Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 車用行動網路中以車行方向為基礎的貪婪路由演算法
Moving Direction Based Greedy Routing Algorithm for VANET
作者 黃祥德
貢獻者 張宏慶
Jang, Hung Chin
黃祥德
關鍵詞 演算法
通訊協定
封包到達率
傳輸量
平均點對點延遲
Algorithm
Protocol
Packet delivery ratio
Throughput
Average end-to-end delay
日期 2008
上傳時間 11-Sep-2009 16:04:26 (UTC+8)
摘要 由於VANET上的行動節點移動速度快,加上受到道路及交通號制的限制,導致網路拓樸快速改變,容易造成網路斷訊,影響資料封包在網路上的傳送效能。在傳統的MANET上有許多用來傳送資料封包的路由機制,並不直接適用在VANET上。隨著Global Position System (GPS)的普及,越來越多的車輛都具備GPS,用以輔助行車定位之用。在本研究中我們將透過GPS取得車輛的地理資訊,提出一個適用於VANET中以車行方向為基礎的貪婪路由演算法(MDBG)。
      本論文目的在強化VANET網路上資料封包的路由選擇策略。所提出的路由機制將會透過hello message來取得相鄰車輛的位置和車行方向,並利用目標要求(DREQ)、目標回應(DREP)來獲得目標車輛的資訊。進而運用車輛的車行方向,選擇適當的相鄰車輛找出一條穩定的路由路徑。當來源車輛和目標車輛的車行方向相同時,AODV能有不錯的效能表現。而我們的路由演算法(MDBG)將強化當來源車輛和目標車輛的車行方向相反,並且逐漸遠離時的效能表現。實驗模擬的結果顯示MDBG在封包到達率、吞吐量和平均端對端延遲上較之於AODV及DSR演算法有更優異的表現。
Packets transmission over VANET is intermittent due to rapid change of network topology. This comes from both high mobility of mobile nodes and road limitation. Intermittent transmission causes inefficient packet delivery. Those routing protocols applicable to MANET might not be suitable for VANET. On the other hand, Global Position System (GPS) is becoming prevalent in assisting positioning for vehicles. In this research, we develop a Moving Direction Based Greedy (MDBG) routing algorithm for VANET. MDBG algorithm is based on the geographical information collected by GPS.
     The objective of the thesis is to enhance routing decision in packet delivery. The "hello message" is used to retrieve the locations and moving directions of neighboring vehicles. Destination REQuest (DREQ) and Destination REPly (DREP) messages are used to retrieve target vehicle information. The source vehicle will thus use these information together with its own moving direction information to establish a stable routing path by selecting appropriate neighboring vehicles. AODV algorithm is proved to have good performance as both the source vehicle and target vehicle have the same moving direction. MDBG algorithm is proposed to leverage the problem as source vehicle and target vehicle move far apart in opposite directions. Simulation results show that MDBG outperforms both AODV and DSR in packet arrival rate, throughput and average end-to-end delay.
參考文獻 [1] IETF Mobile Ad Hoc Networks (MANET) Working Group Charter, http://www.ietf.org/html.charters/manet-charter.html, April 2009.
[2] C. Lieu et J. Kaiser, “A Survey of Mobile Ad-hoc Network Routing Protocols,” University of Ulm Technical Report Series, Nr. 2003-08, October 2005.
[3] E. M. Royer and C. -K. Toh, “A Review of Current Routing Protocols for Ad-Hoc Mobile Networks,” IEEE Personal Communications, vol. 6, no. 2, April 1999, pp. 46-55.
[4] Ivan Stojmenovic, “Position-based routing in ad hoc networks,” IEEE Communications Magazine, vol. 40, no. 7, Jul 2002.
[5] X. Hou, “Topology-based Routing Algorithms for Ad Hoc Networks,” A survey paper for PhD Comprehensive Exam, University of Pittsburgh, 2002.
[6] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” Proceedings of the ACM SIGCOMM, 1994, pp. 234–244.
[7] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das, “Ad hoc On-Demand Distance Vector (AODV) Routing,” IETF Experimental 7A 3561, July 2003.
[8] Y. C. Tseng,S. Y. Ni, Y. S. Chen, and J. P. Sheu, “The Broadcast Storm Problem in a Mobile Ad hoc Network,” ACM Wireless Networks, Vol. 8, No. 2, March 2002, pp. 153-167.
[9] Z.J. Haas, M.R. Pearlman, P. Samar, “The Zone Routing Protocol (ZRP) for Ad Hoc Networks,” draft-ietf-manet-zone-zrp-04.txt, Internet-Draft, IETF, Aug., 2002.
[10] Joa-Ng. M., I-Tai Lu, “A peer-to-peer zone-based two-level link state routing for
mobile ad hoc networks”, Selected Areas in Communications, IEEE Journal, Aug. 1999, pp.1415 –1425.
[11] X. Hong, K. Xu, and M. Gerla, “Scalable routing protocols for mobile ad hoc networks,” IEEE Network, Jul. 2002, Vol.16, No. 4, pp.11-21.
[12] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” in Proceedings of MOBICOM 2000, Boston, MA, USA, 2000, pp. 243-254.
[13] F.Li, Y.Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE Veh. Tech. Mag., vol.2, no.2, pp.12-22, 2007/06.
[14] Fay Hui, “A survey on the characterization of Vehicular Ad Hoc Networks and routing solutions,” ECS 257, 2005.
[15] Sascha Schnaufer, Holger Füßler, Matthias Transier, Wolfgang Effelsberg,
“Unicast Ad-Hoc Routing in Vehicular City Scenarios,” Technical Report / Department for Mathematics and Computer Science, University of Mannheim; TR-2007-012, 2006.
[16] F. Hui and P. Mohapatra, “Experimental characterization of multi-hop communications in vehicular ad hoc network,” in ACM VANET. New York, NY, USA: ACM Press, 2005, pp. 85–86.
[17] S.Y. Wang, “The Effects of Wireless Transmission Range on Path Lifetime in Vehicle-Formed Mobile Ad Hoc Networks on Highways,” IEEE ICC 2005, May 16-20, 2005.
[18] P. Bose et al., “Routing with Guaranteed Delivery in Ad Hoc Wireless Networks,” ACM/Kluwer WL Nets., vol. 7, no. 6, Nov. 2001, pp. 609–16.
[19] G. Korkmaz, E. Ekici, F. Özgüner and Ü. Özgüner, “Urban multi-hop broadcast protocol for inter-vehicle communication systems,” Proceedings of VANET `04 1st ACM International Workshop on Vehicular Ad Hoc Networks, Philadelphia, PA, USA, pp. 76-85, Oct. 2004.
[20] J. Zhao, Y. Zhang, and G. Cao. “Data pouring and buffering on the road: A new data dissemination paradigm for vehicular ad hoc networks,” IEEE Trans. on VT, Nov. 2007.
[21] Y. Zhang, J. Zhang, and G. Cao, “On Scheduling Vehicle-Roadside Data
Access,” ACM Workshop on Vehicular Ad Hoc Networks (VANET), 2007.
[22] C. Lochert, B. Scheuermann, M. Caliskan, and M. Mauve. “The feasibility of information dissemination in vehicular ad-hoc networks”, In Proc. of WONS, Obergurgl, Austria, Jan. 2007.
[23] Shinkawa, T., Terauchi, T., Kitani, T., Shibata, N., Yasumoto, K., Ito, M., Higashino, T.,”A Technique for Information Sharing using Inter-Vehicle Communication with Message Ferrying,” IEEE Int`l Workshop on Future Mobile and Ubiquitous Information Technologies, 2006.
[24] Gang Lu, Demetrios Belis, Gordon Manson, “Enhancing Routing Performance for Inter-Vehicle Communication in City Environment,” Proceedings of the ACM, October, 2006.
[25] B.-C. Seet, G. Liu, B.-S. Lee, C.-H. Foh, K.-J. Wong, and K.-K. Lee, “A-star: A mobile ad hoc routing strategy for metropolis vehicular communications,” Lecture Notes in Computer Science (LNCS), Networking, 2004.
[26] Moez Jerbi, Rabah Meraihi, Sidi-Mohammed Senouci, Yacine Ghamri-Doudane,” GyTAR: improved Greedy Traffic Aware Routing Protocol for Vehicular Ad Hoc Networks in City Environments,” ACM Press, Sep. 2006.
[27] M. Jerbi, SM. Senouci, R. Meraihi and Y. Ghamri-Doudane, “An Improved Vehicular Ad Hoc Routing Protocol for City Environments,” IEEE ICC, 2007.
[28] M. Jerbi, SM. Senouci, Y. Ghamri-Doudane, “Towards Efficient Routing in Vehicular Ad Hoc Networks,” International Workshop UBIROADS`2007, Marrakech, 6 July 2007.
[29] Christian Lochert, Hannes Hartenstein, Jing Tian, Dagmar Herrmann, Holger Füßler, Martin Mauve, ”A Routing Strategy for Vehicular Ad Hoc Networks in City Environments,” IEEE Intelligent Vehicles Symposium, pp. 156--161, Columbus, OH, USA, June 2003.
[30] C. Lochert, M. Mauve, H. Fuessler, and H. Hartenstein, “Geographic routing in city scenarios,” ACM SIGMOBILE MC2R, 2005.
[31] Lee et. al., “Enhanced Perimeter Routing for Geographic Forwarding Protocols in Urban Vehicular Scenarios,” IEEE AutoNet, 2007.
[32] Hojin Lee, Youndo Lee, Taekyoung Kwon, and Yanghee Choi, “Virtual Vertex Routing (VVR) for Course-Based Vehicular Ad Hoc Networks,” IEEE WCNC, March 2007.
[33] Korkmaz et. al., “An Efficient Fully Ad-Hoc Multi-hop Broadcast Protocol for Inter-Vehicle Communication Systems,” IEEE ICC, June 2006.
[34] R. A. Santos, R. M. Edwards, A. Edwards and D. Belis, “A novel cluster-based location routing algorithm for inter-vehicular communication,” PIMRC 2004 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, no. 1, September 2004, pp. 1032 – 1036.
[35] T.D.C. Little and A. Agarwal, “An Information Propagation Scheme for VANETs,” Proc. 8th Intl. IEEE Conf. on Intelligent Transportation Systems (ITSC 2005), Vienna Austria, Sept. 2005.
[36] T.D.C. Little and A. Agarwal, “A New Information Propagation Scheme for Vehicular Networks,” (Abstract and Poster) Proc. 3rd Intl. Conf. on Mobile Systems, Applications and Services (Mobisys 2005), Seattle, WA, June 2005.
[37] T. Taleb et. al., “An Efficient Vehicle-Heading Based Routing Protocol for VANET Networks,” IEEE WCNC, 2006.
[38] Feliz Kristianto Karnadi, Zhi Hai Mo and Kun-chan Lan,” Rapid generation of realistic mobility models for VANET,” WCNC 2007 - IEEE Wireless Communications and Networking Conference, no. 1, March 2007, pp. 2349 – 2354.
描述 碩士
國立政治大學
資訊科學學系
95971018
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0095971018
資料類型 thesis
dc.contributor.advisor 張宏慶zh_TW
dc.contributor.advisor Jang, Hung Chinen_US
dc.contributor.author (Authors) 黃祥德zh_TW
dc.creator (作者) 黃祥德zh_TW
dc.date (日期) 2008en_US
dc.date.accessioned 11-Sep-2009 16:04:26 (UTC+8)-
dc.date.available 11-Sep-2009 16:04:26 (UTC+8)-
dc.date.issued (上傳時間) 11-Sep-2009 16:04:26 (UTC+8)-
dc.identifier (Other Identifiers) G0095971018en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/29694-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 95971018zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 由於VANET上的行動節點移動速度快,加上受到道路及交通號制的限制,導致網路拓樸快速改變,容易造成網路斷訊,影響資料封包在網路上的傳送效能。在傳統的MANET上有許多用來傳送資料封包的路由機制,並不直接適用在VANET上。隨著Global Position System (GPS)的普及,越來越多的車輛都具備GPS,用以輔助行車定位之用。在本研究中我們將透過GPS取得車輛的地理資訊,提出一個適用於VANET中以車行方向為基礎的貪婪路由演算法(MDBG)。
      本論文目的在強化VANET網路上資料封包的路由選擇策略。所提出的路由機制將會透過hello message來取得相鄰車輛的位置和車行方向,並利用目標要求(DREQ)、目標回應(DREP)來獲得目標車輛的資訊。進而運用車輛的車行方向,選擇適當的相鄰車輛找出一條穩定的路由路徑。當來源車輛和目標車輛的車行方向相同時,AODV能有不錯的效能表現。而我們的路由演算法(MDBG)將強化當來源車輛和目標車輛的車行方向相反,並且逐漸遠離時的效能表現。實驗模擬的結果顯示MDBG在封包到達率、吞吐量和平均端對端延遲上較之於AODV及DSR演算法有更優異的表現。
zh_TW
dc.description.abstract (摘要) Packets transmission over VANET is intermittent due to rapid change of network topology. This comes from both high mobility of mobile nodes and road limitation. Intermittent transmission causes inefficient packet delivery. Those routing protocols applicable to MANET might not be suitable for VANET. On the other hand, Global Position System (GPS) is becoming prevalent in assisting positioning for vehicles. In this research, we develop a Moving Direction Based Greedy (MDBG) routing algorithm for VANET. MDBG algorithm is based on the geographical information collected by GPS.
     The objective of the thesis is to enhance routing decision in packet delivery. The "hello message" is used to retrieve the locations and moving directions of neighboring vehicles. Destination REQuest (DREQ) and Destination REPly (DREP) messages are used to retrieve target vehicle information. The source vehicle will thus use these information together with its own moving direction information to establish a stable routing path by selecting appropriate neighboring vehicles. AODV algorithm is proved to have good performance as both the source vehicle and target vehicle have the same moving direction. MDBG algorithm is proposed to leverage the problem as source vehicle and target vehicle move far apart in opposite directions. Simulation results show that MDBG outperforms both AODV and DSR in packet arrival rate, throughput and average end-to-end delay.
en_US
dc.description.tableofcontents Chapter 1 Introduction................................................................................................................1
     1.1 Motivation.....................................................................................................................1
     1.2 Contribution of the Research........................................................................................2
     1.3 Thesis Organization......................................................................................................2
     
     Chapter 2 Background and Related Works.................................................................................3
     2.1 MANET and VANET...................................................................................................3
     2.2 MANET Routing Protocols..........................................................................................4
      2.2.1 Proactive Routing Protocols...............................................................................5
      2.2.2 Reactive Routing Protocols................................................................................6
      2.2.3 Zone-Based Routing Protocols..........................................................................8
      2.2.4 Cluster-Based Routing Protocols.......................................................................9
      2.2.5 Geographic-Based Routing Protocols..............................................................11
     2.3 VANET Routing Protocols.........................................................................................12
      2.3.1 Roadside Aided Routing Protocols..................................................................13
      2.3.2 Non-roadside Aided Routing Protocols...........................................................14
      2.3.2.1 Bus-Aided Routing Protocols...............................................................14
      2.3.2.2 Position-Based Routing Protocols........................................................16
      2.3.2.3 Cluster-Based Routing Protocols..........................................................21
     
     Chapter 3 Methodology............................................................................................................24
     3.1 VANET Environment ................................................................................................24
     3.2 MDBG Routing Algorithm.........................................................................................24
     3.2.1 Basic Definitions and Environment Assumptions...........................................26
     3.2.2 Control Message Type.....................................................................................27
     3.2.3 Principle of Finding Next Hop.........................................................................31
     3.2.4 Path Broken Repair Strategy and Routing Loop Detection.............................41
     3.2.5 Delay Model.....................................................................................................42
     
     Chapter 4 Simulations and Evaluation......................................................................................44
     4.1 Simulation Tool and Topology...................................................................................44
     4.2 Simulations and Analysis............................................................................................45
     4.2.1 Simulation 1.............................................................................................................45
     4.2.2 Simulation 2.............................................................................................................49
     4.2.3 Simulation 3.............................................................................................................52
     
     Chapter 5 Conclusions and Future Work..................................................................................57
     5.1 Conclusions.................................................................................................................57
     5.2 Future Work................................................................................................................58
     
     Reference..................................................................................................................................59
     
     
     
     
     
     
     
     
     LIST OF TABLES
     
     Table 2.1: Structure of the MH4 forwarding table [6]………..………......................................6
     Table 2.2: MH4 forwarding table (updated) [6]............................................................…….....6
     
     Table 3.1: Moving direction definition.....................................................................................26
     Table 3.2: Description of hello message format.......................................................................27
     Table 3.3: Description of DREQ message................................................................................28
     Table 3.4: Description of DREP message.................................................................................29
     Table 3.5: The priority of neighbor vehicle (Reference point velocity is 0).............................32
     Table 3.6: The priority of neighbor vehicle (Reference point velocity is not 0)......................33
     Table 3.7: The priority of neighbor vehicle (No vehicle on the same direction)......................34
     
     Table 4.1: Simulation parameters.............................................................................................45
     Table 4.2: Comparisons of different performances of MDBG, AODV and DSR (simulation 1).............................................................................................................................49
     Table 4.3: Comparisons of different performances of MDBG, AODV and DSR (simulation 2).............................................................................................................................52
     Table 4.4: Comparisons of different performances of MDBG, AODV and DSR (simulation 3).............................................................................................................................55
     Table 4.5: Comparison of VANET routing protocols...............................................................56
     
     
     LIST OF FIGURES
     
     Figure 2.1: A taxonomy of MANET routing protocols..............................................................4
     Figure 2.2: Movement in an ad-hoc network [6]........................................................................5
     Figure 2.3: AODV route discovery [7].......................................................................................7
     Figure 2.4: Node level topology [10]..........................................................................................8
     Figure 2.5: Zone level topology [10]..........................................................................................9
     Figure 2.6: CGSR cluster structure and routing [3]..................................................................10
     Figure 2.7: Greedy forwarding example. [12]..........................................................................11
     Figure 2.8: Perimeter forwarding example. [12].......................................................................12
     Figure 2.9: A taxonomy of VANET routing protocols.............................................................13
     Figure 2.10: RoadLamp and Traffic Light [24]........................................................................15
     Figure 2.11: An example of selecting the next junction [27]....................................................16
     Figure 2.12: An example of planarization problems [28].........................................................17
     Figure 2.13: Routing with GPCR and the critical junction node [30]......................................18
     Figure 2.14: GpsrJ+ recovery process [30]...............................................................................19
     Figure 2.15: The basic concept of VVR-GR [32] ....................................................................20
     Figure 2.16: Ad-hoc branching for a simple intersection [33]..................................................21
     
     Figure 3.1: Flowchart of MDBG routing algorithm….............................................................25
     Figure 3.2: Hello message format. ...........................................................................................27
     Figure 3.3: DREQ message format. .........................................................................................28
     Figure 3.4: DREQ message format. .........................................................................................29
     Figure 3.5: Flowchart of DREQ and DREP..............................................................................30
     Figure 3.6: The sub-range of vehicle B……………………………………….........................31
     Figure 3.7: The forwarding vehicle stops at the traffic light....................................................39
     Figure 3.8: Neighbor vehicles stop at the traffic light..............................................................39
     Figure 3.9: Moving directions of the reference point and neighbor vehicles are the same…..40
     Figure 3.10: No neighbor vehicles move on the same direction as the reference point……...40
     Figure 3.11: Flowchart of the path broken repair strategy and routing loop detection.............41
     
     Figure 4.1: Simulation network size.........................................................................................44
     Figure 4.2: Packet delivery ratio (simulation 1).......................................................................46
     Figure 4.3: The next hop and destination vehicle.....................................................................47
     Figure 4.4: Throughput (simulation 1) .....................................................................................47
     Figure 4.5: Average end-to-end delay (simulation 1)...............................................................48
     Figure 4.6: Packet delivery ratio (simulation 2).......................................................................50
     Figure 4.7: Throughput (simulation 2)......................................................................................51
     Figure 4.8: Average end-to-end delay (simulation 2)...............................................................51
     Figure 4.9: Packet delivery ratio (simulation 3).......................................................................53
     Figure 4.10: Throughput (simulation 3)....................................................................................53
     Figure 4.11: Average end-to-end delay (simulation 3).............................................................54
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0095971018en_US
dc.subject (關鍵詞) 演算法zh_TW
dc.subject (關鍵詞) 通訊協定zh_TW
dc.subject (關鍵詞) 封包到達率zh_TW
dc.subject (關鍵詞) 傳輸量zh_TW
dc.subject (關鍵詞) 平均點對點延遲zh_TW
dc.subject (關鍵詞) Algorithmen_US
dc.subject (關鍵詞) Protocolen_US
dc.subject (關鍵詞) Packet delivery ratioen_US
dc.subject (關鍵詞) Throughputen_US
dc.subject (關鍵詞) Average end-to-end delayen_US
dc.title (題名) 車用行動網路中以車行方向為基礎的貪婪路由演算法zh_TW
dc.title (題名) Moving Direction Based Greedy Routing Algorithm for VANETen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] IETF Mobile Ad Hoc Networks (MANET) Working Group Charter, http://www.ietf.org/html.charters/manet-charter.html, April 2009.zh_TW
dc.relation.reference (參考文獻) [2] C. Lieu et J. Kaiser, “A Survey of Mobile Ad-hoc Network Routing Protocols,” University of Ulm Technical Report Series, Nr. 2003-08, October 2005.zh_TW
dc.relation.reference (參考文獻) [3] E. M. Royer and C. -K. Toh, “A Review of Current Routing Protocols for Ad-Hoc Mobile Networks,” IEEE Personal Communications, vol. 6, no. 2, April 1999, pp. 46-55.zh_TW
dc.relation.reference (參考文獻) [4] Ivan Stojmenovic, “Position-based routing in ad hoc networks,” IEEE Communications Magazine, vol. 40, no. 7, Jul 2002.zh_TW
dc.relation.reference (參考文獻) [5] X. Hou, “Topology-based Routing Algorithms for Ad Hoc Networks,” A survey paper for PhD Comprehensive Exam, University of Pittsburgh, 2002.zh_TW
dc.relation.reference (參考文獻) [6] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers,” Proceedings of the ACM SIGCOMM, 1994, pp. 234–244.zh_TW
dc.relation.reference (參考文獻) [7] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das, “Ad hoc On-Demand Distance Vector (AODV) Routing,” IETF Experimental 7A 3561, July 2003.zh_TW
dc.relation.reference (參考文獻) [8] Y. C. Tseng,S. Y. Ni, Y. S. Chen, and J. P. Sheu, “The Broadcast Storm Problem in a Mobile Ad hoc Network,” ACM Wireless Networks, Vol. 8, No. 2, March 2002, pp. 153-167.zh_TW
dc.relation.reference (參考文獻) [9] Z.J. Haas, M.R. Pearlman, P. Samar, “The Zone Routing Protocol (ZRP) for Ad Hoc Networks,” draft-ietf-manet-zone-zrp-04.txt, Internet-Draft, IETF, Aug., 2002.zh_TW
dc.relation.reference (參考文獻) [10] Joa-Ng. M., I-Tai Lu, “A peer-to-peer zone-based two-level link state routing forzh_TW
dc.relation.reference (參考文獻) mobile ad hoc networks”, Selected Areas in Communications, IEEE Journal, Aug. 1999, pp.1415 –1425.zh_TW
dc.relation.reference (參考文獻) [11] X. Hong, K. Xu, and M. Gerla, “Scalable routing protocols for mobile ad hoc networks,” IEEE Network, Jul. 2002, Vol.16, No. 4, pp.11-21.zh_TW
dc.relation.reference (參考文獻) [12] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” in Proceedings of MOBICOM 2000, Boston, MA, USA, 2000, pp. 243-254.zh_TW
dc.relation.reference (參考文獻) [13] F.Li, Y.Wang, “Routing in vehicular ad hoc networks: A survey,” IEEE Veh. Tech. Mag., vol.2, no.2, pp.12-22, 2007/06.zh_TW
dc.relation.reference (參考文獻) [14] Fay Hui, “A survey on the characterization of Vehicular Ad Hoc Networks and routing solutions,” ECS 257, 2005.zh_TW
dc.relation.reference (參考文獻) [15] Sascha Schnaufer, Holger Füßler, Matthias Transier, Wolfgang Effelsberg,zh_TW
dc.relation.reference (參考文獻) “Unicast Ad-Hoc Routing in Vehicular City Scenarios,” Technical Report / Department for Mathematics and Computer Science, University of Mannheim; TR-2007-012, 2006.zh_TW
dc.relation.reference (參考文獻) [16] F. Hui and P. Mohapatra, “Experimental characterization of multi-hop communications in vehicular ad hoc network,” in ACM VANET. New York, NY, USA: ACM Press, 2005, pp. 85–86.zh_TW
dc.relation.reference (參考文獻) [17] S.Y. Wang, “The Effects of Wireless Transmission Range on Path Lifetime in Vehicle-Formed Mobile Ad Hoc Networks on Highways,” IEEE ICC 2005, May 16-20, 2005.zh_TW
dc.relation.reference (參考文獻) [18] P. Bose et al., “Routing with Guaranteed Delivery in Ad Hoc Wireless Networks,” ACM/Kluwer WL Nets., vol. 7, no. 6, Nov. 2001, pp. 609–16.zh_TW
dc.relation.reference (參考文獻) [19] G. Korkmaz, E. Ekici, F. Özgüner and Ü. Özgüner, “Urban multi-hop broadcast protocol for inter-vehicle communication systems,” Proceedings of VANET `04 1st ACM International Workshop on Vehicular Ad Hoc Networks, Philadelphia, PA, USA, pp. 76-85, Oct. 2004.zh_TW
dc.relation.reference (參考文獻) [20] J. Zhao, Y. Zhang, and G. Cao. “Data pouring and buffering on the road: A new data dissemination paradigm for vehicular ad hoc networks,” IEEE Trans. on VT, Nov. 2007.zh_TW
dc.relation.reference (參考文獻) [21] Y. Zhang, J. Zhang, and G. Cao, “On Scheduling Vehicle-Roadside Datazh_TW
dc.relation.reference (參考文獻) Access,” ACM Workshop on Vehicular Ad Hoc Networks (VANET), 2007.zh_TW
dc.relation.reference (參考文獻) [22] C. Lochert, B. Scheuermann, M. Caliskan, and M. Mauve. “The feasibility of information dissemination in vehicular ad-hoc networks”, In Proc. of WONS, Obergurgl, Austria, Jan. 2007.zh_TW
dc.relation.reference (參考文獻) [23] Shinkawa, T., Terauchi, T., Kitani, T., Shibata, N., Yasumoto, K., Ito, M., Higashino, T.,”A Technique for Information Sharing using Inter-Vehicle Communication with Message Ferrying,” IEEE Int`l Workshop on Future Mobile and Ubiquitous Information Technologies, 2006.zh_TW
dc.relation.reference (參考文獻) [24] Gang Lu, Demetrios Belis, Gordon Manson, “Enhancing Routing Performance for Inter-Vehicle Communication in City Environment,” Proceedings of the ACM, October, 2006.zh_TW
dc.relation.reference (參考文獻) [25] B.-C. Seet, G. Liu, B.-S. Lee, C.-H. Foh, K.-J. Wong, and K.-K. Lee, “A-star: A mobile ad hoc routing strategy for metropolis vehicular communications,” Lecture Notes in Computer Science (LNCS), Networking, 2004.zh_TW
dc.relation.reference (參考文獻) [26] Moez Jerbi, Rabah Meraihi, Sidi-Mohammed Senouci, Yacine Ghamri-Doudane,” GyTAR: improved Greedy Traffic Aware Routing Protocol for Vehicular Ad Hoc Networks in City Environments,” ACM Press, Sep. 2006.zh_TW
dc.relation.reference (參考文獻) [27] M. Jerbi, SM. Senouci, R. Meraihi and Y. Ghamri-Doudane, “An Improved Vehicular Ad Hoc Routing Protocol for City Environments,” IEEE ICC, 2007.zh_TW
dc.relation.reference (參考文獻) [28] M. Jerbi, SM. Senouci, Y. Ghamri-Doudane, “Towards Efficient Routing in Vehicular Ad Hoc Networks,” International Workshop UBIROADS`2007, Marrakech, 6 July 2007.zh_TW
dc.relation.reference (參考文獻) [29] Christian Lochert, Hannes Hartenstein, Jing Tian, Dagmar Herrmann, Holger Füßler, Martin Mauve, ”A Routing Strategy for Vehicular Ad Hoc Networks in City Environments,” IEEE Intelligent Vehicles Symposium, pp. 156--161, Columbus, OH, USA, June 2003.zh_TW
dc.relation.reference (參考文獻) [30] C. Lochert, M. Mauve, H. Fuessler, and H. Hartenstein, “Geographic routing in city scenarios,” ACM SIGMOBILE MC2R, 2005.zh_TW
dc.relation.reference (參考文獻) [31] Lee et. al., “Enhanced Perimeter Routing for Geographic Forwarding Protocols in Urban Vehicular Scenarios,” IEEE AutoNet, 2007.zh_TW
dc.relation.reference (參考文獻) [32] Hojin Lee, Youndo Lee, Taekyoung Kwon, and Yanghee Choi, “Virtual Vertex Routing (VVR) for Course-Based Vehicular Ad Hoc Networks,” IEEE WCNC, March 2007.zh_TW
dc.relation.reference (參考文獻) [33] Korkmaz et. al., “An Efficient Fully Ad-Hoc Multi-hop Broadcast Protocol for Inter-Vehicle Communication Systems,” IEEE ICC, June 2006.zh_TW
dc.relation.reference (參考文獻) [34] R. A. Santos, R. M. Edwards, A. Edwards and D. Belis, “A novel cluster-based location routing algorithm for inter-vehicular communication,” PIMRC 2004 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, no. 1, September 2004, pp. 1032 – 1036.zh_TW
dc.relation.reference (參考文獻) [35] T.D.C. Little and A. Agarwal, “An Information Propagation Scheme for VANETs,” Proc. 8th Intl. IEEE Conf. on Intelligent Transportation Systems (ITSC 2005), Vienna Austria, Sept. 2005.zh_TW
dc.relation.reference (參考文獻) [36] T.D.C. Little and A. Agarwal, “A New Information Propagation Scheme for Vehicular Networks,” (Abstract and Poster) Proc. 3rd Intl. Conf. on Mobile Systems, Applications and Services (Mobisys 2005), Seattle, WA, June 2005.zh_TW
dc.relation.reference (參考文獻) [37] T. Taleb et. al., “An Efficient Vehicle-Heading Based Routing Protocol for VANET Networks,” IEEE WCNC, 2006.zh_TW
dc.relation.reference (參考文獻) [38] Feliz Kristianto Karnadi, Zhi Hai Mo and Kun-chan Lan,” Rapid generation of realistic mobility models for VANET,” WCNC 2007 - IEEE Wireless Communications and Networking Conference, no. 1, March 2007, pp. 2349 – 2354.zh_TW