Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 多旋翼無人機目標跟隨與精準空投之技術研究
Technical development on target following and precise airdrop for Multicopter
作者 朱其霖
Chu, Chi-Lin
貢獻者 劉吉軒
Liu, Jyi-Shane
朱其霖
Chu, Chi-Lin
關鍵詞 多旋翼無人機
目標跟隨
精準定位
精準空投
UAV
multirotor drones
target following
precise positioning
precise airdrop
日期 2024
上傳時間 1-Nov-2024 11:22:25 (UTC+8)
摘要 利用無人機來執行空投任務為一種非常重要的應用,在一般民用、人道救援或是軍事應用中都會有空投技術的需求。本研究運用多旋翼無人機機動性強且能夠定點懸停的特性,透過目標追蹤與跟隨演算法使無人機能自主飛行至目標物正上方,進行精準定位,並且使用自由落體空投的方式來進行空投任務的研究。本研究提出自適應的偵測方法來偵測視覺導引標記以有效提升標記在不同光照條件下的準確率與韌性,並透過精準的定位成功使無人機調整至最佳空投位置,以達到精準空投之目的。最後分析實驗結果,並深入探討以多旋翼無人機進行空投任務的應用價值與可行性。
The use of drones for airdrop missions represents a crucial application, with substantial demand across civil, humanitarian, and military sectors. This study leverages the high maneuverability and hovering capabilities of multirotor drones, employing target tracking and following algorithms to enable the drone to autonomously fly directly above the target for precise positioning. The study investigates the use of free fall airdrop methods. An adaptive detection approach is introduced to identify visual guide markers, improving detection accuracy and resilience under varying lighting conditions. Precise positioning guides the drone to the optimal airdrop location, ensuring deployment accuracy. Finally, the experimental results are analyzed, followed by an in-depth discussion on the practical value and feasibility of employing multirotor drones for airdrop missions.
參考文獻 [1] Dimosthenis C. Tsouros, Stamatia Bibi, and Panagiotis G. Sarigiannidis. A review on uav-based applications for precision agriculture. Information, 10(11), 2019.ISSN 2078-2489. doi: 10.3390/info10110349. URL https://www.mdpi.com/2078-2489/10/11/349. [2] Muhammet Fatih Aslan, Akif Durdu, Kadir Sabanci, Ewa Ropelewska, and Seyfettin Sinan Gültekin. A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 2022. ISSN 2076-3417. doi: 10.3390/app12031047. URL https://www.mdpi.com/2076-3417/12/3/1047. [3] Lucas Prado Osco, José Marcato Junior, Ana Paula Marques Ramos, Lúcio André de Castro Jorge, Sarah Narges Fatholahi, Jonathan de Andrade Silva, Edson Takashi Matsubara, Hemerson Pistori, Wesley Nunes Gonçalves, and Jonathan Li. A review on deep learning in uav remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102:102456, 2021. ISSN 1569-8432. doi: https://doi.org/10.1016/j.jag.2021.102456. URL https://www.sciencedirect.com/science/article/pii/S030324342100163X. [4] Norzailawati Mohd Noor, Alias Abdullah, and Mazlan Hashim. Remote sensing uav/drones and its applications for urban areas: a review. IOP Conference Series: Earth and Environmental Science, 169(1):012003, jun 2018. doi: 10.1088/1755-1315/169/1/012003. URL https://dx.doi.org/10.1088/1755-1315/169/1/012003. [5] Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Fazal Noor, Insaf Ul-lah, and Mohammed H. Alsharif. Towards the unmanned aerial vehicles (uavs): A comprehensive review. Drones, 6(6), 2022. ISSN 2504-446X. doi: 10.3390/drones6060147. URL https://www.mdpi.com/2504 446X/6/6/147. [6] Yanhua Shao, Xianfeng Tang, Hongyu Chu, Yanying Mei, Zhiyuan Chang, Xiaoqiang Zhang, Huayi Zhan, and Yunbo Rao. Research on target tracking system of quadrotor uav based on monocular vision. In 2019 Chinese Automation Congress(CAC), pages 4772–4775, 2019. doi: 10.1109/CAC48633.2019.8996417. [7] Mohammed Rabah, Ali Rohan, Mohammad-Hashem Haghbayan, Juha Plosila, and Sung-Ho Kim. Heterogeneous parallelization for object detection and tracking in uavs. IEEE Access, 8:42784–42793, 2020. doi: 10.1109/ACCESS.2020.2977120. [8] Suet-Peng Yong and Yoon-Chow Yeong. Human object detection in forest with deep learning based on drone’ s vision. In 2018 4th International Conference on Computer and Information Sciences (ICCOINS), pages 1–5, 2018. doi: 10.1109/ICCOINS.2018.8510564. [9] 彭世逸. 基於深度學習的空拍影片即時人物追蹤, 2018. URL https://hdl.handle.net/11296/49ng8a. [10] William Andrew, Colin Greatwood, and Tilo Burghardt. Aerial animal biometrics:Individual friesian cattle recovery and visual identification via an autonomous uav with onboard deep inference. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 237–243, 2019. doi: 10.1109/IROS40897.2019.8968555. [11] 徐光廷. 人工智慧與邊緣運算技術應用於無人機之影像追蹤, 2022. URL https://hdl.handle.net/11296/6cr487. [12] Wei Zhang, Ke Song, Xuewen Rong, and Yibin Li. Coarse-to-fine uav target tracking with deep reinforcement learning. IEEE Transactions on Automation Science and Engineering, 16(4):1522–1530, 2019. doi: 10.1109/TASE.2018.2877499. [13] Qin Chen, Xing Long Gao, and Qing Bin Zhang. Novel parafoil guidance with modern multiobjective evolutionary algorithms. In 2021 China Automation Congress(CAC), pages 3056–3061, 2021. doi: 10.1109/CAC53003.2021.9728126. [14] Hao Sun, Qinglin Sun, Mingwei Sun, Jin Tao, and Zengqiang Chen. Accurate modeling and homing control for parafoil delivery system based on wind disturbance rejection. IEEE Transactions on Aerospace and Electronic Systems, 58(4):2916–2934, 2022. doi: 10.1109/TAES.2022.3141033. [15] Martin R. Cacan, Edward Scheuermann, Michael Ward, Mark Costello, and Nathan Slegers. Autonomous airdrop systems employing ground wind measurements for improved landing accuracy. IEEE/ASME Transactions on Mechatronics, 20(6):3060–3070, 2015. doi: 10.1109/TMECH.2015.2405851. [16] P.R. McGill, K.R. Reisenbichler, S.A. Etchemendy, T.C. Dawe, and B.W. Hobson. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (uav). Deep Sea Research Part II: Topical Studies in Oceanography, 58(11):1318–1326, 2011. ISSN 0967-0645. doi: https://doi.org/10.1016/j.dsr2.2010.11.007. URL https://www.sciencedirect.com/science/article/pii/S0967064510003632. [17] 張簡佳倫. 利用無人載具進行空投應用之研究, 06 2013. URL http://140.116.207.99/handle/987654321/243432. [18] Bin Xu and Jie Chen. Review of modeling and control during transport airdrop process. International Journal of Advanced Robotic Systems, 13(6):1729881416678142, 2016. doi: 10.1177/1729881416678142. URL https://doi.org/10.1177/1729881416678142. [19] Burak CİVELEK and Sinan Kivrak. A review on the precision guided airdrop systems. International Journal of Latest Technology in Engineering, Management Applied Science (IJLTEMAS), VIII:13–17, 2019. ISSN 2278-2540. [20] Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, and Anouck Girard. Real-time optimal path planning and wind estimation using gaussian process regression for precision airdrop. In 2017 American Control Conference (ACC), pages 2582–2587, 2017. doi: 10.23919/ACC.2017.7963341. [21] Siri H. Mathisen, Vegard Grindheim, and Tor A. Johansen. Approach methods for autonomous precision aerial drop from a small unmanned aerial vehicle. IFACPapersOnLine, 50(1):3566–3573, 2017. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2017.08.624. URL https://www.sciencedirect.com/science/article/pii/S2405896317310030. 20th IFAC World Congress. [22] Siri Gulaker Mathisen, Frederik Stendahl Leira, Håkon Hagen Helgesen, Kristoffer Gryte, and Tor Arne Johansen. Autonomous ballistic airdrop of objects from a small fixed-wing unmanned aerial vehicle. Autonomous Robots, 44:859–875, 2020. [23] Yi Wang, Chunxin Yang, and Han Yang. Neural network-based simulation and prediction of precise airdrop trajectory planning. Aerospace Science and Technology, 120:107302, 2022. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2021.107302. URL https://www.sciencedirect.com/science/article/pii/S1270963821008129. [24] Qinglin Sun, Li Yu, Yuemin Zheng, Jin Tao, Hao Sun, Mingwei Sun, Matthias Dehmer, and Zengqiang Chen. Trajectory tracking control of powered parafoil system based on sliding mode control in a complex environment. Aerospace Science and Technology, 122:107406, 2022. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2022.107406. URL https://www.sciencedirect.com/science/article/pii/S1270963822000803. [25] An Zhang, Han Xu, Wenhao Bi, and Shuangfei Xu. Adaptive mutant particle swarm optimization based precise cargo airdrop of unmanned aerial vehicles. Applied Soft Computing, 130:109657, 2022. ISSN 1568-4946. doi: https://doi.org/10. 1016/j.asoc.2022.109657. URL https://www.sciencedirect.com/science/article/pii/S1568494622007062. [26] Fernandez-Cortizas M. Perez-Segui R. et al. Perez-Saura, D. Urban firefighting drones: Precise throwing from uav. Journal of Intelligent Robotic Systems, 108:66, 2023. ISSN 1573-0409. doi: https://doi.org/10.1007/s10846-023-01883-6. [27] Artur Sagitov, Ksenia Shabalina, Roman Lavrenov, and Evgeni Magid. Comparing fiducial marker systems in the presence of occlusion. In 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), pages 377–382, 2017. doi: 10.1109/ICMSC.2017.7959505. [28] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’ s. International Journal of Automation and Computing, 2014. ISSN 1751-8520. doi:10.1007/s11633-014-0799-0. URL https://doi.org/10.1007/s11633-014-0799-0. [29] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. doi: 10.1109/ 34.888718. [30] Kun Xiao, Shaochang Tan, Guohui Wang, Xueyan An, Xiang Wang, and Xiangke Wang. Xtdrone: A customizable multi-rotor uavs simulation platform, 2020.
描述 碩士
國立政治大學
資訊科學系
111753123
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111753123
資料類型 thesis
dc.contributor.advisor 劉吉軒zh_TW
dc.contributor.advisor Liu, Jyi-Shaneen_US
dc.contributor.author (Authors) 朱其霖zh_TW
dc.contributor.author (Authors) Chu, Chi-Linen_US
dc.creator (作者) 朱其霖zh_TW
dc.creator (作者) Chu, Chi-Linen_US
dc.date (日期) 2024en_US
dc.date.accessioned 1-Nov-2024 11:22:25 (UTC+8)-
dc.date.available 1-Nov-2024 11:22:25 (UTC+8)-
dc.date.issued (上傳時間) 1-Nov-2024 11:22:25 (UTC+8)-
dc.identifier (Other Identifiers) G0111753123en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/154210-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 111753123zh_TW
dc.description.abstract (摘要) 利用無人機來執行空投任務為一種非常重要的應用,在一般民用、人道救援或是軍事應用中都會有空投技術的需求。本研究運用多旋翼無人機機動性強且能夠定點懸停的特性,透過目標追蹤與跟隨演算法使無人機能自主飛行至目標物正上方,進行精準定位,並且使用自由落體空投的方式來進行空投任務的研究。本研究提出自適應的偵測方法來偵測視覺導引標記以有效提升標記在不同光照條件下的準確率與韌性,並透過精準的定位成功使無人機調整至最佳空投位置,以達到精準空投之目的。最後分析實驗結果,並深入探討以多旋翼無人機進行空投任務的應用價值與可行性。zh_TW
dc.description.abstract (摘要) The use of drones for airdrop missions represents a crucial application, with substantial demand across civil, humanitarian, and military sectors. This study leverages the high maneuverability and hovering capabilities of multirotor drones, employing target tracking and following algorithms to enable the drone to autonomously fly directly above the target for precise positioning. The study investigates the use of free fall airdrop methods. An adaptive detection approach is introduced to identify visual guide markers, improving detection accuracy and resilience under varying lighting conditions. Precise positioning guides the drone to the optimal airdrop location, ensuring deployment accuracy. Finally, the experimental results are analyzed, followed by an in-depth discussion on the practical value and feasibility of employing multirotor drones for airdrop missions.en_US
dc.description.tableofcontents 摘要 i Abstract ii 目次 iii 圖目錄 v 第一章 緒論 1 1.1 研究背景與研究動機 1 1.2 研究目的 3 1.3 研究成果 4 第二章 文獻探討 5 2.1 多旋翼無人機 5 2.2 無人機之目標偵測與追蹤 7 2.3 空投 8 第三章 研究方法 11 3.1 技術架構與功能模組 11 3.2 無人機視覺模組 13 3.2.1 空投應用與視覺標記 13 3.2.2 視覺處理方法 15 3.2.3 座標轉換 22 3.3 無人機目標跟隨/定位 26 3.3.1 目標跟隨之定義 26 3.3.2 中心點跟隨演算法 28 3.4 空投 33 3.4.1 空投方法 33 3.4.2 自由落體 (free fall) 34 3.4.3 座標轉換 35 3.4.4 預測空投物的位移量 37 第四章 實驗與結果分析 47 4.1 實驗設備及場地 47 4.1.1 實驗設備 47 4.1.2 場地布置 50 4.1.3 通訊架構 51 4.1.4 實驗場域 52 4.2 開發架構與工具 53 4.2.1 ROS(Robot Operating System) 53 4.2.2 開源飛控 54 4.2.3 地面控制站 54 4.2.4 MAVLink 通訊協議 55 4.2.5 模擬平台與模擬器 56 4.2.6 軟硬體架構 58 4.3 實驗設計 60 4.3.1 評估指標 60 4.3.2 實驗方法 62 4.4 實驗結果與分析 64 4.4.1 模擬環境驗證 64 4.4.2 環境因素之誤差 66 4.4.3 實際場域驗證 68 4.4.4 實驗結論 70 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 72 參考文獻 74zh_TW
dc.format.extent 13826659 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111753123en_US
dc.subject (關鍵詞) 多旋翼無人機zh_TW
dc.subject (關鍵詞) 目標跟隨zh_TW
dc.subject (關鍵詞) 精準定位zh_TW
dc.subject (關鍵詞) 精準空投zh_TW
dc.subject (關鍵詞) UAVen_US
dc.subject (關鍵詞) multirotor dronesen_US
dc.subject (關鍵詞) target followingen_US
dc.subject (關鍵詞) precise positioningen_US
dc.subject (關鍵詞) precise airdropen_US
dc.title (題名) 多旋翼無人機目標跟隨與精準空投之技術研究zh_TW
dc.title (題名) Technical development on target following and precise airdrop for Multicopteren_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) [1] Dimosthenis C. Tsouros, Stamatia Bibi, and Panagiotis G. Sarigiannidis. A review on uav-based applications for precision agriculture. Information, 10(11), 2019.ISSN 2078-2489. doi: 10.3390/info10110349. URL https://www.mdpi.com/2078-2489/10/11/349. [2] Muhammet Fatih Aslan, Akif Durdu, Kadir Sabanci, Ewa Ropelewska, and Seyfettin Sinan Gültekin. A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 2022. ISSN 2076-3417. doi: 10.3390/app12031047. URL https://www.mdpi.com/2076-3417/12/3/1047. [3] Lucas Prado Osco, José Marcato Junior, Ana Paula Marques Ramos, Lúcio André de Castro Jorge, Sarah Narges Fatholahi, Jonathan de Andrade Silva, Edson Takashi Matsubara, Hemerson Pistori, Wesley Nunes Gonçalves, and Jonathan Li. A review on deep learning in uav remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102:102456, 2021. ISSN 1569-8432. doi: https://doi.org/10.1016/j.jag.2021.102456. URL https://www.sciencedirect.com/science/article/pii/S030324342100163X. [4] Norzailawati Mohd Noor, Alias Abdullah, and Mazlan Hashim. Remote sensing uav/drones and its applications for urban areas: a review. IOP Conference Series: Earth and Environmental Science, 169(1):012003, jun 2018. doi: 10.1088/1755-1315/169/1/012003. URL https://dx.doi.org/10.1088/1755-1315/169/1/012003. [5] Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Fazal Noor, Insaf Ul-lah, and Mohammed H. Alsharif. Towards the unmanned aerial vehicles (uavs): A comprehensive review. Drones, 6(6), 2022. ISSN 2504-446X. doi: 10.3390/drones6060147. URL https://www.mdpi.com/2504 446X/6/6/147. [6] Yanhua Shao, Xianfeng Tang, Hongyu Chu, Yanying Mei, Zhiyuan Chang, Xiaoqiang Zhang, Huayi Zhan, and Yunbo Rao. Research on target tracking system of quadrotor uav based on monocular vision. In 2019 Chinese Automation Congress(CAC), pages 4772–4775, 2019. doi: 10.1109/CAC48633.2019.8996417. [7] Mohammed Rabah, Ali Rohan, Mohammad-Hashem Haghbayan, Juha Plosila, and Sung-Ho Kim. Heterogeneous parallelization for object detection and tracking in uavs. IEEE Access, 8:42784–42793, 2020. doi: 10.1109/ACCESS.2020.2977120. [8] Suet-Peng Yong and Yoon-Chow Yeong. Human object detection in forest with deep learning based on drone’ s vision. In 2018 4th International Conference on Computer and Information Sciences (ICCOINS), pages 1–5, 2018. doi: 10.1109/ICCOINS.2018.8510564. [9] 彭世逸. 基於深度學習的空拍影片即時人物追蹤, 2018. URL https://hdl.handle.net/11296/49ng8a. [10] William Andrew, Colin Greatwood, and Tilo Burghardt. Aerial animal biometrics:Individual friesian cattle recovery and visual identification via an autonomous uav with onboard deep inference. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 237–243, 2019. doi: 10.1109/IROS40897.2019.8968555. [11] 徐光廷. 人工智慧與邊緣運算技術應用於無人機之影像追蹤, 2022. URL https://hdl.handle.net/11296/6cr487. [12] Wei Zhang, Ke Song, Xuewen Rong, and Yibin Li. Coarse-to-fine uav target tracking with deep reinforcement learning. IEEE Transactions on Automation Science and Engineering, 16(4):1522–1530, 2019. doi: 10.1109/TASE.2018.2877499. [13] Qin Chen, Xing Long Gao, and Qing Bin Zhang. Novel parafoil guidance with modern multiobjective evolutionary algorithms. In 2021 China Automation Congress(CAC), pages 3056–3061, 2021. doi: 10.1109/CAC53003.2021.9728126. [14] Hao Sun, Qinglin Sun, Mingwei Sun, Jin Tao, and Zengqiang Chen. Accurate modeling and homing control for parafoil delivery system based on wind disturbance rejection. IEEE Transactions on Aerospace and Electronic Systems, 58(4):2916–2934, 2022. doi: 10.1109/TAES.2022.3141033. [15] Martin R. Cacan, Edward Scheuermann, Michael Ward, Mark Costello, and Nathan Slegers. Autonomous airdrop systems employing ground wind measurements for improved landing accuracy. IEEE/ASME Transactions on Mechatronics, 20(6):3060–3070, 2015. doi: 10.1109/TMECH.2015.2405851. [16] P.R. McGill, K.R. Reisenbichler, S.A. Etchemendy, T.C. Dawe, and B.W. Hobson. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (uav). Deep Sea Research Part II: Topical Studies in Oceanography, 58(11):1318–1326, 2011. ISSN 0967-0645. doi: https://doi.org/10.1016/j.dsr2.2010.11.007. URL https://www.sciencedirect.com/science/article/pii/S0967064510003632. [17] 張簡佳倫. 利用無人載具進行空投應用之研究, 06 2013. URL http://140.116.207.99/handle/987654321/243432. [18] Bin Xu and Jie Chen. Review of modeling and control during transport airdrop process. International Journal of Advanced Robotic Systems, 13(6):1729881416678142, 2016. doi: 10.1177/1729881416678142. URL https://doi.org/10.1177/1729881416678142. [19] Burak CİVELEK and Sinan Kivrak. A review on the precision guided airdrop systems. International Journal of Latest Technology in Engineering, Management Applied Science (IJLTEMAS), VIII:13–17, 2019. ISSN 2278-2540. [20] Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, and Anouck Girard. Real-time optimal path planning and wind estimation using gaussian process regression for precision airdrop. In 2017 American Control Conference (ACC), pages 2582–2587, 2017. doi: 10.23919/ACC.2017.7963341. [21] Siri H. Mathisen, Vegard Grindheim, and Tor A. Johansen. Approach methods for autonomous precision aerial drop from a small unmanned aerial vehicle. IFACPapersOnLine, 50(1):3566–3573, 2017. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2017.08.624. URL https://www.sciencedirect.com/science/article/pii/S2405896317310030. 20th IFAC World Congress. [22] Siri Gulaker Mathisen, Frederik Stendahl Leira, Håkon Hagen Helgesen, Kristoffer Gryte, and Tor Arne Johansen. Autonomous ballistic airdrop of objects from a small fixed-wing unmanned aerial vehicle. Autonomous Robots, 44:859–875, 2020. [23] Yi Wang, Chunxin Yang, and Han Yang. Neural network-based simulation and prediction of precise airdrop trajectory planning. Aerospace Science and Technology, 120:107302, 2022. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2021.107302. URL https://www.sciencedirect.com/science/article/pii/S1270963821008129. [24] Qinglin Sun, Li Yu, Yuemin Zheng, Jin Tao, Hao Sun, Mingwei Sun, Matthias Dehmer, and Zengqiang Chen. Trajectory tracking control of powered parafoil system based on sliding mode control in a complex environment. Aerospace Science and Technology, 122:107406, 2022. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2022.107406. URL https://www.sciencedirect.com/science/article/pii/S1270963822000803. [25] An Zhang, Han Xu, Wenhao Bi, and Shuangfei Xu. Adaptive mutant particle swarm optimization based precise cargo airdrop of unmanned aerial vehicles. Applied Soft Computing, 130:109657, 2022. ISSN 1568-4946. doi: https://doi.org/10. 1016/j.asoc.2022.109657. URL https://www.sciencedirect.com/science/article/pii/S1568494622007062. [26] Fernandez-Cortizas M. Perez-Segui R. et al. Perez-Saura, D. Urban firefighting drones: Precise throwing from uav. Journal of Intelligent Robotic Systems, 108:66, 2023. ISSN 1573-0409. doi: https://doi.org/10.1007/s10846-023-01883-6. [27] Artur Sagitov, Ksenia Shabalina, Roman Lavrenov, and Evgeni Magid. Comparing fiducial marker systems in the presence of occlusion. In 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), pages 377–382, 2017. doi: 10.1109/ICMSC.2017.7959505. [28] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’ s. International Journal of Automation and Computing, 2014. ISSN 1751-8520. doi:10.1007/s11633-014-0799-0. URL https://doi.org/10.1007/s11633-014-0799-0. [29] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. doi: 10.1109/ 34.888718. [30] Kun Xiao, Shaochang Tan, Guohui Wang, Xueyan An, Xiang Wang, and Xiangke Wang. Xtdrone: A customizable multi-rotor uavs simulation platform, 2020.zh_TW