Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 亞洲四小龍匯率報酬率尾部參數變化之探討
作者 薛承志
貢獻者 饒秀華
薛承志
關鍵詞 高峰
厚尾
極值理論
尾部指數
結構變化
High Kurtosis
Heavy Tail
Extreme Value Theorem
Tail Index
Structural Change
日期 2004
上傳時間 11-Sep-2009 17:11:28 (UTC+8)
摘要 一般而言財務資料具有高峰(High Kurtosis)及厚尾(Heavy Tail)的特性,極值理論(Extreme Value Theorem)即是著重於尾部極端事件發生的機率,描繒出尾部極端值的機率分配,以捕捉財務資料中具厚尾的現象,利用估算尾部指數(Tail Index) α值判斷尾部分配的厚、薄程度。一般在估算α值時均是假設α值是不會隨著時間而變動的穩定值,然而在我們所選取的樣本期間內,可能伴隨著一些重大事件,如金融風暴、或是制度面的改變等,均有可能造成尾部極端值發生機率的增加或減少,因此在其樣本期間所估算的α值不應假設為一不變的常數。本文即是針對亞洲四小龍的匯率資料做”尾部參數是否發生結構變化(Structural Change)”之假設檢定,並且找出發生結構變化的時點。
      實証結果發現,在1993~2004年間,亞洲四小龍的匯率報酬率其尾部參數確實有發生結構變化的情形。此結論對於風險管理者而言,必須注意到尾部參數α值應該是一個會隨著時間而改變的值,也就是在估算 值時應該要避開發生結構變化的可能時點,或許應於所要估計的樣本期間先執行尾部參數是否有結構變化的檢定,如此才能更準確的估算α值。
參考文獻 西文:
Bertrand Candelon and Stefan Straetmans (2003). “Testing for Multiple Regimes in the Tail Behavior of Emerging Currency Returns,” ECB working paper nr. 324
Bond, S.A., (2000). “Asymmetry and Downside Risk in Foreign Exchange Markets,” Working Paper, University of Cambridge
Danielsson, J. and C.G. de Vries (1997). “Tail Index and Quantile Estimation with Very Hgh Frequency Data,” Journal of Empirical Finance, 4, 241-257
Devajyoti Ghose and Kenneth F. Kroner (1995). “The Relationship Between GARCH and Symmetric Stable Processes: Finding the Source of Fat Tail in Financial Data,” Jounral of Empirical Finance, 2, 225-251
DuMouchel, W.H. (1983). “Estimating the Stable Index in Order to Measure Tail Thickness: A Critique,” Annals of Statistics, 11, 1019-1031
Duffie, D. and Pan, J. (1997). “An Overview of Value at Risk,” Journal of Derivatives, 4, 7-49
Galbraith, JW and S. Zernov (2004). “Circuit Breakers and the Tail Index of Equity
Returns,” Journal of Financial Econometrics, 2, 109-129.
Hill, B.M., (1975). “A Simple General Approach to Inference about the Tail of a Distribution,” Annals of Statistics, 3, 1163-1174
Hsing, T. (1991). “On Tail Index Estimation Using Dependent Data,” Annals of Statistics, 19, 1547-1569
Hsing, T. (1993). “Extremal Index Estimation for a Weakly Dependent Stationary Sequence,” Annals of Statistics, 21, 2043-2071
Jorion, P. (1997). “Value-at-Risk: The new benchmark for controlling market risk,” Chicago: Irwin. Publishing
Mandelbrot, B.B. (1963). “The Variation of Certain Speculative Prices,” Journal of Business, 36, 394-419
McNeil A.J. and Frey R. (2000). “Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach.” Journal of Empirical Finance, 7, 271-300
Niklas Wagner and Terry A. Marsh (2005). “Measuring Tail Thickness under GARCH and An Application to Extreme Exchange Rate Changes,” Journal of Empirical Finance, 12, 165-185
Paul Embrechts (2000). “Extremes and Integrated Risk Management,” Risk Books, UBS Warburg
Quinto, C.E. (1999). “Tail Index Estimation and Value-at-Risk with Dependent Data,” manuscript
Quintos, C.、Fan, Z. and Phillips, P.C.B. (2001). “Structural Change in Tail Behavior and the Asian Financial Crisis.” Review of Economic Studies, 68, 633-663
Ruey S. Tsay (2002). “Analysis of Financial Time Series,” University of Chicago, A Wiley-Interscience Publication John Wiley&Sons,Inc.
Terence C. Mills (1999). “The Econometric Modelling of Financial Time Series second edition,” Cambridge University Press
Vivian Fernandez (2003). “Extreme Value Theory and Value at Risk,” Revista de Analisis Economico, 18, 57-85
Werner, T. and Upper, C. (2004). “Time Variation in the Tail Behavior of Bond Future Returns.” The Journal of Futures Markets, 24, 387-398
中文:
李佳晏 (2001) 「股價指數報酬率厚尾程度之研究」政治大學國際貿易所碩士論文
陳俊宏 (2002) 「非齊質變異下尾端風險的衡量」 政治大學國際貿易所碩士論文
魏輝娥 (2003) 「最適尾端參數估計之探討:台灣股票報酬風險值之應用」 中正大學國際經濟所碩士論文
描述 碩士
國立政治大學
國際經營與貿易研究所
92351023
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0923510231
資料類型 thesis
dc.contributor.advisor 饒秀華zh_TW
dc.contributor.author (Authors) 薛承志zh_TW
dc.creator (作者) 薛承志zh_TW
dc.date (日期) 2004en_US
dc.date.accessioned 11-Sep-2009 17:11:28 (UTC+8)-
dc.date.available 11-Sep-2009 17:11:28 (UTC+8)-
dc.date.issued (上傳時間) 11-Sep-2009 17:11:28 (UTC+8)-
dc.identifier (Other Identifiers) G0923510231en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30080-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 國際經營與貿易研究所zh_TW
dc.description (描述) 92351023zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要) 一般而言財務資料具有高峰(High Kurtosis)及厚尾(Heavy Tail)的特性,極值理論(Extreme Value Theorem)即是著重於尾部極端事件發生的機率,描繒出尾部極端值的機率分配,以捕捉財務資料中具厚尾的現象,利用估算尾部指數(Tail Index) α值判斷尾部分配的厚、薄程度。一般在估算α值時均是假設α值是不會隨著時間而變動的穩定值,然而在我們所選取的樣本期間內,可能伴隨著一些重大事件,如金融風暴、或是制度面的改變等,均有可能造成尾部極端值發生機率的增加或減少,因此在其樣本期間所估算的α值不應假設為一不變的常數。本文即是針對亞洲四小龍的匯率資料做”尾部參數是否發生結構變化(Structural Change)”之假設檢定,並且找出發生結構變化的時點。
      實証結果發現,在1993~2004年間,亞洲四小龍的匯率報酬率其尾部參數確實有發生結構變化的情形。此結論對於風險管理者而言,必須注意到尾部參數α值應該是一個會隨著時間而改變的值,也就是在估算 值時應該要避開發生結構變化的可能時點,或許應於所要估計的樣本期間先執行尾部參數是否有結構變化的檢定,如此才能更準確的估算α值。
zh_TW
dc.description.tableofcontents 圖目錄
     
     圖 4-1 (1993/1/5~2004/12/31)亞洲四小龍匯率報酬率 14
     圖 4-2 亞洲四小龍Recursive Hill尾部參數估計值 15
     圖 4-3 亞洲四小龍後溯(Backward) Recursive Hill尾部參數估計值 16
     圖 4-4亞洲四小龍Recursive 檢定統計量 18
     圖 4-5已開發國家Recursive 檢定統計量 21
     圖 4-6 亞洲四小龍Sequential 檢定統計量 23
     圖 4-7 已開發國家Sequential 檢定統計量 24
     圖 4-8 亞洲四小龍修正後之Recursive Hill尾部參數估計值 (non-iid) 25
     圖 4-9 亞洲四小龍修正後之後溯(Backward) Recursive Hill尾部參數估計值 (non-iid) 26
     圖 4-10 亞洲四小龍Recursive 檢定統計量 (non-iid) 27
     圖 4-11亞洲四小龍修正後Sequential 檢定統計量 (non-iid) 30
     圖 4-12 已開發國家修正後 Recursive 檢定統計量 (non-iid 31
     圖 4-13 已開發國家修正後Sequential 檢定統計量 (non-iid)33
     圖 4-14 新加坡與香港 Recursive 檢定統計量 (標準化後殘差)34
     圖 4-15 新加坡與香港 Sequential 檢定統計量 (標準化後殘差)35
     
     
     
     
     表目錄
     
     表 4-1 亞洲四小龍尾部參數結構變化時點 19
     表 4-2 亞洲四小龍多時點尾部參數結構變化 20
     表 4-3 已開發國家尾部參數結構變化時點 22
     表 4-4 亞洲四小龍多時點尾部參數結構變化(non-iid) 29
     表 4-5 已開發國家尾部參數結構變化時點(non-iid) 32
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     目錄
     
     第一章 緒論 1
     第一節 研究動機與目的 1
     第二節 文章架構 2
     第二章 文獻探討 3
     第三章 研究方法 5
     第一節 極值理論(Extreme Value Theorem) -Hill尾部參數估計值(Hill Estimator) 5
     第二節 檢定統計量 6
     第三節 多時點結構變化 8
     第四節 一般化的模型-時間序列的應用 9
     第五節 風險值的計算 12
     第四章 實証結果 13
     第一節 資料來源 13
     第二節 檢定統計量(假設報酬率為iid) 15
     第三節 檢定統計量(報酬率為non-iid) 25
     第五章 結論與建議 36
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0923510231en_US
dc.subject (關鍵詞) 高峰zh_TW
dc.subject (關鍵詞) 厚尾zh_TW
dc.subject (關鍵詞) 極值理論zh_TW
dc.subject (關鍵詞) 尾部指數zh_TW
dc.subject (關鍵詞) 結構變化zh_TW
dc.subject (關鍵詞) High Kurtosisen_US
dc.subject (關鍵詞) Heavy Tailen_US
dc.subject (關鍵詞) Extreme Value Theoremen_US
dc.subject (關鍵詞) Tail Indexen_US
dc.subject (關鍵詞) Structural Changeen_US
dc.title (題名) 亞洲四小龍匯率報酬率尾部參數變化之探討zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 西文:zh_TW
dc.relation.reference (參考文獻) Bertrand Candelon and Stefan Straetmans (2003). “Testing for Multiple Regimes in the Tail Behavior of Emerging Currency Returns,” ECB working paper nr. 324zh_TW
dc.relation.reference (參考文獻) Bond, S.A., (2000). “Asymmetry and Downside Risk in Foreign Exchange Markets,” Working Paper, University of Cambridgezh_TW
dc.relation.reference (參考文獻) Danielsson, J. and C.G. de Vries (1997). “Tail Index and Quantile Estimation with Very Hgh Frequency Data,” Journal of Empirical Finance, 4, 241-257zh_TW
dc.relation.reference (參考文獻) Devajyoti Ghose and Kenneth F. Kroner (1995). “The Relationship Between GARCH and Symmetric Stable Processes: Finding the Source of Fat Tail in Financial Data,” Jounral of Empirical Finance, 2, 225-251zh_TW
dc.relation.reference (參考文獻) DuMouchel, W.H. (1983). “Estimating the Stable Index in Order to Measure Tail Thickness: A Critique,” Annals of Statistics, 11, 1019-1031zh_TW
dc.relation.reference (參考文獻) Duffie, D. and Pan, J. (1997). “An Overview of Value at Risk,” Journal of Derivatives, 4, 7-49zh_TW
dc.relation.reference (參考文獻) Galbraith, JW and S. Zernov (2004). “Circuit Breakers and the Tail Index of Equityzh_TW
dc.relation.reference (參考文獻) Returns,” Journal of Financial Econometrics, 2, 109-129.zh_TW
dc.relation.reference (參考文獻) Hill, B.M., (1975). “A Simple General Approach to Inference about the Tail of a Distribution,” Annals of Statistics, 3, 1163-1174zh_TW
dc.relation.reference (參考文獻) Hsing, T. (1991). “On Tail Index Estimation Using Dependent Data,” Annals of Statistics, 19, 1547-1569zh_TW
dc.relation.reference (參考文獻) Hsing, T. (1993). “Extremal Index Estimation for a Weakly Dependent Stationary Sequence,” Annals of Statistics, 21, 2043-2071zh_TW
dc.relation.reference (參考文獻) Jorion, P. (1997). “Value-at-Risk: The new benchmark for controlling market risk,” Chicago: Irwin. Publishingzh_TW
dc.relation.reference (參考文獻) Mandelbrot, B.B. (1963). “The Variation of Certain Speculative Prices,” Journal of Business, 36, 394-419zh_TW
dc.relation.reference (參考文獻) McNeil A.J. and Frey R. (2000). “Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach.” Journal of Empirical Finance, 7, 271-300zh_TW
dc.relation.reference (參考文獻) Niklas Wagner and Terry A. Marsh (2005). “Measuring Tail Thickness under GARCH and An Application to Extreme Exchange Rate Changes,” Journal of Empirical Finance, 12, 165-185zh_TW
dc.relation.reference (參考文獻) Paul Embrechts (2000). “Extremes and Integrated Risk Management,” Risk Books, UBS Warburgzh_TW
dc.relation.reference (參考文獻) Quinto, C.E. (1999). “Tail Index Estimation and Value-at-Risk with Dependent Data,” manuscriptzh_TW
dc.relation.reference (參考文獻) Quintos, C.、Fan, Z. and Phillips, P.C.B. (2001). “Structural Change in Tail Behavior and the Asian Financial Crisis.” Review of Economic Studies, 68, 633-663zh_TW
dc.relation.reference (參考文獻) Ruey S. Tsay (2002). “Analysis of Financial Time Series,” University of Chicago, A Wiley-Interscience Publication John Wiley&Sons,Inc.zh_TW
dc.relation.reference (參考文獻) Terence C. Mills (1999). “The Econometric Modelling of Financial Time Series second edition,” Cambridge University Presszh_TW
dc.relation.reference (參考文獻) Vivian Fernandez (2003). “Extreme Value Theory and Value at Risk,” Revista de Analisis Economico, 18, 57-85zh_TW
dc.relation.reference (參考文獻) Werner, T. and Upper, C. (2004). “Time Variation in the Tail Behavior of Bond Future Returns.” The Journal of Futures Markets, 24, 387-398zh_TW
dc.relation.reference (參考文獻) 中文:zh_TW
dc.relation.reference (參考文獻) 李佳晏 (2001) 「股價指數報酬率厚尾程度之研究」政治大學國際貿易所碩士論文zh_TW
dc.relation.reference (參考文獻) 陳俊宏 (2002) 「非齊質變異下尾端風險的衡量」 政治大學國際貿易所碩士論文zh_TW
dc.relation.reference (參考文獻) 魏輝娥 (2003) 「最適尾端參數估計之探討:台灣股票報酬風險值之應用」 中正大學國際經濟所碩士論文zh_TW