Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 再發事件之存活分析之研究
Survival Analysis For Recurrent Event Data
作者 王麗芬
Wang,Li-Fen
貢獻者 陳麗霞
王麗芬
Wang,Li-Fen
關鍵詞 再發事件
重複事件
事故傾向
隨機效果
分層模式
未分層模式
recurrent events
frailty
random effect
日期 2005
上傳時間 2009-09-14
摘要 處理多重事件或再發事件之事件發生時間的資料時,常會以Cox模式為基礎而予以延伸,其中較適合再發事件的模式為:A-G模式、GT-UR 模式、PWP-CP 模式及PWP-GT模式。這些模式又可按照是否以發生次數為分層變數,而分為未分層模式(包含A-G模式、 GT-UR 模式),及分層模式(包含PWP-CP模式、 PWP-GT 模式)。
     本論文將以改良的Cox延伸模式,包括對變異數進行修正或加入事故傾向(或隨機效果),探討公務人員升等的快慢與哪些變數有關。變異數修正方式利用穩健標準誤以解決事件之再發時間之間的相依問題;事故傾向模式則主要是以隨機效果代表無法觀察到的個體間之異質性,且同一個體的各次發生時間共享相同的異質性,並假定異質性服從某種特定分配。對於各種Cox的延伸模式,我們可比較採用穩健變異數與否對估計及推論結果的差異,以及事故傾向加入前後,估計及推論結果與模式配適上的差異。
     由本論文對公務人員升等資料的分析可發現,採用變異數修正方法時,未分層的模式有較小的變異數估計值,所以顯著的變數較多,包括性別、官等、教育程度及年齡;分層模式中顯著變數則只有官等及教育程度。若假定事故傾向服從對數Gamma分配,並加入於上述四種模式中,則顯著的變數與未加入事故傾向時一致,且各模式之下均無法拒絕所有人的事故傾向同為0的假設。這種現象或許是因為我們無法取得教育程度與公務人員考試及格種類之歷史資料,也有可能是因為公務人員升等的體制健全,且法規制定嚴謹,運作也有正常的模式可循所致。
參考文獻 Allison P. D.’Survival analysis using the sas system-a practical guide.’
Andersen, P. K. and Gill, R.D. ‘Cox’s regression model for counting processes: a large sample study.’ Annals of Statistics, 10, 1100-1120(1982).
Barai, USHA and Teoh, NICK ‘Multiple statistics for multiple events, with application to repeated infections in the growth factor studies.’ Statistics in Medicine, Vol.16, 941-949(1997).
Boher, J. and Cook, R.J. (2004). ‘Implications of model misspecification among robust tests for recurrent events.’ Working paper Series and Technical Reports, 2005.05.
Box-Steffensmeier, J.M., and Boef, S. D. (2002). ‘A monte carlo analysis for recurrent events data.’ Annual Preditical Metholology meeting July 2002, SES-083418.
Box-Steffensmeier, J.M., and Boef, S. D. (2005). ‘Repeated event survival models: the conditional frailty model.’ Pubmed PMID:16345026.
Dewanji, A. and Moolgavkar S.H. (1999). ‘A poisson process approach for recurrent event data with environmental covariates.’ NRCSE-TRS, No.028.
Genser, B. and Werneche, K. D. ‘Joint modeling of repeated transitions in follow-up data - A case study on breast cancer data.’ Biometrical Journal 47(2005)3,388-401.
Gray, R.J.(1992). ‘Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis.’ Journal of American Statistical Association, 87, 942-951.
Greene, W.H.(2002). Econometric Analysis. 5th Ed. New Jersey: Prentice Hall.
Kelly, PJ, Lim, LL. ‘Survival analysis for recurrent event data: an application to childhood infectious disease.’ Statistics in Medicine (1999);19(1):13-33.
Li, Q.H. and Lagakos, S.W. ‘Use of the WEI-WEISSFELD method for the analysis of a recurring and a terminating event.’ Statistics in Medicine, Vol.16, 925-940(1997).
Prentice, RL, and Williams, BJ, and Peterson, AV. ‘On the regression analysis of multivariate failure time data.’ Biometrika (1981); 68:373-379.
Therneau T.M. and Grambsch P. M. ‘Modeling survival data extending the cox model’
Therneau, T.M., Grambsch, P.M.(1998). ‘Penalized Cox models and frailty.’ Copyright 2000 Mayo Foundation.
White, H.A. (1980). ‘A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.’ Econometrica, 48(4), 817-838.
Wei, LJ. Lin, DY, and Weissfeld, L. ‘Regression analysis of multivariate incomplete failure time data by modeling marginal distributions.’ Journal of the American Statistical Association, 84(408):1065-1073(1989).
Wei, LJ. Glidden, DV. ‘An overview of statistical methods for multiple failure time data in clinical trials.’ Statistics in Medicine (1997); 16(8):833-839.
考試院考銓研究報告87年度專題「建立公務人員職務輪調制度之研究」。
考試院考銓研究報告92年度專題「高級文官考選與晉用制度之研究」。
銓敘部94年意見調查「高級文官考選與晉用制度之研究」調查報告。
描述 碩士
國立政治大學
統計研究所
93354027
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093354027
資料類型 thesis
dc.contributor.advisor 陳麗霞zh_TW
dc.contributor.author (Authors) 王麗芬zh_TW
dc.contributor.author (Authors) Wang,Li-Fenen_US
dc.creator (作者) 王麗芬zh_TW
dc.creator (作者) Wang,Li-Fenen_US
dc.date (日期) 2005en_US
dc.date.accessioned 2009-09-14-
dc.date.available 2009-09-14-
dc.date.issued (上傳時間) 2009-09-14-
dc.identifier (Other Identifiers) G0093354027en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30909-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 93354027zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 處理多重事件或再發事件之事件發生時間的資料時,常會以Cox模式為基礎而予以延伸,其中較適合再發事件的模式為:A-G模式、GT-UR 模式、PWP-CP 模式及PWP-GT模式。這些模式又可按照是否以發生次數為分層變數,而分為未分層模式(包含A-G模式、 GT-UR 模式),及分層模式(包含PWP-CP模式、 PWP-GT 模式)。
     本論文將以改良的Cox延伸模式,包括對變異數進行修正或加入事故傾向(或隨機效果),探討公務人員升等的快慢與哪些變數有關。變異數修正方式利用穩健標準誤以解決事件之再發時間之間的相依問題;事故傾向模式則主要是以隨機效果代表無法觀察到的個體間之異質性,且同一個體的各次發生時間共享相同的異質性,並假定異質性服從某種特定分配。對於各種Cox的延伸模式,我們可比較採用穩健變異數與否對估計及推論結果的差異,以及事故傾向加入前後,估計及推論結果與模式配適上的差異。
     由本論文對公務人員升等資料的分析可發現,採用變異數修正方法時,未分層的模式有較小的變異數估計值,所以顯著的變數較多,包括性別、官等、教育程度及年齡;分層模式中顯著變數則只有官等及教育程度。若假定事故傾向服從對數Gamma分配,並加入於上述四種模式中,則顯著的變數與未加入事故傾向時一致,且各模式之下均無法拒絕所有人的事故傾向同為0的假設。這種現象或許是因為我們無法取得教育程度與公務人員考試及格種類之歷史資料,也有可能是因為公務人員升等的體制健全,且法規制定嚴謹,運作也有正常的模式可循所致。
zh_TW
dc.description.tableofcontents 第一章 緒論………………………………………………………………………1
     第一節 研究動機與目的…………………………………………………………1
     第二節 文獻回顧…………………………………………………………………3
      第三節 論文架構………………………………………………………………6
     第二章 再發事件模式……………………………………………………………7
     第一節 再發事件不分層模式…………………………………………………..7
     2-1-1 Andersen-Gill模式………………………………………………….7
     2-1-2 無限制之間隔時間模式………………………… ……………………10
     第二節 再發事件分層模式……………………………………………… ……13
     2-2-1 Prentice -Williams –Peterson總時間模式…………………13
     2-2-2 Prentice -Williams –Peterson間隔時間模式………………14
     第三節 穩健變異數……………………………………………………………16
     第四節 再發事件條件事故傾向模式…………………………………………18
     第三章 實證分析………………………………………………………………22
     第一節 資料說明……………………………………………………………..22
     第二節 資料分析……………………………………………………………..23
     3-2-1 敘述性統計分析………...…………………..……………………25
     3-2-2 模式估計結果……………………………….…………..…………27
     第四章 結論與建議……………………………………………………………37
     參考文獻…………………………………………………………………………39
     附錄一……………………………………………………………………………42
     附錄二……………………………………………………………………………46
     附錄三……………………………………………………………………………47
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093354027en_US
dc.subject (關鍵詞) 再發事件zh_TW
dc.subject (關鍵詞) 重複事件zh_TW
dc.subject (關鍵詞) 事故傾向zh_TW
dc.subject (關鍵詞) 隨機效果zh_TW
dc.subject (關鍵詞) 分層模式zh_TW
dc.subject (關鍵詞) 未分層模式zh_TW
dc.subject (關鍵詞) recurrent eventsen_US
dc.subject (關鍵詞) frailtyen_US
dc.subject (關鍵詞) random effecten_US
dc.title (題名) 再發事件之存活分析之研究zh_TW
dc.title (題名) Survival Analysis For Recurrent Event Dataen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Allison P. D.’Survival analysis using the sas system-a practical guide.’zh_TW
dc.relation.reference (參考文獻) Andersen, P. K. and Gill, R.D. ‘Cox’s regression model for counting processes: a large sample study.’ Annals of Statistics, 10, 1100-1120(1982).zh_TW
dc.relation.reference (參考文獻) Barai, USHA and Teoh, NICK ‘Multiple statistics for multiple events, with application to repeated infections in the growth factor studies.’ Statistics in Medicine, Vol.16, 941-949(1997).zh_TW
dc.relation.reference (參考文獻) Boher, J. and Cook, R.J. (2004). ‘Implications of model misspecification among robust tests for recurrent events.’ Working paper Series and Technical Reports, 2005.05.zh_TW
dc.relation.reference (參考文獻) Box-Steffensmeier, J.M., and Boef, S. D. (2002). ‘A monte carlo analysis for recurrent events data.’ Annual Preditical Metholology meeting July 2002, SES-083418.zh_TW
dc.relation.reference (參考文獻) Box-Steffensmeier, J.M., and Boef, S. D. (2005). ‘Repeated event survival models: the conditional frailty model.’ Pubmed PMID:16345026.zh_TW
dc.relation.reference (參考文獻) Dewanji, A. and Moolgavkar S.H. (1999). ‘A poisson process approach for recurrent event data with environmental covariates.’ NRCSE-TRS, No.028.zh_TW
dc.relation.reference (參考文獻) Genser, B. and Werneche, K. D. ‘Joint modeling of repeated transitions in follow-up data - A case study on breast cancer data.’ Biometrical Journal 47(2005)3,388-401.zh_TW
dc.relation.reference (參考文獻) Gray, R.J.(1992). ‘Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis.’ Journal of American Statistical Association, 87, 942-951.zh_TW
dc.relation.reference (參考文獻) Greene, W.H.(2002). Econometric Analysis. 5th Ed. New Jersey: Prentice Hall.zh_TW
dc.relation.reference (參考文獻) Kelly, PJ, Lim, LL. ‘Survival analysis for recurrent event data: an application to childhood infectious disease.’ Statistics in Medicine (1999);19(1):13-33.zh_TW
dc.relation.reference (參考文獻) Li, Q.H. and Lagakos, S.W. ‘Use of the WEI-WEISSFELD method for the analysis of a recurring and a terminating event.’ Statistics in Medicine, Vol.16, 925-940(1997).zh_TW
dc.relation.reference (參考文獻) Prentice, RL, and Williams, BJ, and Peterson, AV. ‘On the regression analysis of multivariate failure time data.’ Biometrika (1981); 68:373-379.zh_TW
dc.relation.reference (參考文獻) Therneau T.M. and Grambsch P. M. ‘Modeling survival data extending the cox model’zh_TW
dc.relation.reference (參考文獻) Therneau, T.M., Grambsch, P.M.(1998). ‘Penalized Cox models and frailty.’ Copyright 2000 Mayo Foundation.zh_TW
dc.relation.reference (參考文獻) White, H.A. (1980). ‘A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.’ Econometrica, 48(4), 817-838.zh_TW
dc.relation.reference (參考文獻) Wei, LJ. Lin, DY, and Weissfeld, L. ‘Regression analysis of multivariate incomplete failure time data by modeling marginal distributions.’ Journal of the American Statistical Association, 84(408):1065-1073(1989).zh_TW
dc.relation.reference (參考文獻) Wei, LJ. Glidden, DV. ‘An overview of statistical methods for multiple failure time data in clinical trials.’ Statistics in Medicine (1997); 16(8):833-839.zh_TW
dc.relation.reference (參考文獻) 考試院考銓研究報告87年度專題「建立公務人員職務輪調制度之研究」。zh_TW
dc.relation.reference (參考文獻) 考試院考銓研究報告92年度專題「高級文官考選與晉用制度之研究」。zh_TW
dc.relation.reference (參考文獻) 銓敘部94年意見調查「高級文官考選與晉用制度之研究」調查報告。zh_TW