Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 應用資料採礦技術於保險公司附加保單之增售
作者 李家旭
貢獻者 鄭宇庭
李家旭
關鍵詞 資料採礦
分類迴歸樹
類神經網路
附加保單
C5.0
日期 2002
上傳時間 2009-09-14
摘要 摘 要
     
     本研究主是利用資料採礦技術,應用於人身保險公司,試圖尋找出購買附加保單的保戶之模式,以提高保戶購買附加保單之比例。資料來源為我國某人身保險業所提供之客戶資料,原始資料共計1,500,943筆,經過資料清理後分析資料為92,581筆,隨後進行基本敘述統計分析,與決策樹、類神經網路、關聯規則等資料採礦技術,其分析結果如下:
     
     一、主保單的險種類型分為三種:死亡險、生死合險、健康險;不同的保單類型的保戶,有著不同的附加保單購買習慣。主保單為死亡險的保戶,主要因為保險需求而購買該主保單;保單為生死合險的保戶,主要因為儲蓄需求而購買保單;保單為健康險的保戶,是比較特別的族群,因為以往健康險是以附加保單形式出售,但保險公司因應潮流將健康險調整成也可以主保單形式出售,使得健康險中不會購買附加保單。
     
     二、新保戶購買主保單為死亡險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。新保戶購買主保單為生死合險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。
     
     三、保險公司可依照關聯規則結果產生出的8條關聯規則,針對舊有客戶進行保險商品再推銷策略。
Abstract
     
     The main purpose of this research is to apply data mining techniques, namely decision tree, neural network, and association on insurance company’s database in modeling the behaviors of customers who bought the policies. Data source is provided by the insurance company in Taiwan.
     1、There are 3 type of main insurance policies:death insurance、endowment insurance、health insurance. Insurance buyers behave differently based upon the type of insurance they have. Death insurance buyers are in for the sole purpose of being insured. Endowment insurance buyers are in for the purpose of savings. Health insurance buyers usually buy the policies as the add-on products, However as consumers in a recent trend have become more health conscious, the health insurance that used to be as consumers in a recent trend have become more health conscious, the health insurance that used to be bought as the add-on products have become the main drive and being sold as main policy for the insurance company.
     2、With the above information at hand, we use CART model to predict whether the death and endowment insurance buyers will have any potential in getting the add-on policies thereby opening the window of opportunities for the insurance issuers to come up and be able to promote the new line of products to their existing customers based on the research findings.
     3、The insurance company can re-promote their insurance merchandises to old customers according to the 8 rules constructed by the association rules.
參考文獻 參考文獻
中文部分
StatSoft公司,http://www.statsoft.com.tw/index.htm
SPSS公司,http://www.sinter.com.tw/SPSS/index.html
中華民國人壽保險商業同業公會,http://www.lia-roc.org.tw/
財政部保險司,http://www.insurance.gov.tw/
麥可.裴瑞(Michael J. A. Berry)、戈登.林諾夫(Gordon S. Linoff)著(民90)。資料採礦-顧客關係管理暨電子行銷之應用(Data Mining Techniques:for marketing, sales, and customer support)(彭文正譯)。台北:維科圖書有限公司。
麥可.裴瑞(Michael J. A. Berry)、戈登.林諾夫(Gordon S. Linoff)著(民90)。資料採礦的理論與實務-顧客關係管理的技巧與科學(Mastering Data Mining:The Art & Science of Customer Relationship Management)(吳旭志、賴淑貞譯)。台北:維科圖書有限公司。
張維哲(民81),人工神經網路,全欣資訊圖書。
葉怡成(民82),類神經網路模式應用與實作,儒林圖書。
賴信良(民91),資料挖掘在教育上的應用-以國小學童「體適能測驗」為例,國立台北師範學院數理教育研究所碩士論文。
劉宜妝(民91),資料採礦之應用研究—台灣地區漁市場行情資料庫之關聯法則分析,國立中興大學行銷學系碩士論文。
劉家銘(民90),利用負相關線上挖掘關聯式規則,國立中興大學資訊科學研究所碩士論文。
鄭忠樑(民91),運用分類樹於股價報酬率預測之研究,元智大學資訊管理研究所碩士論文。
英文部分
Agrawal, R., Imielinski, T., & Swami, A.N. (1993), Mining Associations between Sets of Items in Massive Databases. Proceedings of the ACM International Conference on Management of Data., 207-216.
Breiman, L. Friedman, J.H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. California:Wadsworth, Pacific Grove.
Dunham, M. H. (2003), Data Mining:Introductory and Advanced Topics. New Jersey:Pearson Education Inc.
Fayyad, U.M., Piatetsky-Shapiro, G.., Smyth P., & Uthurusamy, R. (1996), From Data Mining to Knowledge Discovery:An Overview. AAAI/MIT Press.
Freund, Y., & Schapire, R.E. (1996), “Experiments with a New Boosting Algorithm”. Machine Learning:Proceedings of the Thirteenth International Conference.
Smith, M. (1993), Neural Networks for Statistical Modeling. New York:Van Norstrand Reinhold.
Terano, T., Liu, H., & Chen, A.L.P. (2000), Knowledge Discovery and Data Mining: Current Issues and New Applications. Germany:Springer.
Witten, I. H. & Frank, E. (2000), Data Mining:Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco:Morgan Kaufmann Publishers.
Zhang, C., Zhang, S., Zhang, S.,& Heymer, B.E. (2002), Association rule mining:models and algorithms. New York:Springer.
描述 碩士
國立政治大學
統計研究所
90354007
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0090354007
資料類型 thesis
dc.contributor.advisor 鄭宇庭zh_TW
dc.contributor.author (Authors) 李家旭zh_TW
dc.creator (作者) 李家旭zh_TW
dc.date (日期) 2002en_US
dc.date.accessioned 2009-09-14-
dc.date.available 2009-09-14-
dc.date.issued (上傳時間) 2009-09-14-
dc.identifier (Other Identifiers) G0090354007en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30874-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 90354007zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) 摘 要
     
     本研究主是利用資料採礦技術,應用於人身保險公司,試圖尋找出購買附加保單的保戶之模式,以提高保戶購買附加保單之比例。資料來源為我國某人身保險業所提供之客戶資料,原始資料共計1,500,943筆,經過資料清理後分析資料為92,581筆,隨後進行基本敘述統計分析,與決策樹、類神經網路、關聯規則等資料採礦技術,其分析結果如下:
     
     一、主保單的險種類型分為三種:死亡險、生死合險、健康險;不同的保單類型的保戶,有著不同的附加保單購買習慣。主保單為死亡險的保戶,主要因為保險需求而購買該主保單;保單為生死合險的保戶,主要因為儲蓄需求而購買保單;保單為健康險的保戶,是比較特別的族群,因為以往健康險是以附加保單形式出售,但保險公司因應潮流將健康險調整成也可以主保單形式出售,使得健康險中不會購買附加保單。
     
     二、新保戶購買主保單為死亡險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。新保戶購買主保單為生死合險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。
     
     三、保險公司可依照關聯規則結果產生出的8條關聯規則,針對舊有客戶進行保險商品再推銷策略。
zh_TW
dc.description.abstract (摘要) Abstract
     
     The main purpose of this research is to apply data mining techniques, namely decision tree, neural network, and association on insurance company’s database in modeling the behaviors of customers who bought the policies. Data source is provided by the insurance company in Taiwan.
     1、There are 3 type of main insurance policies:death insurance、endowment insurance、health insurance. Insurance buyers behave differently based upon the type of insurance they have. Death insurance buyers are in for the sole purpose of being insured. Endowment insurance buyers are in for the purpose of savings. Health insurance buyers usually buy the policies as the add-on products, However as consumers in a recent trend have become more health conscious, the health insurance that used to be as consumers in a recent trend have become more health conscious, the health insurance that used to be bought as the add-on products have become the main drive and being sold as main policy for the insurance company.
     2、With the above information at hand, we use CART model to predict whether the death and endowment insurance buyers will have any potential in getting the add-on policies thereby opening the window of opportunities for the insurance issuers to come up and be able to promote the new line of products to their existing customers based on the research findings.
     3、The insurance company can re-promote their insurance merchandises to old customers according to the 8 rules constructed by the association rules.
en_US
dc.description.tableofcontents 目次
     
     第壹章 緒論……………………….……………………………………1
     
      第一節 研究背景與研究動機…………………………….……………………1
     第二節 研究目的………………………….……………………………………2
     第三節 研究架構與研究限制……………………….....................................3
     第四節 論文架構……………………………………………………………….5
     
     第貳章 文獻探討………………………………………………………7
     
      第一節 資料採礦……………………….………………………………………7
      第二節 決策樹………………...…………...…………………………………16
      第三節 類神經網路………………………………………………………...21
      第四節 關聯規則……………………….…………………………………..28
     
     第參章 研究方法……………….…………………………………..32
     
      第一節 研究工具………………………….………………………………..32
      第二節 研究流程……………………….…………………………………..35
      第三節 資料介紹……………………….…………………………………..38
     
     第肆章 研究結果……………….…………………………………..40
     
     第一節 資料清理與敘述統計分析……….………………………………..40
      第二節 建立預測模型…………………….…………………...……………..53
      第三節 關聯規則…………………….……………………………………..68
     
     第伍章 結論與建議…………………………………………………..73
     
     第一節 結論………………….…………………………………….……….73
      第二節 建議…………………………...…….………………………………..76
     
     參考文獻……………………………………...………………………...78
     
     中文部分………………….…………………...……………………………….78
     英文部分………………….…………………..…………………………….....79
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0090354007en_US
dc.subject (關鍵詞) 資料採礦zh_TW
dc.subject (關鍵詞) 分類迴歸樹zh_TW
dc.subject (關鍵詞) 類神經網路zh_TW
dc.subject (關鍵詞) 附加保單zh_TW
dc.subject (關鍵詞) C5.0en_US
dc.title (題名) 應用資料採礦技術於保險公司附加保單之增售zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 參考文獻zh_TW
dc.relation.reference (參考文獻) 中文部分zh_TW
dc.relation.reference (參考文獻) StatSoft公司,http://www.statsoft.com.tw/index.htmzh_TW
dc.relation.reference (參考文獻) SPSS公司,http://www.sinter.com.tw/SPSS/index.htmlzh_TW
dc.relation.reference (參考文獻) 中華民國人壽保險商業同業公會,http://www.lia-roc.org.tw/zh_TW
dc.relation.reference (參考文獻) 財政部保險司,http://www.insurance.gov.tw/zh_TW
dc.relation.reference (參考文獻) 麥可.裴瑞(Michael J. A. Berry)、戈登.林諾夫(Gordon S. Linoff)著(民90)。資料採礦-顧客關係管理暨電子行銷之應用(Data Mining Techniques:for marketing, sales, and customer support)(彭文正譯)。台北:維科圖書有限公司。zh_TW
dc.relation.reference (參考文獻) 麥可.裴瑞(Michael J. A. Berry)、戈登.林諾夫(Gordon S. Linoff)著(民90)。資料採礦的理論與實務-顧客關係管理的技巧與科學(Mastering Data Mining:The Art & Science of Customer Relationship Management)(吳旭志、賴淑貞譯)。台北:維科圖書有限公司。zh_TW
dc.relation.reference (參考文獻) 張維哲(民81),人工神經網路,全欣資訊圖書。zh_TW
dc.relation.reference (參考文獻) 葉怡成(民82),類神經網路模式應用與實作,儒林圖書。zh_TW
dc.relation.reference (參考文獻) 賴信良(民91),資料挖掘在教育上的應用-以國小學童「體適能測驗」為例,國立台北師範學院數理教育研究所碩士論文。zh_TW
dc.relation.reference (參考文獻) 劉宜妝(民91),資料採礦之應用研究—台灣地區漁市場行情資料庫之關聯法則分析,國立中興大學行銷學系碩士論文。zh_TW
dc.relation.reference (參考文獻) 劉家銘(民90),利用負相關線上挖掘關聯式規則,國立中興大學資訊科學研究所碩士論文。zh_TW
dc.relation.reference (參考文獻) 鄭忠樑(民91),運用分類樹於股價報酬率預測之研究,元智大學資訊管理研究所碩士論文。zh_TW
dc.relation.reference (參考文獻) 英文部分zh_TW
dc.relation.reference (參考文獻) Agrawal, R., Imielinski, T., & Swami, A.N. (1993), Mining Associations between Sets of Items in Massive Databases. Proceedings of the ACM International Conference on Management of Data., 207-216.zh_TW
dc.relation.reference (參考文獻) Breiman, L. Friedman, J.H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. California:Wadsworth, Pacific Grove.zh_TW
dc.relation.reference (參考文獻) Dunham, M. H. (2003), Data Mining:Introductory and Advanced Topics. New Jersey:Pearson Education Inc.zh_TW
dc.relation.reference (參考文獻) Fayyad, U.M., Piatetsky-Shapiro, G.., Smyth P., & Uthurusamy, R. (1996), From Data Mining to Knowledge Discovery:An Overview. AAAI/MIT Press.zh_TW
dc.relation.reference (參考文獻) Freund, Y., & Schapire, R.E. (1996), “Experiments with a New Boosting Algorithm”. Machine Learning:Proceedings of the Thirteenth International Conference.zh_TW
dc.relation.reference (參考文獻) Smith, M. (1993), Neural Networks for Statistical Modeling. New York:Van Norstrand Reinhold.zh_TW
dc.relation.reference (參考文獻) Terano, T., Liu, H., & Chen, A.L.P. (2000), Knowledge Discovery and Data Mining: Current Issues and New Applications. Germany:Springer.zh_TW
dc.relation.reference (參考文獻) Witten, I. H. & Frank, E. (2000), Data Mining:Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco:Morgan Kaufmann Publishers.zh_TW
dc.relation.reference (參考文獻) Zhang, C., Zhang, S., Zhang, S.,& Heymer, B.E. (2002), Association rule mining:models and algorithms. New York:Springer.zh_TW