Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 以實現波動率估計投資組合風險值
Value at Risk of Portfolio with Realized Volatility
作者 李承儒
貢獻者 林信助
李承儒
關鍵詞 風險值
多變量GARCH模型
實現波動率
value at risk
multivariate garch
realized volatility
日期 2005
上傳時間 11-Sep-2009 17:06:47 (UTC+8)
摘要 利用風險值作為投資組合的風險管理工具,必須考慮金融資產報酬率通常具有厚尾、高峰、波動叢聚以及資產間訊息與波動性的變化也會交互影響等現象;因此實證上通常以多變量GARCH模型作為估計投資組合變異數矩陣的方法。然而多變量GARCH模型卻存在有維度上的詛咒,當投資組合包含資產數增加時會加重參數估計上的困難度。另一種估計波動率的方法,稱為實現波動率,能比多變量GARCH模型更簡易地處理投資組合高維度的問題。本文即以實現波動率、BEKK多變量GARCH模型與CCC模型,並以中鋼、台積電、國泰金為研究對象,比較三種方法估計風險值的表現。而實證結果得到利用實現波動率確實適合應用在風險值的估計上,且在表現上有略勝一籌的現象。
參考文獻 中文部分
洪幸資,2003,「控制風險值下的最適投資組合」,國立政治大學金融研究所,碩士論文。
高櫻芬、謝家和,2002。「涉險值之衡量—多變量GARCH模型之應用」,經濟論文叢刊,30,273-312。
許傑翔,2004,「多變量財務時間數列模型之風險值計算」,東吳大學商用數學所,碩士論文。
翁偉哲,2004,「風險值偏誤之衡量:以台灣期貨交易所之股價期貨為例」,國立高雄第一科技大學金融營運所,碩士論文。
英文部分
Alexander, C.O., and C. T. Leight, (1997). “On the Covariance Metrics Used in Value at Risk Models,” Journal of Derivatives, 4, 50-62.
Andersen, T., T. Bollerslev, F. X. Diebold, and H. Ebens, (2002). “The Distribution of Realized Stock Return Volatility,” Journal of Financial Economics, 61, 43-76.
Andersen, T., T. Bollerslev, F. X. Diebold, and P. Labys, (2000). “Exchange Rate Return Standardized by Realized Volatility Are (Nearly) Gaussian,” Multinational Finance Journal, 4, 159-179.
Andersen, T., T. Bollerslev, F. X. Diebold, and P. Labys, (2001). “The Distribution of Realized Exchange Rate Volatility,” Journal of the American Statistical Association, 96, 42-55.
Andersen, T., T. Bollerslev, F. X. Diebold, and P. Labys, (2003). “Modeling and Forecasting Realized Volatility,” Econometrica, 71, 579-626.
Baba, Y., R. F. Engle, D. F. Kraft and K. Kroner, (1989). “Multivariate simultaneous generalized ARCH,” manuscript.
Bollerslev, T., (1986). “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, 31, 307-327.
Boudoukh, J., M. Richardson, and R. Whitelow, (1998). “The Best of Both Worlds,” Risk, 11, 64-67.
Christoffersen, P., (1998). “Evaluating interval forecasts,” International Economic Review, 39, 841-862.
Engle, R.F., (1982). “Autoregressive conditional heteroskedasticity with estimates of variance of the united kingdom inflation,” Econometrica, 50, 987-1001.
Engle, R.F., and K. Kroner, (1995). “Multivariate simultaneous generalized ARCH,” Econometrics Theory, 11, 122-150.
Hau, H., (2002). “The Role of Transaction Costs for Financial Volatility: Evidence from the Paris Bourse,” working paper.
Hoppe, R., (1998). “VaR and the unreal world,” Risk, 11, 45-50.
Jorion, P., (2000). Value at Risk—The New Benchmark for Controlling Market Risk, McGraw-Hill, New York.
Giot, P., (2005). “Implied Volatility Indexes and Daily Value at Risk Models,” Journal of Derivatives , 12, 54-64.
Giot, P., and S. Laurent, (2004). “Modelling daily Value-at-Risk using realized volatility and ARCH type models,” Journal of Empirical Finance, 11, 379-398.
Koopman, S. J., B. Jungbacker, and E. Hol, (2005). “Forecasting daily variability of the S&P 100 stock index using historical, realized and implied volatility measurements,” Journal of Empirical Finance, 12, 445-475.
Kupiec, P.H., (1995). “Techniques for Verifying the Accuracy of Risk Measurement Models,” Journal of Derivatives, 3, 73-84.
Palandri, A., (2005). “Sequential Conditional Correlations: Inference and Evaluation,” working paper.
Taylor, S. J., and X. Xu, (1997). “The Incremental Volatility Information in One Million Foreign Exchange Quotations,” Journal of Empirical Finance, 4, 317-340.
描述 碩士
國立政治大學
國際經營與貿易研究所
93351037
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093351037
資料類型 thesis
dc.contributor.advisor 林信助zh_TW
dc.contributor.author (Authors) 李承儒zh_TW
dc.creator (作者) 李承儒zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 11-Sep-2009 17:06:47 (UTC+8)-
dc.date.available 11-Sep-2009 17:06:47 (UTC+8)-
dc.date.issued (上傳時間) 11-Sep-2009 17:06:47 (UTC+8)-
dc.identifier (Other Identifiers) G0093351037en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30039-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 國際經營與貿易研究所zh_TW
dc.description (描述) 93351037zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 利用風險值作為投資組合的風險管理工具,必須考慮金融資產報酬率通常具有厚尾、高峰、波動叢聚以及資產間訊息與波動性的變化也會交互影響等現象;因此實證上通常以多變量GARCH模型作為估計投資組合變異數矩陣的方法。然而多變量GARCH模型卻存在有維度上的詛咒,當投資組合包含資產數增加時會加重參數估計上的困難度。另一種估計波動率的方法,稱為實現波動率,能比多變量GARCH模型更簡易地處理投資組合高維度的問題。本文即以實現波動率、BEKK多變量GARCH模型與CCC模型,並以中鋼、台積電、國泰金為研究對象,比較三種方法估計風險值的表現。而實證結果得到利用實現波動率確實適合應用在風險值的估計上,且在表現上有略勝一籌的現象。zh_TW
dc.description.tableofcontents 1 前言
     2 風險值、多變量GARCH模型與實現波動率
     2.1 風險值觀念介紹與計算方法
     2.1.1 變異數-共變異數法
     2.1.2 歷史模擬法
     2.1.3 蒙地卡羅模擬法
     2.2 多變量GARCH模型
     2.2.1 CCC模型
     2.2.2 BEKK模型
     2.3 實現波動率
     3 實證研究
     3.1 檢定方法
     3.1.1 二項分配檢定
     3.1.2 概似比檢定
     3.1.3 條件涵蓋檢定法
     3.2 資料來源
     3.3 實證結果
     3.3.1 實現波動率
     3.3.2 CCC與BEKK模型
     3.3.3 風險值回顧測試
     4 結論與建議
     4.1 結論
     4.2 研究限制與未來研究方向
     參考文獻
     附錄
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093351037en_US
dc.subject (關鍵詞) 風險值zh_TW
dc.subject (關鍵詞) 多變量GARCH模型zh_TW
dc.subject (關鍵詞) 實現波動率zh_TW
dc.subject (關鍵詞) value at risken_US
dc.subject (關鍵詞) multivariate garchen_US
dc.subject (關鍵詞) realized volatilityen_US
dc.title (題名) 以實現波動率估計投資組合風險值zh_TW
dc.title (題名) Value at Risk of Portfolio with Realized Volatilityen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文部分zh_TW
dc.relation.reference (參考文獻) 洪幸資,2003,「控制風險值下的最適投資組合」,國立政治大學金融研究所,碩士論文。zh_TW
dc.relation.reference (參考文獻) 高櫻芬、謝家和,2002。「涉險值之衡量—多變量GARCH模型之應用」,經濟論文叢刊,30,273-312。zh_TW
dc.relation.reference (參考文獻) 許傑翔,2004,「多變量財務時間數列模型之風險值計算」,東吳大學商用數學所,碩士論文。zh_TW
dc.relation.reference (參考文獻) 翁偉哲,2004,「風險值偏誤之衡量:以台灣期貨交易所之股價期貨為例」,國立高雄第一科技大學金融營運所,碩士論文。zh_TW
dc.relation.reference (參考文獻) 英文部分zh_TW
dc.relation.reference (參考文獻) Alexander, C.O., and C. T. Leight, (1997). “On the Covariance Metrics Used in Value at Risk Models,” Journal of Derivatives, 4, 50-62.zh_TW
dc.relation.reference (參考文獻) Andersen, T., T. Bollerslev, F. X. Diebold, and H. Ebens, (2002). “The Distribution of Realized Stock Return Volatility,” Journal of Financial Economics, 61, 43-76.zh_TW
dc.relation.reference (參考文獻) Andersen, T., T. Bollerslev, F. X. Diebold, and P. Labys, (2000). “Exchange Rate Return Standardized by Realized Volatility Are (Nearly) Gaussian,” Multinational Finance Journal, 4, 159-179.zh_TW
dc.relation.reference (參考文獻) Andersen, T., T. Bollerslev, F. X. Diebold, and P. Labys, (2001). “The Distribution of Realized Exchange Rate Volatility,” Journal of the American Statistical Association, 96, 42-55.zh_TW
dc.relation.reference (參考文獻) Andersen, T., T. Bollerslev, F. X. Diebold, and P. Labys, (2003). “Modeling and Forecasting Realized Volatility,” Econometrica, 71, 579-626.zh_TW
dc.relation.reference (參考文獻) Baba, Y., R. F. Engle, D. F. Kraft and K. Kroner, (1989). “Multivariate simultaneous generalized ARCH,” manuscript.zh_TW
dc.relation.reference (參考文獻) Bollerslev, T., (1986). “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, 31, 307-327.zh_TW
dc.relation.reference (參考文獻) Boudoukh, J., M. Richardson, and R. Whitelow, (1998). “The Best of Both Worlds,” Risk, 11, 64-67.zh_TW
dc.relation.reference (參考文獻) Christoffersen, P., (1998). “Evaluating interval forecasts,” International Economic Review, 39, 841-862.zh_TW
dc.relation.reference (參考文獻) Engle, R.F., (1982). “Autoregressive conditional heteroskedasticity with estimates of variance of the united kingdom inflation,” Econometrica, 50, 987-1001.zh_TW
dc.relation.reference (參考文獻) Engle, R.F., and K. Kroner, (1995). “Multivariate simultaneous generalized ARCH,” Econometrics Theory, 11, 122-150.zh_TW
dc.relation.reference (參考文獻) Hau, H., (2002). “The Role of Transaction Costs for Financial Volatility: Evidence from the Paris Bourse,” working paper.zh_TW
dc.relation.reference (參考文獻) Hoppe, R., (1998). “VaR and the unreal world,” Risk, 11, 45-50.zh_TW
dc.relation.reference (參考文獻) Jorion, P., (2000). Value at Risk—The New Benchmark for Controlling Market Risk, McGraw-Hill, New York.zh_TW
dc.relation.reference (參考文獻) Giot, P., (2005). “Implied Volatility Indexes and Daily Value at Risk Models,” Journal of Derivatives , 12, 54-64.zh_TW
dc.relation.reference (參考文獻) Giot, P., and S. Laurent, (2004). “Modelling daily Value-at-Risk using realized volatility and ARCH type models,” Journal of Empirical Finance, 11, 379-398.zh_TW
dc.relation.reference (參考文獻) Koopman, S. J., B. Jungbacker, and E. Hol, (2005). “Forecasting daily variability of the S&P 100 stock index using historical, realized and implied volatility measurements,” Journal of Empirical Finance, 12, 445-475.zh_TW
dc.relation.reference (參考文獻) Kupiec, P.H., (1995). “Techniques for Verifying the Accuracy of Risk Measurement Models,” Journal of Derivatives, 3, 73-84.zh_TW
dc.relation.reference (參考文獻) Palandri, A., (2005). “Sequential Conditional Correlations: Inference and Evaluation,” working paper.zh_TW
dc.relation.reference (參考文獻) Taylor, S. J., and X. Xu, (1997). “The Incremental Volatility Information in One Million Foreign Exchange Quotations,” Journal of Empirical Finance, 4, 317-340.zh_TW