Publications-Periodical Articles

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 雙線性時間序列模式選取方法之比較
其他題名 On Comparison of Model Selectio Methods for Bilinear Time Series Models
作者 鄭天澤;劉瑞芝
Jeng, Tian-Tzer;Liu, Ruey-Chih
關鍵詞 雙線性時間序列模式 ; 模式選取 ; 高斯-賽德迭代法
Binlinear time series models;Model selection;Gauss-seidel iteration
日期 1995-12
上傳時間 19-Dec-2008 14:55:31 (UTC+8)
摘要 在過去二十年中,時間序列分析領域中大多數的論文都在探討線性時間序列模式。然而現實生活中,有很多時間序列顯然並不符合線性假設;因此近十年來有些學者乃致力於非線性時間序列模式之研究,並提出各種假設檢定方法,以判斷資料是否為線性。一旦確定資料為非線性,則更進一步配適合適的非線性時間序列模式。一般而言,非線性時間序列模式有三種:雙線性模式、指數自迴歸模式以及起始自迴歸模式。此三類模式中的雙線性模式,由於其性質與傳統線性模式類似,經常容易混淆,是以本主旨在探討雙線性模式選取的各種方法,並比較其選模能力。我們使用高斯-賽德迭代法估計參數,藉電腦模擬資料來比較Subba Rao and Gabr (1984)選模法、修正PKK選模法、AIC和 BIC等四種方法或準則的選模能力。
In the past 15 years, there have been a lot of researchers working on model selection problems for bilinear (B L) time series models. Several model selection criteria or methods, such as the Subba Rao`s nested search procedure, AIC and BIC criteria, have been suggested and used in the literature. In this paper, the performance of the above model selection criteria/methods are presented and compared, using simulated data, with the modified PKK procedure we have proposed. It is found that the Subba Rao`s nested search procedure has a better performance on average than do modified PKK procedure, AIC and BIC criteria.
關聯 中國統計學報, 33(4),581-601
資料類型 article
dc.creator (作者) 鄭天澤;劉瑞芝zh_TW
dc.creator (作者) Jeng, Tian-Tzer;Liu, Ruey-Chih-
dc.date (日期) 1995-12en_US
dc.date.accessioned 19-Dec-2008 14:55:31 (UTC+8)-
dc.date.available 19-Dec-2008 14:55:31 (UTC+8)-
dc.date.issued (上傳時間) 19-Dec-2008 14:55:31 (UTC+8)-
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/18207-
dc.description.abstract (摘要) 在過去二十年中,時間序列分析領域中大多數的論文都在探討線性時間序列模式。然而現實生活中,有很多時間序列顯然並不符合線性假設;因此近十年來有些學者乃致力於非線性時間序列模式之研究,並提出各種假設檢定方法,以判斷資料是否為線性。一旦確定資料為非線性,則更進一步配適合適的非線性時間序列模式。一般而言,非線性時間序列模式有三種:雙線性模式、指數自迴歸模式以及起始自迴歸模式。此三類模式中的雙線性模式,由於其性質與傳統線性模式類似,經常容易混淆,是以本主旨在探討雙線性模式選取的各種方法,並比較其選模能力。我們使用高斯-賽德迭代法估計參數,藉電腦模擬資料來比較Subba Rao and Gabr (1984)選模法、修正PKK選模法、AIC和 BIC等四種方法或準則的選模能力。-
dc.description.abstract (摘要) In the past 15 years, there have been a lot of researchers working on model selection problems for bilinear (B L) time series models. Several model selection criteria or methods, such as the Subba Rao`s nested search procedure, AIC and BIC criteria, have been suggested and used in the literature. In this paper, the performance of the above model selection criteria/methods are presented and compared, using simulated data, with the modified PKK procedure we have proposed. It is found that the Subba Rao`s nested search procedure has a better performance on average than do modified PKK procedure, AIC and BIC criteria.-
dc.format application/en_US
dc.language zh-TWen_US
dc.language en-USen_US
dc.language.iso en_US-
dc.relation (關聯) 中國統計學報, 33(4),581-601en_US
dc.subject (關鍵詞) 雙線性時間序列模式 ; 模式選取 ; 高斯-賽德迭代法-
dc.subject (關鍵詞) Binlinear time series models;Model selection;Gauss-seidel iteration-
dc.title (題名) 雙線性時間序列模式選取方法之比較zh_TW
dc.title.alternative (其他題名) On Comparison of Model Selectio Methods for Bilinear Time Series Models-
dc.type (資料類型) articleen