: Trustworthiness trumps attractiveness and expertise. Journal of Advertising Research, 58(1), 16-32. Weismueller, J., Harrigan, P., Wang, S., & Soutar, G. N. (2020). Influencer Endorsements: How Advertising Disclosure and Source Credibility Affect 74 Consumer Purchase Intention on Social Media. Australasian Marketing Journal, 28(4), 160-170. https://doi.org/10.1016/j.ausmj.2020.03.002 Wiles, J. (2023). Beyond ChatGPT: The Future of Generative AI for Enterprises. Gartner. https://www.gartner.com/en/articles/beyond-chatgpt-the-future-of- generative-ai-for-enterprises Wu, L., Dodoo, N. A., & Wen, T. J. (2024). Disclosing AI’s Involvement in Advertising to Consumers: A Task-Dependent Perspective. Journal of Advertising, 1-19. https://doi.org/10.1080/00913367.2024.2309929 Wu, L., & Wen, T. J. (2021). Understanding AI Advertising From the Consumer Perspective. What Factors Determine Consumer Appreciation of AI-Created Advertisements?, 61(2), 133-146. https://doi.org/10.2501/jar-2021-004 Wyer Jr, R. S., & Hong, J. (2010). Chinese consumer behavior: the effects of content, process, and language. Yang, C., & Hu, J. (2022). When do consumers prefer AI-enabled customer service? The interaction effect of brand personality and service provision type on brand attitudes and purchase intentions. Journal of Brand Management, 29(2), 167- 189. https://doi.org/10.1057/s41262-021-00261-7 Zheng, L., Huang, B., Qiu, H., & Bai, H. The role of social media followers’ agency in influencer marketing: a study based on the heuristic–systematic model of information processing. International Journal of Advertising, 1-26. https://doi.org/10.1080/02650487.2023.2229148 Zheng, Y., Zhong, B., & Yang, F. (2018). When algorithms meet journalism: The user perception to automated news in a cross-cultural context. Computers in Human Behavior, 86, 266-275. zh_TW