Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 循環經濟作為歐盟關鍵原料供應鏈去風險化策略的可行性探討 — 以電動車鋰電池為例
The circular economy as a potential ‘de-risking’ strategy for critical raw materials supply in the EU : The case of electric vehicle lithium-ion battery recycling
作者 艾瑪
Armer, Emma
貢獻者 蘇卓馨
Su, Cho-Hsin
艾瑪
Emma Armer
關鍵詞 歐洲聯盟
關鍵原料
循環經濟
去風險策略
依賴
回收
電動汽車電池
彈 力
European Union
Critical raw materials
Circular economy
De-risking strategy
Dependence
Recycling
Electric vehicle batteries
Resilience
日期 2024
上傳時間 2-Jan-2025 11:45:34 (UTC+8)
摘要 綠色轉型將人們的關注從石油和天然氣轉向了礦物。這些原料對於生產電動車(EVs)、太陽能光電(PVs)和風力發電機等潔淨科技之技術至關重要。然而,這些原料的上游和下游生產早已被中國壟斷,且中國在過去十年中實施了越來越多的出口配額。為了減輕供應中斷的風險,歐盟委員會旨在透過「去風險化」來保護其經濟發展之所需,而這項目標在《關鍵原料法案》(CRMA)內的多項措施中得以體現,其中包括了設定國內礦物生產、加工,特別是回收的目標。此外,回收利用是屬於一個更為廣泛之經濟模式的一部分,即循環經濟,而循環經濟被認為具有潛力能降低國家和企業對初級原料的依賴。 因此,本研究聚焦於電動車之鋰電池的回收案例。本研究透過文本的分析,試圖回答以下兩個問題:「推動電動車鋰電池回收計畫的驅動因素是什麼?」以及「循環經濟能否成為增強歐盟電動車產業韌性的可持續戰略?」 研究結果顯示,儘管鋰電池原料的循環使用具有增強電動車產業韌性的潛力,其長期的可持續性將取決於外部因素,特別是政策支持。
The green transition has shifted the interest in oil and gas to minerals. Those elements are indeed essential for the production of clean technologies such as electric vehicles (EVs), photovoltaics (PVs), and wind turbines. The upstream and downstream production of these minerals has been monopolized by China, which in the last decade, has implemented a growing number of export quotas. To mitigate the risks of supply disruptions, the European Commission aims at ‘de-risking’ its economy. This was, among others, illustrated by the Critical Raw Materials Act (CRMA) that includes targets for domestic production, processing, and most importantly recycling of minerals. Recycling is part of a broader economic model called a circular economy which has the potential to reduce the reliance of national and sub-national actors on primary raw materials. This research focuses on the case of EV lithium-ion battery recycling. Using document analysis, it aims to answer two questions: “What are the drivers behind EV lithium-ion battery recycling projects?” and “Can the circular economy be a sustainable strategy to enhance the resilience of the electric vehicle industry in the European Union?”. The analysis results show that although the circular use of LIB raw materials has the potential to enhance the resilience of the EV industry, its sustainable nature in the long term will be contingent on external elements, especially policy support.
參考文獻 Albertsen, L., Richter, J. L., Peck, P., Dalhammar, C., & Plepys, A. (2021). Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resources, Conservation and Recycling, 172, 105658. Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E., & Heidrich, O. (2021). Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 4(1), 71-79. Baranzelli, C., Blengini, G. A., Josa, S. O., & Lavalle, C. (2022). EU–Africa Strategic Corridors and critical raw materials: two-way approach to regional development and security of supply. International Journal of Mining, Reclamation and Environment, 36(9), 607-623. Barteková, E., & Kemp, R. (2016). Critical raw material strategies in different world regions. The United Nations University–Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT) Working Papers, 5. Barteková, E., & Kemp, R. (2016). National strategies for securing a stable supply of rare earths in different world regions. Resources Policy, 49, 153-164. Bonviu, F. (2014). The European economy: From a linear to a circular economy. Romanian J. Eur. Aff., 14, 78. Carrara, S., Bobba, S., Blagoeva, D., Dias, P. A., Cavalli, A., Georgitzikis, K., Grohol, M., Itul, A., Kuzov, T., & Latunussa, C. E. (2023). Supply Chain Analysis and Material Demand Forecast in Strategic Technologies and Sectors in the EU: A Foresight Study. Publications Office of the European Union. Charalampides, G., Vatalis, K. I., Apostoplos, B., & Ploutarch-Nikolas, B. (2015). Rare earth elements: industrial applications and economic dependency of Europe. Procedia Economics and Finance, 24, 126-135. Charles, R. G., Douglas, P., Dowling, M., Liversage, G., & Davies, M. L. (2020). Towards Increased Recovery of Critical Raw Materials from WEEE–evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling, 161, 104923. Chen, W.-M., Kim, H., & Yamaguchi, H. (2014). Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy, 74, 319-329. Cimprich, A., Young, S. B., Schrijvers, D., Ku, A. Y., Hagelüken, C., Christmann, P., Eggert, R., Habib, K., Hirohata, A., & Hurd, A. J. (2023). The role of industrial actors in the circular economy for critical raw materials: a framework with case studies across a range of industries. Mineral Economics, 36(2), 301-319. Clean50. (2022). Li-Cyle Corp. Team. https://clean50.com/honourees/li-cycle-corp-2022/ Council, N. (2007). Report in Brief: Minerals, critical minerals and US economy. The National Academy of Sciences, United States. Cytera, C. (2023). Gallium, Germanium, and China — The Minerals Inflaming the Global Chip War. Center for European Policy Analysis. https://cepa.org/article/china-gallium-and germanium-the-minerals-inflaming-the-global-chip-war/ Desai, P. (2023). Cobalt supplies to swamp market, pressure prices further. Reuters. https://www.reuters.com/markets/commodities/cobalt-supplies-swamp-market-pressure prices-further-2023-03 07/#:~:text=LONDON%2C%20March%207%20(Reuters),demand%20is%20expected%2 0to%20rise. Di Persio, F., Huisman, J., Bobba, S., Alves Dias, P., Blengini, G. A., & Blagoeva, D. (2020). Information gap analysis for decision makers to move EU towards a Circular Economy for the lithium-ion battery value chain. JRC121140. Publications Office of the European Union, Luxembourg. Doose, S., Mayer, J. K., Michalowski, P., & Kwade, A. (2021). Challenges in ecofriendly battery recycling and closed material cycles: a perspective on future lithium battery generations. Metals, 11(2), 291. Drabik, E., & Rizos, V. (2018). Prospects for electric vehicle batteries in a circular economy. CEPS Research Report No 2018/05, July 2018. Ebner, J. (2014). Europe’s rare earth dependence on China: future perspectives. European Institute for Asian Studies (Dec, EIAS Briefing Paper 2014, 07). EEAS. (2022). EU-China Relations Factsheet https://www.eeas.europa.eu/sites/default/files/documents/EU China_Factsheet_01Apr2022.pdf EIT-InnoEnergy. (2023). Energy Storage Mecaware Metal CApture for WAste REcycling. https://www.innoenergy.com/discover-innovative-solutions/online-marketplace-for energy-innovations/mecaware/ EIT. (2022). Launching the European Battery Academy to reskill thousands of industry workers https://eit.europa.eu/news-events/news/launching-european-battery-academy-reskill thousands-industry-workers Ellen-Macarthur-Foundation. (2024). Circular economy introduction. https://www.ellenmacarthurfoundation.org/topics/circular-economy introduction/overview#:~:text=The%20circular%20economy%20is%20a,remanufacture% 2C%20recycling%2C%20and%20composting. ELSA. The ELSA consortium: 10 partners - 5 EU countries. https://www.elsa h2020.eu/Who_we_are.html Emily Bensonand, T. D. (2023). China’s New Graphite Restrictions. Center for Strategic and International Studies (CSIS). https://www.csis.org/analysis/chinas-new-graphite restrictions#:~:text=As%20of%20December%201%2C%20Chinese,flake%20graphite%2 0and%20its%20products.%E2%80%9D ERAMET. (2021). A website and great plans for the ReLieVe project https://www.eramet.com/en/news/2021/04/a-website-and-great-plans-for-the-relieve project/ ERAMET. (2023a). Eramet inaugurates a pilot plant for the recycling of electric vehicle batteries https://www.eramet.com/en/news/2023/11/eramet-inaugurates-a-pilot-plant-for-the recycling-of-electric-vehicle-batteries/ ERAMET. (2023b). Eramet looks into the future of black mass https://www.eramet.com/en/news/2023/12/eramet-looks-into-the-future-of-black-mass/ ERAMET. (2024a). Eramet inaugurates a pilot plant for the recycling of electric vehicle batteries https://www.eramet.com/wp-content/uploads/2023/11/2023-11-14-Eramet-PR Demo-plant-inauguration.pdf ERAMET. (2024b). Our actions for the planet and living beings. https://www.eramet.com/en/commitments/environment/ ERAMET. (2024c). ReLieVe - Battery recycling. https://www.eramet.com/en/activities/relieve battery-recycling/ EUR-Lex. (2008). Consolidated version of the Treaty on the Functioning of the European Union - PART THREE: UNION POLICIES AND INTERNAL ACTIONS - TITLE VII: COMMON RULES ON COMPETITION, TAXATION AND APPROXIMATION OF LAWS - Chapter 1: Rules on competition - Section 2: Aids granted by States - Article 107 (ex Article 87 TEC). https://eur-lex.europa.eu/legal content/EN/TXT/HTML/?uri=CELEX%3A12008E107#:~:text=Save%20as%20otherwise %20provided%20in,trade%20between%20Member%20States%2C%20be EUR-Lex. (2023). Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2023/1542/oj European-Commission. (2018a). Annex to the Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Europe on the Move: Sustainable Mobility for Europe: safe, connected and clean. https://eur-lex.europa.eu/resource.html?uri=cellar:0e8b694e-59b5 11e8-ab41 01aa75ed71a1.0003.02/DOC_3&format=PDF#:~:text=This%20Strategic%20Action%20 Plan%20combines,production%20and%20use%2C%20in%20the European-Commission. (2018b). European Commission tackles barriers to innovation: the second Innovation Deal focuses on batteries for electric vehicles. https://research-and innovation.ec.europa.eu/news/all-research-and-innovation-news/european-commission tackles-barriers-innovation-second-innovation-deal-focuses-batteries-electric-2018-03 12_en European-Commission. (2019). EU-China - A strategic outlook. https://commission.europa.eu/system/files/2019-03/communication-eu-china-a-strategic outlook.pdf European-Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - A new Circular Economy Action Plan for a cleaner and more competitive Europe. https://eur-lex.europa.eu/legal content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN European-Commission. (2022a). INNOVATION FUND - ReLieve - Recycling Li-ion Batteries for electric Vehicles 12/if_pf_2022_relieve_en.pdf European-Commission. (2022b). https://climate.ec.europa.eu/system/files/2022 Signed Innovation Deals. https://research-and innovation.ec.europa.eu/law-and-regulations/ensuring-eu-legislation-supports innovation/identifying-barriers/signed-deals_en European-Commission. (2023a). Commission launches investigation on subsidised electric cars from China https://ec.europa.eu/commission/presscorner/detail/en/ip_23_4752 European-Commission. (2023b). Critical Raw Materials. https://single-market economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw materials_en European-Commission. (2023c). Critical Raw Materials Act. https://single-market economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw materials/critical-raw-materials act_en#:~:text=Overview%20of%20the%20Critical%20Raw%20Materials%20Act, Critical%20raw%20materials&text=The%20European%20Critical%20Raw%20Materials ,chains%20for%20critical%20raw%20materials. European-Commission. (2023d). End-of-Life Vehicles. https://environment.ec.europa.eu/topics/waste-and-recycling/end-life-vehicles_en#law European-Commission. (2023e). An EU approach to enhance economic security https://ec.europa.eu/commission/presscorner/detail/en/IP_23_3358 European-Commission. (2023f). The Green Deal Industrial Plan - Putting Europe's net-zero industry in the lead https://commission.europa.eu/strategy-and-policy/priorities-2019 2024/european-green-deal/green-deal-industrial-plan_en#paragraph_33968 European-Commission. (2023g). Horizon 2020 - Energy Local Storage Advanced system (ELSA). https://cordis.europa.eu/project/id/646125 European-Commission. (2023h). The Net-Zero Industry Act: Accelerating the transition to climate neutrality. https://single-market-economy.ec.europa.eu/industry/sustainability/net-zero industry-act_en European-Commission. (2024a). EU and Serbia sign strategic partnership on sustainable raw materials, battery value chains and electric vehicles https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3922 European-Commission. (2024b). European Social Fund+. https://commission.europa.eu/funding tenders/find-funding/eu-funding-programmes/european-social-fund_en European-Commission. (2024c). Horizon Europe. https://research-and innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open calls/horizon-europe_en European-Commission. (2024d). Important Projects of Common European Interest (IPCEI). https://competition-policy.ec.europa.eu/state-aid/ipcei_en European-Commission. (2024e). Innovation Fund. https://cinea.ec.europa.eu/programmes/innovation-fund_en European-Commission. (2024f). Temporary Crisis and Transition Framework. https://competition-policy.ec.europa.eu/state-aid/temporary-crisis-and-transition framework_en European-Council. (2022). Versailles Declaration https://www.consilium.europa.eu/media/54773/20220311-versailles-declaration-en.pdf European-Council. (2023). Council adopts new regulation on batteries and waste batter https://www.consilium.europa.eu/en/press/press-releases/2023/07/10/council-adopts-new regulation-on-batteries-and-waste-batteries/ European-Parliament-Council. (2018). Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC (Text with EEA relevance). https://eur lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006L0066 European-Parliament-Council. (2023). Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2023/1542/oj European-Parliament. (2022). EU strategic autonomy 2013-2023: From concept to capacity. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2022)733589 European-Union. (2008). Consolidated version of the Treaty on the Functioning of the European Union - PART ONE: PRINCIPLES - TITLE I: CATEGORIES AND AREAS OF UNION COMPETENCE - Article 2. In. (2024). InvestEU Fund. https://investeu.europa.eu/investeu European-Union. programme/investeu-fund_en Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of environmental management, 240, 504-510. Gaines, L. (2014). The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustainable Materials and Technologies, 1, 2-7. Gaustad, G., Krystofik, M., Bustamante, M., & Badami, K. (2018). Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135, 24-33. Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11-32. Gleiss-Lutz. (2024). PFAS Restriction Proposal on the EU Level. https://www.gleisslutz.com/en/news-events/know-how/pfas-restriction-proposal-eu level#:~:text=On%207%20February%202023%20the,present%20in%20many%20consu mer%20goods. Grilli, M. L., Bellezze, T., Gamsjäger, E., Rinaldi, A., Novak, P., Balos, S., Piticescu, R. R., & Ruello, M. L. (2017). Solutions for critical raw materials under extreme conditions: A review. Materials, 10(3), 285. Helbig, C., Bradshaw, A. M., Wietschel, L., Thorenz, A., & Tuma, A. (2018). Supply risks associated with lithium-ion battery materials. Journal of Cleaner Production, 172, 274-286. Hool, A., Helbig, C., & Wierink, G. (2023). Challenges and opportunities of the European Critical Raw Materials Act. Mineral Economics, 1-8. Hool, A., Schrijvers, D., van Nielen, S., Clifton, A., Ganzeboom, S., Hagelueken, C., Harada, Y., Kim, H., Y. Ku, A., & Meese-Marktscheffel, J. (2022). How companies improve critical raw material circularity: 5 use cases: Findings from the International Round Table on Materials Criticality. Mineral Economics, 35(2), 325-335. IEA. (2023). France - What is the role of energy transformation in France? https://www.iea.org/countries/france/energy-mix IER. (2022). China Expected to Increase Control Over Global Lithium and Cobalt Supply. Institute for Energy Research. manager/articles/ International-Energy-Agency. https://www.instituteforenergyresearch.org/about/ier-site (2024). Outlouk for battery and energy demand. https://www.iea.org/reports/global-ev-outlook-2024/outlook-for-battery-and-energy demand Johansson, N. (2021). Does the EU’s action plan for a circular economy challenge the linear economy? Environmental science & technology, 55(22), 15001-15003. Kastanaki, E., & Giannis, A. (2023). Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. Journal of Cleaner Production, 393, 136349. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232. Lander, L., Cleaver, T., Rajaeifar, M. A., Nguyen-Tien, V., Elliott, R. J., Heidrich, O., Kendrick, E., Edge, J. S., & Offer, G. (2021). Financial viability of electric vehicle lithium-ion battery recycling. Iscience, 24(7). Lanzolla, F. F. S. a. G. (2005). The Half-Truth of First-Mover Advantage. Harvard Business Review. https://hbr.org/2005/04/the-half-truth-of-first-mover-advantage LARA, H. (2018). Recyclage des batteries : notre visite au cœur d’une usine française. Automobile Propre. https://www.automobile-propre.com/recyclage-des-batteries-notre-visite-au coeur-dune-usine francaise/#:~:text=La%20SNAM%20affirme%20y%20traiter,%C3%A0%206000%20eur os%20la%20tonne. Leal, V., Ribeiro, J., Coelho, E., & Freitas, M. (2023). Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 79, 118-134. Leprince-Ringuet, D. (2023). Battery recycling startup Mecaware raises €40m Series A. sifted. https://sifted.eu/articles/mecaware-battery-recycling-series-a-news Lewandowski, M. (2016). Designing the business models for circular economy—Towards the conceptual framework. Sustainability, 8(1), 43. Lewicka, E., Guzik, K., & Galos, K. (2021). On the possibilities of critical raw materials production from the EU’s primary sources. Resources, 10(5), 50. Li-Cycle. (2022). Sustainability at Li-Cycle. Li-Cycle. (2023a). 2023 Sustainability Report. https://li-cycle.com/wp content/uploads/2024/05/2023-Li-Cycle-Sustainability-Report.pdf Li-Cycle. (2023b). Li-Cycle and KION Group Form Strategic Global Lithium-Ion Battery Recycling Partnership; Li-Cycle Announces New Spoke Development in France https://li cycle.com/press-releases/li-cycle-and-kion-group-form-strategic-global-partnership/ Li-Cycle. (2024a). Delivering value through recovered materials and process innovation. https://li cycle.com/products/ Li-Cycle. (2024b). Doing our part for a cleaner planet. https://li-cycle.com/sustainability/ Li-Cycle. (2024c). Innovative, safe, scalable, and sustainable process to recover critical materials from all types of lithium-ion batteries. https://li-cycle.com/technology/ Li-Cycle. (2024d). Lithium-ion battery recycling. https://li-cycle.com/ Månberger, A. (2023). Critical raw material supply matters and the potential of the circular economy to contribute to security. Intereconomics, 58(2), 74-78. Mancheri, N. A. (2015). World trade in rare earths, Chinese export restrictions, and implications. Resources Policy, 46, 262-271. Mathieux, F., Ardente, F., Bobba, S., Nuss, P., Blengini, G. A., Dias, P. A., Blagoeva, D., De Matos, C. T., Wittmer, D., & Pavel, C. (2017). Critical raw materials and the circular economy. Publications Office of the European Union: Bruxelles, Belgium. Matos, C. T., Mathieux, F., Ciacci, L., Lundhaug, M. C., León, M. F. G., Müller, D. B., Dewulf, J., Georgitzikis, K., & Huisman, J. (2022). Material system analysis: a novel multilayer system approach to correlate EU flows and stocks of Li‐ion batteries and their raw materials. Journal of Industrial Ecology, 26(4), 1261-1276. Mayyas, A., Steward, D., & Mann, M. (2019). The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Materials and Technologies, 19, e00087. Mecaware. (2023a). GREENTECH: MECAWARE SECURES €40M TO BECOME THE LEADER IN BATTERY RECYCLING AND THE PRODUCTION OF STRATEGIC METALS IN FRANCE AND EUROPE https://mecaware.com/latest-news/greentech-mecaware-secures e40m-to-become-the-leader-in-battery-recycling-and-the-production-of-strategic-metals in-france-and-europe/ Mecaware. (2023b). Greentech: Une étape réussie dans la création d'un nouvel écosystème en Hauts-de-France pour le recyclage des battéries. https://mecaware.com/latest news/greentech-une-etape-reussie-dans-la-creation-dun-nouvel-ecosysteme-en-hauts-de france-pour-le-recyclage-des-batteries/ MTE. (2023a). France 2030 : annonce des lauréats "recyclage des batteries" de l'appel à projets "recyclage, recyclabilité et réincorporation des matériaux" https://www.ecologie.gouv.fr/presse/france-2030-annonce-laureats-recyclage-batteries lappel-projets-recyclage-recyclabilite MTE. (2023b). France 2030 : le Gouvernement dévoile les 5 premiers lauréats de l'appel à projets "métaux critiques". https://www.ecologie.gouv.fr/presse/france-2030-gouvernement devoile-5-premiers-laureats-lappel-projets-metaux-critiques Natarajan, S., Divya, M. L., & Aravindan, V. (2022). Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. Journal of Energy Chemistry, 71, 351-369. Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule, 1(2), 229-243. Orano. (2021). CIME, a new pilot facility in Europe. In. Orano. (2022). Orano invests in recycling of electric vehicle batteries. https://www.orano.group/en/nuclear-expertise/valuation-of-strategic-metals/recycling-of electric-vehicle-batteries-launch-of-a-new-industrial-pilot Orano. (2023). Orano commissions its industrial pilots for the recycling of electric vehicle batteries https://www.orano.group/en/news/news-group/2023/november/orano-commissions-its industrial-pilots-for-the-recycling-of-electric-vehicle-batteries Öztürk, M., Evin, E., Özkan, A., & Banar, M. (2023). Comparison of waste lithium-ion batteries recycling methods by different decision making techniques. Environmental Research and Technology, 6(3), 226-241. Pagliaro, M., & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5(6). Parliament, E. (2023). Amendments adopted by the European Parliament on 14 September 2023 on the proposal for a regulation of the European Parliament and of the Council establishing a framework for ensuring a secure and sustainable supply of critical raw materials. Paschal, C. (2022). Mecaware transforme les batteries en fin de vie en une mine de métaux. L'Usine Nouvelle. https://www.usinenouvelle.com/article/mecaware-transforme-les-batteries enfin-de-vie-en-une-mine-de-metaux.N2018852 Pavel, C. C., Marmier, A., Alves Dias, P., Blagoeva, D., Tzimas, E., Schüler, D., Schleicher, T., Jenseit, W., Degreif, S., & Buchert, M. (2016). Substitution of critical raw materials in low carbon technologies: lighting, wind turbines and electric vehicles. Luxembourg: European Commission, Oko-Institut eV. PH.B. (2015). Snam étend son partenariat avec PSA Peugeot Citroën. Centre Presse. https://www.centrepresseaveyron.fr/2015/12/09/snam-etend-son-partenariat-avec-psa peugeot-citroen,3978960.php Rabe, W., Kostka, G., & Stegen, K. S. (2017). China's supply of critical raw materials: Risks for Europe's solar and wind industries? Energy Policy, 101, 692-699. Rensmo, A., Savvidou, E. K., Cousins, I. T., Hu, X., Schellenberger, S., & Benskin, J. P. (2023). Lithium-ion battery recycling: a source of per-and polyfluoroalkyl substances (PFAS) to the environment? Environmental Science: Processes & Impacts, 25(6), 1015-1030. Reynolds, M., & Goodman, M. P. (2022). China’s Economic Coercion: Lessons from Lithuania. Washington DC: Center for Strategic and International Studies (CSIS), 6. RMIS. (2023a). Raw Materials Profiles - Cobalt. https://rmis.jrc.ec.europa.eu/rmp/Cobalt RMIS. (2023b). Raw Materials Profiles - Lithium. https://rmis.jrc.ec.europa.eu/rmp/Lithium RMIS. (2023c). Raw Materials Profiles - Natural Graphite. https://rmis.jrc.ec.europa.eu/rmp/Natural%20Graphite RMIS. (2023d). Raw Materials Profiles - Nickel https://rmis.jrc.ec.europa.eu/rmp/Nickel Rönkkö, P., Majava, J., Hyvärinen, T., Oksanen, I., Tervonen, P., & Lassi, U. (2023). The circular economy of electric vehicle batteries: a Finnish case study. Environment Systems and Decisions, 1-14. Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. Schmid, M. (2020). Challenges to the European automotive industry in securing critical raw materials for electric mobility: the case of rare earths. Mineralogical Magazine, 84(1), 5 17. (2023). Scott, S., & Ireland, R. (2020). Lithium-Ion battery materials for electric vehicles and their global value chains. Office of Industries, US International Trade Commission. SK-tes. TES Prepares to Open New Battery Recycling Facilities https://www.sktes.com/press-release/tes-prepares-to-open-new-battery-recycling-facilities SK-tes. (2024). Sustainable Battery Solutions. https://www.sktes.com/it-services/commercial battery-recycling Smol, M., Marcinek, P., & Koda, E. (2021). Drivers and barriers for a circular economy (CE) implementation in Poland—A case study of raw materials recovery sector. Energies, 14(8), 2219. SNAM. (2023). For the fourth year running, SNAM has renewed its EcoVadis Silver Medal! https://www.snam.com/en/for-the-fourth-year-running-snam-has-renewed-its-ecovadis silver-medal/ SNAM. (2024a). Nos engagements. https://www.snam.com/engagements/ SNAM. (2024b). Recyclage. https://www.snam.com/recyclage/ Song, J., Yan, W., Cao, H., Song, Q., Ding, H., Lv, Z., Zhang, Y., & Sun, Z. (2019). Material flow analysis on critical raw materials of lithium-ion batteries in China. Journal of Cleaner Production, 215, 570-581. Theodosopoulos, V. (2020). The Geopolitics of Supply: towards a new EU approach to the security of supply of critical raw materials? Institute for European Studies Policy Brief. Tiess, G. (2010). Minerals policy in Europe: Some recent developments. Resources Policy, 35(3), 190-198. aux Tobelem, B. (2023). Batterie, énergie solaire, cybersécurité… Des “académies européennes” pour former métiers des technologies d’avenir. Toute l'Europe. https://www.touteleurope.eu/economie-et-social/batterie-energie-solaire-cybersecurite des-academies-europeennes-pour-former-aux-metiers-des-technologies-d-avenir/ Trafton, A. (2024). Cobalt-free batteries could power cars of the future. MIT News on campus and around the world. https://news.mit.edu/2024/cobalt-free-batteries-could-power-future cars-0118 USGS. (2022). Lithium. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf USGS. (2023). Graphite (Natural). https://pubs.usgs.gov/periodicals/mcs2023/mcs2023 graphite.pdf USGS. (2024). Nickel. https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-nickel.pdf Veolia. (2020a). Electric cars: batteries of the future will be recycled https://www.veolia.com/en/planetlive/electric-cars-batteries-future-will-be-recycled Veolia. (2020b). Solvay and Veolia partner to recycle electric vehicle batteries https://www.veolia.com/en/news/recycling-lithium-ion-batteries-electric-vehicles-solvay veolia Veolia. (2021a). Movin'On Summit: the Veolia, Groupe Renault and Solvay alliance at the service of the circular economy for sustainable mobility batteries https://www.veolia.cn/en/news/movinon-summit-veolia-groupe-renault-and-solvay alliance-service-circular-economy-sustainable Veolia. (2021b). Recycling electric vehicle batteries: ecological transformation and preserving resources (The Veolia Institute Review, Issue. https://www.institut.veolia.org/sites/g/files/dvc2551/files/document/2021/11/74%20Recyc ling%20electric%20vehicle.pdf Veolia. (2021c). Veolia, Groupe Renault and Solvay join forces to recycle end-of-life EV battery metals in a closed loop https://www.veolia.com/en/news/recycling-electric-vehicles batteries-solvay-renault-veolia Veolia. (2022). Li-ion battery recycling. https://www.weloop.org/wp content/uploads/2022/07/WeLoop-Workshop-Li-Ion-Battery-recycling-with-VEOLIA.pdf Veolia. (2023). Développer des solutions circulaires et sûres pour la fin de vie des batteries lithium-ion https://www.veolia.com/sites/g/files/dvc4206/files/document/2023/07/recyclage-batteries lithium-ion-2023.pdf Veolia. (2024a). Développer des solutions circulaires et sûres pour la fin de vie des batteries lithium-ion. https://www.veolia.com/sites/g/files/dvc4206/files/document/2024/06/veolia recyclage-batteries-lithium-ion-2024.pdf Veolia. (2024b). PFAS Technology, Remediation and Treatment. https://www.watertechnologies.com/applications/pfas-remediation Veolia. (2024c). Recycling electric car batteries. https://www.veolia.com/en/pollution/hazardous waste/recycling-electric-car-batteries Volkswagen. (2021). Battery recycling pilot plant https://www.volkswagen group.com/en/images/detail/battery-recycling-pilot-plant-35568 Wadsworth, T. (2023). Li-Cycle - Providing a Closed-Loop Solution for Battery Recycling. https://batterytechassociation.org/wp-content/uploads/2023/12/1130-Hall-2-Tom Wadsworth-Li-Cycle-2.pdf Wrålsen, B., Prieto-Sandoval, V., Mejia-Villa, A., O'Born, R., Hellström, M., & Faessler, B. (2021). Circular business models for lithium-ion batteries-Stakeholders, barriers, and drivers. Journal of Cleaner Production, 317, 128393. WTO. (2013a). DS394: China — Measures Related to the Exportation of Various Raw Materials. WTO. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds394_e.htm WTO. (2013b). DS395: China — Measures Related to the Exportation of Various Raw Materials. WTO. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds395_e.htm WTO. (2013c). DS398: China — Measures Related to the Exportation of Various Raw Materials. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds398_e.htm Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 384-394. Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries, 10(1), 38. Ziemann, S., Müller, D. B., Schebek, L., & Weil, M. (2018). Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resources, Conservation and Recycling, 133, 76-85. 中华人民共和国国土资源部. (2008). 全国矿产资源规划(2008~2015 年) https://www.cnmn.com.cn/ShowNews1.aspx?id=282722&page=6
描述 碩士
國立政治大學
國際研究英語碩士學位學程(IMPIS)
111862018
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111862018
資料類型 thesis
dc.contributor.advisor 蘇卓馨zh_TW
dc.contributor.advisor Su, Cho-Hsinen_US
dc.contributor.author (Authors) 艾瑪zh_TW
dc.contributor.author (Authors) Emma Armeren_US
dc.creator (作者) 艾瑪zh_TW
dc.creator (作者) Armer, Emmaen_US
dc.date (日期) 2024en_US
dc.date.accessioned 2-Jan-2025 11:45:34 (UTC+8)-
dc.date.available 2-Jan-2025 11:45:34 (UTC+8)-
dc.date.issued (上傳時間) 2-Jan-2025 11:45:34 (UTC+8)-
dc.identifier (Other Identifiers) G0111862018en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/154998-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 國際研究英語碩士學位學程(IMPIS)zh_TW
dc.description (描述) 111862018zh_TW
dc.description.abstract (摘要) 綠色轉型將人們的關注從石油和天然氣轉向了礦物。這些原料對於生產電動車(EVs)、太陽能光電(PVs)和風力發電機等潔淨科技之技術至關重要。然而,這些原料的上游和下游生產早已被中國壟斷,且中國在過去十年中實施了越來越多的出口配額。為了減輕供應中斷的風險,歐盟委員會旨在透過「去風險化」來保護其經濟發展之所需,而這項目標在《關鍵原料法案》(CRMA)內的多項措施中得以體現,其中包括了設定國內礦物生產、加工,特別是回收的目標。此外,回收利用是屬於一個更為廣泛之經濟模式的一部分,即循環經濟,而循環經濟被認為具有潛力能降低國家和企業對初級原料的依賴。 因此,本研究聚焦於電動車之鋰電池的回收案例。本研究透過文本的分析,試圖回答以下兩個問題:「推動電動車鋰電池回收計畫的驅動因素是什麼?」以及「循環經濟能否成為增強歐盟電動車產業韌性的可持續戰略?」 研究結果顯示,儘管鋰電池原料的循環使用具有增強電動車產業韌性的潛力,其長期的可持續性將取決於外部因素,特別是政策支持。zh_TW
dc.description.abstract (摘要) The green transition has shifted the interest in oil and gas to minerals. Those elements are indeed essential for the production of clean technologies such as electric vehicles (EVs), photovoltaics (PVs), and wind turbines. The upstream and downstream production of these minerals has been monopolized by China, which in the last decade, has implemented a growing number of export quotas. To mitigate the risks of supply disruptions, the European Commission aims at ‘de-risking’ its economy. This was, among others, illustrated by the Critical Raw Materials Act (CRMA) that includes targets for domestic production, processing, and most importantly recycling of minerals. Recycling is part of a broader economic model called a circular economy which has the potential to reduce the reliance of national and sub-national actors on primary raw materials. This research focuses on the case of EV lithium-ion battery recycling. Using document analysis, it aims to answer two questions: “What are the drivers behind EV lithium-ion battery recycling projects?” and “Can the circular economy be a sustainable strategy to enhance the resilience of the electric vehicle industry in the European Union?”. The analysis results show that although the circular use of LIB raw materials has the potential to enhance the resilience of the EV industry, its sustainable nature in the long term will be contingent on external elements, especially policy support.en_US
dc.description.tableofcontents Chapter 1: Introduction 1 1. Research motivation and objective 1 2. Research background 2 2.1 Raw materials and the concept of criticality 2 2.2 China’s monopoly on strategic raw materials’ supply chain 2 2.3 De-risking for a more resilient European economy 4 2.4 Lithium-ion batteries and critical raw materials 6 3. Research questions and hypothesis 7 4. Research methods 8 Chapter 2: Literature review 11 1. The European Union’s strategies to mitigate critical raw materials supply risks 11 2. The circular economy as a ‘de-risking strategy’ 14 2.1 Conceptualization of the circular economy in the European Union 14 2.2 The circular economy and critical raw materials 16 2.3 A circular economy for electric vehicle lithium-ion batteries 18 3. Literature gap and research contributions 20 Chapter 3: Case study: The circular use of EV lithium-ion batteries for critical raw materials recovery 21 1. General overview of lithium-ion batteries for electric vehicles 21 1.1 Historical context 21 1.2 Main components and materials 21 2. Risks of disruptions along the supply chain of lithium-ion batteries 22 2.1 The supply chain of lithium-ion batteries 22 2.2 Risks of supply disruptions for lithium-ion batteries materials 23 3. Circular use of lithium-ion batteries and current practices 25 3.1 The relevance of the circular economy as a ‘de-risking strategy’ 25 3.2 The circular use of lithium-ion battery for secondary raw materials supply 30 4. State-of-the-art of lithium-ion batteries circular use 31 4.1 Summary on lithium-ion batteries materials information 31 4.2 State of the art of lithium-ion batteries circular practices 34 4.2.1 Slowing the loop 35 4.2.2 Closing the loop 36 4.2.3 Limitations of the current recycling processes 39 Chapter 4: Analysis of the potential of EVB recycling as a sustainable de-risking strategy 41 1. Drivers behind electric vehicle battery recycling projects 41 2. Assessment of the sustainable nature of electric vehicle lithium-ion battery recycling 48 2.1 Economic indicator 48 2.2 Environmental indicator 54 2.3 Social indicator 59 3. SWOT Analysis 61 4. The relevance of lithium-ion battery recycling for the resilience of the electric vehicle industry 63 Chapter 5: Conclusion 64 1. Research findings 64 2. Policy recommendations 68 3. Limitations and future research 69 ANNEXES 71 REFERENCES 78zh_TW
dc.format.extent 1558714 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111862018en_US
dc.subject (關鍵詞) 歐洲聯盟zh_TW
dc.subject (關鍵詞) 關鍵原料zh_TW
dc.subject (關鍵詞) 循環經濟zh_TW
dc.subject (關鍵詞) 去風險策略zh_TW
dc.subject (關鍵詞) 依賴zh_TW
dc.subject (關鍵詞) 回收zh_TW
dc.subject (關鍵詞) 電動汽車電池zh_TW
dc.subject (關鍵詞) 彈 力zh_TW
dc.subject (關鍵詞) European Unionen_US
dc.subject (關鍵詞) Critical raw materialsen_US
dc.subject (關鍵詞) Circular economyen_US
dc.subject (關鍵詞) De-risking strategyen_US
dc.subject (關鍵詞) Dependenceen_US
dc.subject (關鍵詞) Recyclingen_US
dc.subject (關鍵詞) Electric vehicle batteriesen_US
dc.subject (關鍵詞) Resilienceen_US
dc.title (題名) 循環經濟作為歐盟關鍵原料供應鏈去風險化策略的可行性探討 — 以電動車鋰電池為例zh_TW
dc.title (題名) The circular economy as a potential ‘de-risking’ strategy for critical raw materials supply in the EU : The case of electric vehicle lithium-ion battery recyclingen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) Albertsen, L., Richter, J. L., Peck, P., Dalhammar, C., & Plepys, A. (2021). Circular business models for electric vehicle lithium-ion batteries: An analysis of current practices of vehicle manufacturers and policies in the EU. Resources, Conservation and Recycling, 172, 105658. Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E., & Heidrich, O. (2021). Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 4(1), 71-79. Baranzelli, C., Blengini, G. A., Josa, S. O., & Lavalle, C. (2022). EU–Africa Strategic Corridors and critical raw materials: two-way approach to regional development and security of supply. International Journal of Mining, Reclamation and Environment, 36(9), 607-623. Barteková, E., & Kemp, R. (2016). Critical raw material strategies in different world regions. The United Nations University–Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT) Working Papers, 5. Barteková, E., & Kemp, R. (2016). National strategies for securing a stable supply of rare earths in different world regions. Resources Policy, 49, 153-164. Bonviu, F. (2014). The European economy: From a linear to a circular economy. Romanian J. Eur. Aff., 14, 78. Carrara, S., Bobba, S., Blagoeva, D., Dias, P. A., Cavalli, A., Georgitzikis, K., Grohol, M., Itul, A., Kuzov, T., & Latunussa, C. E. (2023). Supply Chain Analysis and Material Demand Forecast in Strategic Technologies and Sectors in the EU: A Foresight Study. Publications Office of the European Union. Charalampides, G., Vatalis, K. I., Apostoplos, B., & Ploutarch-Nikolas, B. (2015). Rare earth elements: industrial applications and economic dependency of Europe. Procedia Economics and Finance, 24, 126-135. Charles, R. G., Douglas, P., Dowling, M., Liversage, G., & Davies, M. L. (2020). Towards Increased Recovery of Critical Raw Materials from WEEE–evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling, 161, 104923. Chen, W.-M., Kim, H., & Yamaguchi, H. (2014). Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy, 74, 319-329. Cimprich, A., Young, S. B., Schrijvers, D., Ku, A. Y., Hagelüken, C., Christmann, P., Eggert, R., Habib, K., Hirohata, A., & Hurd, A. J. (2023). The role of industrial actors in the circular economy for critical raw materials: a framework with case studies across a range of industries. Mineral Economics, 36(2), 301-319. Clean50. (2022). Li-Cyle Corp. Team. https://clean50.com/honourees/li-cycle-corp-2022/ Council, N. (2007). Report in Brief: Minerals, critical minerals and US economy. The National Academy of Sciences, United States. Cytera, C. (2023). Gallium, Germanium, and China — The Minerals Inflaming the Global Chip War. Center for European Policy Analysis. https://cepa.org/article/china-gallium-and germanium-the-minerals-inflaming-the-global-chip-war/ Desai, P. (2023). Cobalt supplies to swamp market, pressure prices further. Reuters. https://www.reuters.com/markets/commodities/cobalt-supplies-swamp-market-pressure prices-further-2023-03 07/#:~:text=LONDON%2C%20March%207%20(Reuters),demand%20is%20expected%2 0to%20rise. Di Persio, F., Huisman, J., Bobba, S., Alves Dias, P., Blengini, G. A., & Blagoeva, D. (2020). Information gap analysis for decision makers to move EU towards a Circular Economy for the lithium-ion battery value chain. JRC121140. Publications Office of the European Union, Luxembourg. Doose, S., Mayer, J. K., Michalowski, P., & Kwade, A. (2021). Challenges in ecofriendly battery recycling and closed material cycles: a perspective on future lithium battery generations. Metals, 11(2), 291. Drabik, E., & Rizos, V. (2018). Prospects for electric vehicle batteries in a circular economy. CEPS Research Report No 2018/05, July 2018. Ebner, J. (2014). Europe’s rare earth dependence on China: future perspectives. European Institute for Asian Studies (Dec, EIAS Briefing Paper 2014, 07). EEAS. (2022). EU-China Relations Factsheet https://www.eeas.europa.eu/sites/default/files/documents/EU China_Factsheet_01Apr2022.pdf EIT-InnoEnergy. (2023). Energy Storage Mecaware Metal CApture for WAste REcycling. https://www.innoenergy.com/discover-innovative-solutions/online-marketplace-for energy-innovations/mecaware/ EIT. (2022). Launching the European Battery Academy to reskill thousands of industry workers https://eit.europa.eu/news-events/news/launching-european-battery-academy-reskill thousands-industry-workers Ellen-Macarthur-Foundation. (2024). Circular economy introduction. https://www.ellenmacarthurfoundation.org/topics/circular-economy introduction/overview#:~:text=The%20circular%20economy%20is%20a,remanufacture% 2C%20recycling%2C%20and%20composting. ELSA. The ELSA consortium: 10 partners - 5 EU countries. https://www.elsa h2020.eu/Who_we_are.html Emily Bensonand, T. D. (2023). China’s New Graphite Restrictions. Center for Strategic and International Studies (CSIS). https://www.csis.org/analysis/chinas-new-graphite restrictions#:~:text=As%20of%20December%201%2C%20Chinese,flake%20graphite%2 0and%20its%20products.%E2%80%9D ERAMET. (2021). A website and great plans for the ReLieVe project https://www.eramet.com/en/news/2021/04/a-website-and-great-plans-for-the-relieve project/ ERAMET. (2023a). Eramet inaugurates a pilot plant for the recycling of electric vehicle batteries https://www.eramet.com/en/news/2023/11/eramet-inaugurates-a-pilot-plant-for-the recycling-of-electric-vehicle-batteries/ ERAMET. (2023b). Eramet looks into the future of black mass https://www.eramet.com/en/news/2023/12/eramet-looks-into-the-future-of-black-mass/ ERAMET. (2024a). Eramet inaugurates a pilot plant for the recycling of electric vehicle batteries https://www.eramet.com/wp-content/uploads/2023/11/2023-11-14-Eramet-PR Demo-plant-inauguration.pdf ERAMET. (2024b). Our actions for the planet and living beings. https://www.eramet.com/en/commitments/environment/ ERAMET. (2024c). ReLieVe - Battery recycling. https://www.eramet.com/en/activities/relieve battery-recycling/ EUR-Lex. (2008). Consolidated version of the Treaty on the Functioning of the European Union - PART THREE: UNION POLICIES AND INTERNAL ACTIONS - TITLE VII: COMMON RULES ON COMPETITION, TAXATION AND APPROXIMATION OF LAWS - Chapter 1: Rules on competition - Section 2: Aids granted by States - Article 107 (ex Article 87 TEC). https://eur-lex.europa.eu/legal content/EN/TXT/HTML/?uri=CELEX%3A12008E107#:~:text=Save%20as%20otherwise %20provided%20in,trade%20between%20Member%20States%2C%20be EUR-Lex. (2023). Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2023/1542/oj European-Commission. (2018a). Annex to the Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Europe on the Move: Sustainable Mobility for Europe: safe, connected and clean. https://eur-lex.europa.eu/resource.html?uri=cellar:0e8b694e-59b5 11e8-ab41 01aa75ed71a1.0003.02/DOC_3&format=PDF#:~:text=This%20Strategic%20Action%20 Plan%20combines,production%20and%20use%2C%20in%20the European-Commission. (2018b). European Commission tackles barriers to innovation: the second Innovation Deal focuses on batteries for electric vehicles. https://research-and innovation.ec.europa.eu/news/all-research-and-innovation-news/european-commission tackles-barriers-innovation-second-innovation-deal-focuses-batteries-electric-2018-03 12_en European-Commission. (2019). EU-China - A strategic outlook. https://commission.europa.eu/system/files/2019-03/communication-eu-china-a-strategic outlook.pdf European-Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - A new Circular Economy Action Plan for a cleaner and more competitive Europe. https://eur-lex.europa.eu/legal content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN European-Commission. (2022a). INNOVATION FUND - ReLieve - Recycling Li-ion Batteries for electric Vehicles 12/if_pf_2022_relieve_en.pdf European-Commission. (2022b). https://climate.ec.europa.eu/system/files/2022 Signed Innovation Deals. https://research-and innovation.ec.europa.eu/law-and-regulations/ensuring-eu-legislation-supports innovation/identifying-barriers/signed-deals_en European-Commission. (2023a). Commission launches investigation on subsidised electric cars from China https://ec.europa.eu/commission/presscorner/detail/en/ip_23_4752 European-Commission. (2023b). Critical Raw Materials. https://single-market economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw materials_en European-Commission. (2023c). Critical Raw Materials Act. https://single-market economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw materials/critical-raw-materials act_en#:~:text=Overview%20of%20the%20Critical%20Raw%20Materials%20Act, Critical%20raw%20materials&text=The%20European%20Critical%20Raw%20Materials ,chains%20for%20critical%20raw%20materials. European-Commission. (2023d). End-of-Life Vehicles. https://environment.ec.europa.eu/topics/waste-and-recycling/end-life-vehicles_en#law European-Commission. (2023e). An EU approach to enhance economic security https://ec.europa.eu/commission/presscorner/detail/en/IP_23_3358 European-Commission. (2023f). The Green Deal Industrial Plan - Putting Europe's net-zero industry in the lead https://commission.europa.eu/strategy-and-policy/priorities-2019 2024/european-green-deal/green-deal-industrial-plan_en#paragraph_33968 European-Commission. (2023g). Horizon 2020 - Energy Local Storage Advanced system (ELSA). https://cordis.europa.eu/project/id/646125 European-Commission. (2023h). The Net-Zero Industry Act: Accelerating the transition to climate neutrality. https://single-market-economy.ec.europa.eu/industry/sustainability/net-zero industry-act_en European-Commission. (2024a). EU and Serbia sign strategic partnership on sustainable raw materials, battery value chains and electric vehicles https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3922 European-Commission. (2024b). European Social Fund+. https://commission.europa.eu/funding tenders/find-funding/eu-funding-programmes/european-social-fund_en European-Commission. (2024c). Horizon Europe. https://research-and innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open calls/horizon-europe_en European-Commission. (2024d). Important Projects of Common European Interest (IPCEI). https://competition-policy.ec.europa.eu/state-aid/ipcei_en European-Commission. (2024e). Innovation Fund. https://cinea.ec.europa.eu/programmes/innovation-fund_en European-Commission. (2024f). Temporary Crisis and Transition Framework. https://competition-policy.ec.europa.eu/state-aid/temporary-crisis-and-transition framework_en European-Council. (2022). Versailles Declaration https://www.consilium.europa.eu/media/54773/20220311-versailles-declaration-en.pdf European-Council. (2023). Council adopts new regulation on batteries and waste batter https://www.consilium.europa.eu/en/press/press-releases/2023/07/10/council-adopts-new regulation-on-batteries-and-waste-batteries/ European-Parliament-Council. (2018). Directive 2006/66/EC of the European Parliament and of the Council of 6 September 2006 on batteries and accumulators and waste batteries and accumulators and repealing Directive 91/157/EEC (Text with EEA relevance). https://eur lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006L0066 European-Parliament-Council. (2023). Regulation (EU) 2023/1542 of the European Parliament and of the Council of 12 July 2023 concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2023/1542/oj European-Parliament. (2022). EU strategic autonomy 2013-2023: From concept to capacity. https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2022)733589 European-Union. (2008). Consolidated version of the Treaty on the Functioning of the European Union - PART ONE: PRINCIPLES - TITLE I: CATEGORIES AND AREAS OF UNION COMPETENCE - Article 2. In. (2024). InvestEU Fund. https://investeu.europa.eu/investeu European-Union. programme/investeu-fund_en Favot, M., & Massarutto, A. (2019). Rare-earth elements in the circular economy: The case of yttrium. Journal of environmental management, 240, 504-510. Gaines, L. (2014). The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustainable Materials and Technologies, 1, 2-7. Gaustad, G., Krystofik, M., Bustamante, M., & Badami, K. (2018). Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135, 24-33. Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11-32. Gleiss-Lutz. (2024). PFAS Restriction Proposal on the EU Level. https://www.gleisslutz.com/en/news-events/know-how/pfas-restriction-proposal-eu level#:~:text=On%207%20February%202023%20the,present%20in%20many%20consu mer%20goods. Grilli, M. L., Bellezze, T., Gamsjäger, E., Rinaldi, A., Novak, P., Balos, S., Piticescu, R. R., & Ruello, M. L. (2017). Solutions for critical raw materials under extreme conditions: A review. Materials, 10(3), 285. Helbig, C., Bradshaw, A. M., Wietschel, L., Thorenz, A., & Tuma, A. (2018). Supply risks associated with lithium-ion battery materials. Journal of Cleaner Production, 172, 274-286. Hool, A., Helbig, C., & Wierink, G. (2023). Challenges and opportunities of the European Critical Raw Materials Act. Mineral Economics, 1-8. Hool, A., Schrijvers, D., van Nielen, S., Clifton, A., Ganzeboom, S., Hagelueken, C., Harada, Y., Kim, H., Y. Ku, A., & Meese-Marktscheffel, J. (2022). How companies improve critical raw material circularity: 5 use cases: Findings from the International Round Table on Materials Criticality. Mineral Economics, 35(2), 325-335. IEA. (2023). France - What is the role of energy transformation in France? https://www.iea.org/countries/france/energy-mix IER. (2022). China Expected to Increase Control Over Global Lithium and Cobalt Supply. Institute for Energy Research. manager/articles/ International-Energy-Agency. https://www.instituteforenergyresearch.org/about/ier-site (2024). Outlouk for battery and energy demand. https://www.iea.org/reports/global-ev-outlook-2024/outlook-for-battery-and-energy demand Johansson, N. (2021). Does the EU’s action plan for a circular economy challenge the linear economy? Environmental science & technology, 55(22), 15001-15003. Kastanaki, E., & Giannis, A. (2023). Dynamic estimation of end-of-life electric vehicle batteries in the EU-27 considering reuse, remanufacturing and recycling options. Journal of Cleaner Production, 393, 136349. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232. Lander, L., Cleaver, T., Rajaeifar, M. A., Nguyen-Tien, V., Elliott, R. J., Heidrich, O., Kendrick, E., Edge, J. S., & Offer, G. (2021). Financial viability of electric vehicle lithium-ion battery recycling. Iscience, 24(7). Lanzolla, F. F. S. a. G. (2005). The Half-Truth of First-Mover Advantage. Harvard Business Review. https://hbr.org/2005/04/the-half-truth-of-first-mover-advantage LARA, H. (2018). Recyclage des batteries : notre visite au cœur d’une usine française. Automobile Propre. https://www.automobile-propre.com/recyclage-des-batteries-notre-visite-au coeur-dune-usine francaise/#:~:text=La%20SNAM%20affirme%20y%20traiter,%C3%A0%206000%20eur os%20la%20tonne. Leal, V., Ribeiro, J., Coelho, E., & Freitas, M. (2023). Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. Journal of Energy Chemistry, 79, 118-134. Leprince-Ringuet, D. (2023). Battery recycling startup Mecaware raises €40m Series A. sifted. https://sifted.eu/articles/mecaware-battery-recycling-series-a-news Lewandowski, M. (2016). Designing the business models for circular economy—Towards the conceptual framework. Sustainability, 8(1), 43. Lewicka, E., Guzik, K., & Galos, K. (2021). On the possibilities of critical raw materials production from the EU’s primary sources. Resources, 10(5), 50. Li-Cycle. (2022). Sustainability at Li-Cycle. Li-Cycle. (2023a). 2023 Sustainability Report. https://li-cycle.com/wp content/uploads/2024/05/2023-Li-Cycle-Sustainability-Report.pdf Li-Cycle. (2023b). Li-Cycle and KION Group Form Strategic Global Lithium-Ion Battery Recycling Partnership; Li-Cycle Announces New Spoke Development in France https://li cycle.com/press-releases/li-cycle-and-kion-group-form-strategic-global-partnership/ Li-Cycle. (2024a). Delivering value through recovered materials and process innovation. https://li cycle.com/products/ Li-Cycle. (2024b). Doing our part for a cleaner planet. https://li-cycle.com/sustainability/ Li-Cycle. (2024c). Innovative, safe, scalable, and sustainable process to recover critical materials from all types of lithium-ion batteries. https://li-cycle.com/technology/ Li-Cycle. (2024d). Lithium-ion battery recycling. https://li-cycle.com/ Månberger, A. (2023). Critical raw material supply matters and the potential of the circular economy to contribute to security. Intereconomics, 58(2), 74-78. Mancheri, N. A. (2015). World trade in rare earths, Chinese export restrictions, and implications. Resources Policy, 46, 262-271. Mathieux, F., Ardente, F., Bobba, S., Nuss, P., Blengini, G. A., Dias, P. A., Blagoeva, D., De Matos, C. T., Wittmer, D., & Pavel, C. (2017). Critical raw materials and the circular economy. Publications Office of the European Union: Bruxelles, Belgium. Matos, C. T., Mathieux, F., Ciacci, L., Lundhaug, M. C., León, M. F. G., Müller, D. B., Dewulf, J., Georgitzikis, K., & Huisman, J. (2022). Material system analysis: a novel multilayer system approach to correlate EU flows and stocks of Li‐ion batteries and their raw materials. Journal of Industrial Ecology, 26(4), 1261-1276. Mayyas, A., Steward, D., & Mann, M. (2019). The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Materials and Technologies, 19, e00087. Mecaware. (2023a). GREENTECH: MECAWARE SECURES €40M TO BECOME THE LEADER IN BATTERY RECYCLING AND THE PRODUCTION OF STRATEGIC METALS IN FRANCE AND EUROPE https://mecaware.com/latest-news/greentech-mecaware-secures e40m-to-become-the-leader-in-battery-recycling-and-the-production-of-strategic-metals in-france-and-europe/ Mecaware. (2023b). Greentech: Une étape réussie dans la création d'un nouvel écosystème en Hauts-de-France pour le recyclage des battéries. https://mecaware.com/latest news/greentech-une-etape-reussie-dans-la-creation-dun-nouvel-ecosysteme-en-hauts-de france-pour-le-recyclage-des-batteries/ MTE. (2023a). France 2030 : annonce des lauréats "recyclage des batteries" de l'appel à projets "recyclage, recyclabilité et réincorporation des matériaux" https://www.ecologie.gouv.fr/presse/france-2030-annonce-laureats-recyclage-batteries lappel-projets-recyclage-recyclabilite MTE. (2023b). France 2030 : le Gouvernement dévoile les 5 premiers lauréats de l'appel à projets "métaux critiques". https://www.ecologie.gouv.fr/presse/france-2030-gouvernement devoile-5-premiers-laureats-lappel-projets-metaux-critiques Natarajan, S., Divya, M. L., & Aravindan, V. (2022). Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. Journal of Energy Chemistry, 71, 351-369. Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule, 1(2), 229-243. Orano. (2021). CIME, a new pilot facility in Europe. In. Orano. (2022). Orano invests in recycling of electric vehicle batteries. https://www.orano.group/en/nuclear-expertise/valuation-of-strategic-metals/recycling-of electric-vehicle-batteries-launch-of-a-new-industrial-pilot Orano. (2023). Orano commissions its industrial pilots for the recycling of electric vehicle batteries https://www.orano.group/en/news/news-group/2023/november/orano-commissions-its industrial-pilots-for-the-recycling-of-electric-vehicle-batteries Öztürk, M., Evin, E., Özkan, A., & Banar, M. (2023). Comparison of waste lithium-ion batteries recycling methods by different decision making techniques. Environmental Research and Technology, 6(3), 226-241. Pagliaro, M., & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, 5(6). Parliament, E. (2023). Amendments adopted by the European Parliament on 14 September 2023 on the proposal for a regulation of the European Parliament and of the Council establishing a framework for ensuring a secure and sustainable supply of critical raw materials. Paschal, C. (2022). Mecaware transforme les batteries en fin de vie en une mine de métaux. L'Usine Nouvelle. https://www.usinenouvelle.com/article/mecaware-transforme-les-batteries enfin-de-vie-en-une-mine-de-metaux.N2018852 Pavel, C. C., Marmier, A., Alves Dias, P., Blagoeva, D., Tzimas, E., Schüler, D., Schleicher, T., Jenseit, W., Degreif, S., & Buchert, M. (2016). Substitution of critical raw materials in low carbon technologies: lighting, wind turbines and electric vehicles. Luxembourg: European Commission, Oko-Institut eV. PH.B. (2015). Snam étend son partenariat avec PSA Peugeot Citroën. Centre Presse. https://www.centrepresseaveyron.fr/2015/12/09/snam-etend-son-partenariat-avec-psa peugeot-citroen,3978960.php Rabe, W., Kostka, G., & Stegen, K. S. (2017). China's supply of critical raw materials: Risks for Europe's solar and wind industries? Energy Policy, 101, 692-699. Rensmo, A., Savvidou, E. K., Cousins, I. T., Hu, X., Schellenberger, S., & Benskin, J. P. (2023). Lithium-ion battery recycling: a source of per-and polyfluoroalkyl substances (PFAS) to the environment? Environmental Science: Processes & Impacts, 25(6), 1015-1030. Reynolds, M., & Goodman, M. P. (2022). China’s Economic Coercion: Lessons from Lithuania. Washington DC: Center for Strategic and International Studies (CSIS), 6. RMIS. (2023a). Raw Materials Profiles - Cobalt. https://rmis.jrc.ec.europa.eu/rmp/Cobalt RMIS. (2023b). Raw Materials Profiles - Lithium. https://rmis.jrc.ec.europa.eu/rmp/Lithium RMIS. (2023c). Raw Materials Profiles - Natural Graphite. https://rmis.jrc.ec.europa.eu/rmp/Natural%20Graphite RMIS. (2023d). Raw Materials Profiles - Nickel https://rmis.jrc.ec.europa.eu/rmp/Nickel Rönkkö, P., Majava, J., Hyvärinen, T., Oksanen, I., Tervonen, P., & Lassi, U. (2023). The circular economy of electric vehicle batteries: a Finnish case study. Environment Systems and Decisions, 1-14. Schmid, M. (2019). Mitigating supply risks through involvement in rare earth projects: Japan's strategies and what the US can learn. Resources Policy, 63, 101457. Schmid, M. (2020). Challenges to the European automotive industry in securing critical raw materials for electric mobility: the case of rare earths. Mineralogical Magazine, 84(1), 5 17. (2023). Scott, S., & Ireland, R. (2020). Lithium-Ion battery materials for electric vehicles and their global value chains. Office of Industries, US International Trade Commission. SK-tes. TES Prepares to Open New Battery Recycling Facilities https://www.sktes.com/press-release/tes-prepares-to-open-new-battery-recycling-facilities SK-tes. (2024). Sustainable Battery Solutions. https://www.sktes.com/it-services/commercial battery-recycling Smol, M., Marcinek, P., & Koda, E. (2021). Drivers and barriers for a circular economy (CE) implementation in Poland—A case study of raw materials recovery sector. Energies, 14(8), 2219. SNAM. (2023). For the fourth year running, SNAM has renewed its EcoVadis Silver Medal! https://www.snam.com/en/for-the-fourth-year-running-snam-has-renewed-its-ecovadis silver-medal/ SNAM. (2024a). Nos engagements. https://www.snam.com/engagements/ SNAM. (2024b). Recyclage. https://www.snam.com/recyclage/ Song, J., Yan, W., Cao, H., Song, Q., Ding, H., Lv, Z., Zhang, Y., & Sun, Z. (2019). Material flow analysis on critical raw materials of lithium-ion batteries in China. Journal of Cleaner Production, 215, 570-581. Theodosopoulos, V. (2020). The Geopolitics of Supply: towards a new EU approach to the security of supply of critical raw materials? Institute for European Studies Policy Brief. Tiess, G. (2010). Minerals policy in Europe: Some recent developments. Resources Policy, 35(3), 190-198. aux Tobelem, B. (2023). Batterie, énergie solaire, cybersécurité… Des “académies européennes” pour former métiers des technologies d’avenir. Toute l'Europe. https://www.touteleurope.eu/economie-et-social/batterie-energie-solaire-cybersecurite des-academies-europeennes-pour-former-aux-metiers-des-technologies-d-avenir/ Trafton, A. (2024). Cobalt-free batteries could power cars of the future. MIT News on campus and around the world. https://news.mit.edu/2024/cobalt-free-batteries-could-power-future cars-0118 USGS. (2022). Lithium. https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-lithium.pdf USGS. (2023). Graphite (Natural). https://pubs.usgs.gov/periodicals/mcs2023/mcs2023 graphite.pdf USGS. (2024). Nickel. https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-nickel.pdf Veolia. (2020a). Electric cars: batteries of the future will be recycled https://www.veolia.com/en/planetlive/electric-cars-batteries-future-will-be-recycled Veolia. (2020b). Solvay and Veolia partner to recycle electric vehicle batteries https://www.veolia.com/en/news/recycling-lithium-ion-batteries-electric-vehicles-solvay veolia Veolia. (2021a). Movin'On Summit: the Veolia, Groupe Renault and Solvay alliance at the service of the circular economy for sustainable mobility batteries https://www.veolia.cn/en/news/movinon-summit-veolia-groupe-renault-and-solvay alliance-service-circular-economy-sustainable Veolia. (2021b). Recycling electric vehicle batteries: ecological transformation and preserving resources (The Veolia Institute Review, Issue. https://www.institut.veolia.org/sites/g/files/dvc2551/files/document/2021/11/74%20Recyc ling%20electric%20vehicle.pdf Veolia. (2021c). Veolia, Groupe Renault and Solvay join forces to recycle end-of-life EV battery metals in a closed loop https://www.veolia.com/en/news/recycling-electric-vehicles batteries-solvay-renault-veolia Veolia. (2022). Li-ion battery recycling. https://www.weloop.org/wp content/uploads/2022/07/WeLoop-Workshop-Li-Ion-Battery-recycling-with-VEOLIA.pdf Veolia. (2023). Développer des solutions circulaires et sûres pour la fin de vie des batteries lithium-ion https://www.veolia.com/sites/g/files/dvc4206/files/document/2023/07/recyclage-batteries lithium-ion-2023.pdf Veolia. (2024a). Développer des solutions circulaires et sûres pour la fin de vie des batteries lithium-ion. https://www.veolia.com/sites/g/files/dvc4206/files/document/2024/06/veolia recyclage-batteries-lithium-ion-2024.pdf Veolia. (2024b). PFAS Technology, Remediation and Treatment. https://www.watertechnologies.com/applications/pfas-remediation Veolia. (2024c). Recycling electric car batteries. https://www.veolia.com/en/pollution/hazardous waste/recycling-electric-car-batteries Volkswagen. (2021). Battery recycling pilot plant https://www.volkswagen group.com/en/images/detail/battery-recycling-pilot-plant-35568 Wadsworth, T. (2023). Li-Cycle - Providing a Closed-Loop Solution for Battery Recycling. https://batterytechassociation.org/wp-content/uploads/2023/12/1130-Hall-2-Tom Wadsworth-Li-Cycle-2.pdf Wrålsen, B., Prieto-Sandoval, V., Mejia-Villa, A., O'Born, R., Hellström, M., & Faessler, B. (2021). Circular business models for lithium-ion batteries-Stakeholders, barriers, and drivers. Journal of Cleaner Production, 317, 128393. WTO. (2013a). DS394: China — Measures Related to the Exportation of Various Raw Materials. WTO. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds394_e.htm WTO. (2013b). DS395: China — Measures Related to the Exportation of Various Raw Materials. WTO. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds395_e.htm WTO. (2013c). DS398: China — Measures Related to the Exportation of Various Raw Materials. https://www.wto.org/english/tratop_e/dispu_e/cases_e/ds398_e.htm Wübbeke, J. (2013). Rare earth elements in China: Policies and narratives of reinventing an industry. Resources Policy, 38(3), 384-394. Zanoletti, A., Carena, E., Ferrara, C., & Bontempi, E. (2024). A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries, 10(1), 38. Ziemann, S., Müller, D. B., Schebek, L., & Weil, M. (2018). Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach. Resources, Conservation and Recycling, 133, 76-85. 中华人民共和国国土资源部. (2008). 全国矿产资源规划(2008~2015 年) https://www.cnmn.com.cn/ShowNews1.aspx?id=282722&page=6zh_TW