Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

TitleFedTS:基於時間序列聯邦學習的羽球揮拍評分
FedTS: Federated Learning Based on Time Series For Scoring Badminton Strokes
Creator思沛淇
Si, Pei-Qi
Contributor蔡子傑
Tsai, Tzu-Chieh
思沛淇
Si, Pei-Qi
Key Words聯邦學習
非獨立同分佈
時間序列資料
穿戴式裝置
知識蒸餾
Federated Learning
Non-iid
Time-series Data
Wearable Devices
Knowledge Distillation
Date2025
Date Issued4-Feb-2025 15:44:28 (UTC+8)
Summary近年來,隨著疫情逐漸趨緩,人們開始積極地投入各項戶外運動。其中,羽球運動因戴資穎在國際賽的亮眼表現,以及李洋、王齊麟勇奪奧運金牌,一時間成為臺灣運動愛好者的矚目焦點,帶動羽球運動人口持續攀升。根據教育部體育署相關調查,網路族群之中每三人便有一人使用穿戴式裝置紀錄運動數據;穿戴式裝置在運動科技領域已成為一種時尚趨勢。 本研究針對時間序列資料的特性,運用穿戴式裝置(Fitbit 智慧手環)收集羽球揮拍資訊,包括三軸加速度與三軸角速度,透過程式串接 Fitbit 提供的 API 即可輕鬆取得。與多數應用影像技術或在球拍嵌入晶片的既有研究相比,穿戴式裝置更具有隨手可得、操作便利的優勢。然而,目前尚缺乏以時間序列為基礎的聯邦學習(Federated Learning, FL)應用於羽球運動評分之研究,故本研究特別關注在「非獨立同分佈(non-iid)資料下的聯邦學習訓練」,以提升模型對實際使用者情境的適應性。 本研究旨在:(1)實際收集揮拍時間序列數據並標註五個面向的教練評分;(2)探討在此資料集中可能面臨的 non-iid 問題,並比較傳統聯邦學習(FedAvg)以及其他改良演算法(FedProx、FedBN、FedTS)在不同實驗情境下之表現;(3)提供各種增量式資料訓練分析,檢驗在初期資料有限、或客戶端分佈差異極大的真實情境中,如何利用蒸餾技術(Knowledge Distillation)與動態正則項(Proximal Term)等方式改善模型效能。最終,研究成果將去識別化後公開於網路上,期能成為未來進行運動數據科學研究之基礎。
In recent years, as the COVID-19 pandemic has gradually subsided, people have increasingly engaged in various outdoor activities. Among these, badminton has gained significant popularity in Taiwan, driven by Tai Tzu-ying's impressive performances in international competitions and the Olympic gold medal won by Lee Yang and Wang Chi-lin. The growing interest in badminton has led to a rising number of enthusiasts. According to surveys conducted by the Sports Administration of the Ministry of Education, one in three internet users employs wearable devices to track their fitness data, making wearable technology a prominent trend in sports science. This study leverages the characteristics of time-series data by collecting badminton stroke information using wearable devices (Fitbit smart bands), including tri-axial acceleration and tri-axial angular velocity. Through API integration provided by Fitbit, data can be effortlessly obtained. Compared to existing studies that primarily utilize imaging technology or embed sensors into rackets, wearable devices offer a more accessible and convenient solution. However, there is a lack of research applying Federated Learning (FL) based on time-series data for badminton performance scoring. This study focuses specifically on Federated Learning training under non-independent and identically distributed (non-iid) data to enhance model adaptability to real-world user scenarios. The objectives of this research are: (1) to collect real-time stroke time-series data and annotate them with coach evaluations across five dimensions; (2) to investigate the challenges of non-iid data in this dataset and compare the performance of traditional Federated Learning (FedAvg) with other advanced algorithms (FedProx, FedBN, FedTS) under different experimental scenarios; and (3) to analyze incremental data training, examining how techniques such as knowledge distillation and dynamic regularization (Proximal Term) can improve model performance in real-world scenarios with limited initial data or significant client distribution disparities. The research results, anonymized and de-identified, will be made publicly available online, aiming to serve as a foundation for future studies in sports data science.
參考文獻 1] Fabrizio de Fabritiis and Konstantinos Gryllias. A federated learning approach for rolling bearing fault diagnosis on data sources with imbalanced class distribution. In Surveillance, Vibrations, Shock and Noise, 2023. [2] 王威堯 (Wei-Yao Wang), 張凱翔 (Kai-Shiang Chang), 陳霆峰 (Teng-Fong Chen), 王志全 (Chih-Chuan Wang), 彭文志 (Wen-Chih Peng), and 易志偉 (Chih-Wei Yi). Badminton coach ai:基於深度學習之羽球賽事資訊分析平台. 體育學報, 53(2):201–213, Jun 2020. [3] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agueray Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017. [4] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021. [5] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE), pages 965–978. IEEE, 2022. [6] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020. [7] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021. [8] Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015. [9] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in federated learning. Advances in neural information pro- cessing systems, 33:2351–2363, 2020.
Description碩士
國立政治大學
資訊科學系
111753214
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0111753214
Typethesis
dc.contributor.advisor 蔡子傑zh_TW
dc.contributor.advisor Tsai, Tzu-Chiehen_US
dc.contributor.author (Authors) 思沛淇zh_TW
dc.contributor.author (Authors) Si, Pei-Qien_US
dc.creator (作者) 思沛淇zh_TW
dc.creator (作者) Si, Pei-Qien_US
dc.date (日期) 2025en_US
dc.date.accessioned 4-Feb-2025 15:44:28 (UTC+8)-
dc.date.available 4-Feb-2025 15:44:28 (UTC+8)-
dc.date.issued (上傳時間) 4-Feb-2025 15:44:28 (UTC+8)-
dc.identifier (Other Identifiers) G0111753214en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/155455-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學系zh_TW
dc.description (描述) 111753214zh_TW
dc.description.abstract (摘要) 近年來,隨著疫情逐漸趨緩,人們開始積極地投入各項戶外運動。其中,羽球運動因戴資穎在國際賽的亮眼表現,以及李洋、王齊麟勇奪奧運金牌,一時間成為臺灣運動愛好者的矚目焦點,帶動羽球運動人口持續攀升。根據教育部體育署相關調查,網路族群之中每三人便有一人使用穿戴式裝置紀錄運動數據;穿戴式裝置在運動科技領域已成為一種時尚趨勢。 本研究針對時間序列資料的特性,運用穿戴式裝置(Fitbit 智慧手環)收集羽球揮拍資訊,包括三軸加速度與三軸角速度,透過程式串接 Fitbit 提供的 API 即可輕鬆取得。與多數應用影像技術或在球拍嵌入晶片的既有研究相比,穿戴式裝置更具有隨手可得、操作便利的優勢。然而,目前尚缺乏以時間序列為基礎的聯邦學習(Federated Learning, FL)應用於羽球運動評分之研究,故本研究特別關注在「非獨立同分佈(non-iid)資料下的聯邦學習訓練」,以提升模型對實際使用者情境的適應性。 本研究旨在:(1)實際收集揮拍時間序列數據並標註五個面向的教練評分;(2)探討在此資料集中可能面臨的 non-iid 問題,並比較傳統聯邦學習(FedAvg)以及其他改良演算法(FedProx、FedBN、FedTS)在不同實驗情境下之表現;(3)提供各種增量式資料訓練分析,檢驗在初期資料有限、或客戶端分佈差異極大的真實情境中,如何利用蒸餾技術(Knowledge Distillation)與動態正則項(Proximal Term)等方式改善模型效能。最終,研究成果將去識別化後公開於網路上,期能成為未來進行運動數據科學研究之基礎。zh_TW
dc.description.abstract (摘要) In recent years, as the COVID-19 pandemic has gradually subsided, people have increasingly engaged in various outdoor activities. Among these, badminton has gained significant popularity in Taiwan, driven by Tai Tzu-ying's impressive performances in international competitions and the Olympic gold medal won by Lee Yang and Wang Chi-lin. The growing interest in badminton has led to a rising number of enthusiasts. According to surveys conducted by the Sports Administration of the Ministry of Education, one in three internet users employs wearable devices to track their fitness data, making wearable technology a prominent trend in sports science. This study leverages the characteristics of time-series data by collecting badminton stroke information using wearable devices (Fitbit smart bands), including tri-axial acceleration and tri-axial angular velocity. Through API integration provided by Fitbit, data can be effortlessly obtained. Compared to existing studies that primarily utilize imaging technology or embed sensors into rackets, wearable devices offer a more accessible and convenient solution. However, there is a lack of research applying Federated Learning (FL) based on time-series data for badminton performance scoring. This study focuses specifically on Federated Learning training under non-independent and identically distributed (non-iid) data to enhance model adaptability to real-world user scenarios. The objectives of this research are: (1) to collect real-time stroke time-series data and annotate them with coach evaluations across five dimensions; (2) to investigate the challenges of non-iid data in this dataset and compare the performance of traditional Federated Learning (FedAvg) with other advanced algorithms (FedProx, FedBN, FedTS) under different experimental scenarios; and (3) to analyze incremental data training, examining how techniques such as knowledge distillation and dynamic regularization (Proximal Term) can improve model performance in real-world scenarios with limited initial data or significant client distribution disparities. The research results, anonymized and de-identified, will be made publicly available online, aiming to serve as a foundation for future studies in sports data science.en_US
dc.description.tableofcontents 第一章 Introduction  1 第一節 研究動機  1 第二節 研究目的  2 第三節 預期貢獻  3 第二章 Related work  5 第一節 聯邦學習  5 第二節 非獨立同分布數據對聯邦學習算法的影響  6 第三節 時間序列資料在非獨立同分布下的挑戰  9 第四節 聯邦學習中解決 non-iid 的方法:FedProx  9 第五節 聯邦學習中解決 non-iid 的方法:FedBN  10 第六節 知識蒸餾(Knowledge Distillation)  12 第三章 Methods  15 第一節 收集羽毛球六軸時間序列資料集並標註資料集  15 第二節 時間序列資料特徵提取──羽球擊球區間選擇  16 第二之一小節 判斷揮拍有效性  18 第三節 聯邦學習流程設計  19 第三之一小節 資料分割與前處理  19 第三之二小節 LSTM模型架構與訓練目標  20 第三之三小節 結合知識蒸餾(KnowledgeDistillation)  21 第三之四小節 FedTS之動態正則化機制  22 第三之五小節 本地訓練與動態學習率  23 第三之六小節 資料增強(DataAugmentation)  23 第三之七小節 逐量增加資料(IncrementalTraining)之聯邦蒸餾與評估標準  23 第三之八小節 小結  24 第四章 Experiments  26 第一節 實驗環境與參數設置  26 第二節 實驗數據集  27 第三節 教師模型的選擇  28 第四節 實驗結果  30 第四之一小節 實驗結果(iid分布,2Clients)  30 第四之二小節 Case2(4Clients,數量不平衡,比例為50%、25%、12.5%、12.5%)  32 第四之三小節 Case3(2Clients,non-iid,高分群vs.低分群)  34 第四之四小節 Case4(3Clients,其中1客戶端標籤隨機)  36 第五章 Conclusions and Future Work  38 第一節 結論  38 第二節 未來展望  39 Reference  42zh_TW
dc.format.extent 2612759 bytes-
dc.format.mimetype application/pdf-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0111753214en_US
dc.subject (關鍵詞) 聯邦學習zh_TW
dc.subject (關鍵詞) 非獨立同分佈zh_TW
dc.subject (關鍵詞) 時間序列資料zh_TW
dc.subject (關鍵詞) 穿戴式裝置zh_TW
dc.subject (關鍵詞) 知識蒸餾zh_TW
dc.subject (關鍵詞) Federated Learningen_US
dc.subject (關鍵詞) Non-iiden_US
dc.subject (關鍵詞) Time-series Dataen_US
dc.subject (關鍵詞) Wearable Devicesen_US
dc.subject (關鍵詞) Knowledge Distillationen_US
dc.title (題名) FedTS:基於時間序列聯邦學習的羽球揮拍評分zh_TW
dc.title (題名) FedTS: Federated Learning Based on Time Series For Scoring Badminton Strokesen_US
dc.type (資料類型) thesisen_US
dc.relation.reference (參考文獻) 1] Fabrizio de Fabritiis and Konstantinos Gryllias. A federated learning approach for rolling bearing fault diagnosis on data sources with imbalanced class distribution. In Surveillance, Vibrations, Shock and Noise, 2023. [2] 王威堯 (Wei-Yao Wang), 張凱翔 (Kai-Shiang Chang), 陳霆峰 (Teng-Fong Chen), 王志全 (Chih-Chuan Wang), 彭文志 (Wen-Chih Peng), and 易志偉 (Chih-Wei Yi). Badminton coach ai:基於深度學習之羽球賽事資訊分析平台. 體育學報, 53(2):201–213, Jun 2020. [3] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agueray Arcas. Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017. [4] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated learning. Foundations and trends® in machine learning, 14(1–2):1–210, 2021. [5] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE), pages 965–978. IEEE, 2022. [6] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020. [7] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021. [8] Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2015. [9] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in federated learning. Advances in neural information pro- cessing systems, 33:2351–2363, 2020.zh_TW