Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 依序選擇四字串使第二字串或第四字串先出現的後選優勢探討
On the first occurrence of four strings with teams
作者 謝松樺
Hsieh, Sung Hua
貢獻者 蔡紋琦
Tsai, Wen Chi
謝松樺
Hsieh, Sung Hua
關鍵詞 字串
等候時間
馬可夫鏈
string
waiting time
markov chain
日期 2008
上傳時間 2009-09-14
摘要 本論文主要是在探討依序選擇四個字串之下,是否存在一策略使得第二或第四字串有較大的機會比第一或第三字串先出現,也就是所謂的後選優勢是否存在。
      利用電腦計算,我們發現字串長度為4,5,6時後選優勢確實存在,而當字串長度大於等於或等於7時,我們則證明了若第一字串為(0,0,...,0),(0,0,...,0,1),(1,1,...,1)或(1,1,...,1,0)時,後選者優勢亦存在。
In the thesis, we consider about the first occurrence of four strings decided sequentially with teams. Team 1 consists string 1 and string 3; team 2 consists string 2 and string 4. It is interested in whether or not team 2 whose strings are decided after first string and third string are given separately gets an advantage in appearing with larger probability.Namely, given any string 1, we want to find a string 2 such that any string 3 corresponds to at least one string (string 4) making
      a larger probability for team 2 in appearing earlier than team 1.
      Based on the result from computer calculation, team 2 advantage over team 1 when the string length is 4, 5, and 6. This thesis also shows that team 2 gets an advantage for cases where string 1 is (0,0,...,0), (0,0,...,0,1), (1,1,...,1), (1,1,...,1,0) ,when the string length is
      larger than 6.
參考文獻 [1]Chen, R. (1989) A circular property of the occurrence of sequence patterns in the fair coin-tossing process, Adv. Appl. Probability,
Vol.21, pp.938-940.
[2]Chen, R. and Lin, H.E. (1984) On fair coin toissing process, J.
Multivariate Anal., Vol15, pp.222-227.
[3]Chen, R. and Zame, A. (1979) On fair coin-toissing game, J.
Multivariate Anal., Vol9, pp.150-157.
[4]Chen, R., Hung, Y.-C., Chen M.-R.and Zame, A.,On the first occurrence of complement strings (unpublished).
[5]Chen, R., Rosenberg, B. and Zame, A. (1979) On the first occurrence of strings, (unpublished).
[6]Gerber, H. V. and Li, S.Y.R. (1981) The occurrence of sequence patterns in repeated experiments and hitting times in a Markov chain, Stoch.
Process and Their Application, Vol.11, pp.101-108.
[7]Guibs,L. and Odlyko, A. M. (1981) String overlaps, pattern matching, and nontransitive games.,J. Combin. Theory Ser.A, Vol.30, pp.1183-208.
[8]Li, S. Y. R. (1980) A martingale approach to the study of occurrence of sequence patterns in repeated experiments ,Annals of Probability,
Vol.8, pp.1171-1176.
[9]Pozdnyakov, V. (2008) On occurrence of patterns in markov chains: Method of gambling teams, Stat. & Prob. Letters, Vol.78, Pages2559-2838.
[10]Williams, D. (1991) Probability with Martingales, Cambridge University Press, Cambridge.
描述 碩士
國立政治大學
統計研究所
96354018
97
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0096354018
資料類型 thesis
dc.contributor.advisor 蔡紋琦zh_TW
dc.contributor.advisor Tsai, Wen Chien_US
dc.contributor.author (Authors) 謝松樺zh_TW
dc.contributor.author (Authors) Hsieh, Sung Huaen_US
dc.creator (作者) 謝松樺zh_TW
dc.creator (作者) Hsieh, Sung Huaen_US
dc.date (日期) 2008en_US
dc.date.accessioned 2009-09-14-
dc.date.available 2009-09-14-
dc.date.issued (上傳時間) 2009-09-14-
dc.identifier (Other Identifiers) G0096354018en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30928-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 96354018zh_TW
dc.description (描述) 97zh_TW
dc.description.abstract (摘要) 本論文主要是在探討依序選擇四個字串之下,是否存在一策略使得第二或第四字串有較大的機會比第一或第三字串先出現,也就是所謂的後選優勢是否存在。
      利用電腦計算,我們發現字串長度為4,5,6時後選優勢確實存在,而當字串長度大於等於或等於7時,我們則證明了若第一字串為(0,0,...,0),(0,0,...,0,1),(1,1,...,1)或(1,1,...,1,0)時,後選者優勢亦存在。
zh_TW
dc.description.abstract (摘要) In the thesis, we consider about the first occurrence of four strings decided sequentially with teams. Team 1 consists string 1 and string 3; team 2 consists string 2 and string 4. It is interested in whether or not team 2 whose strings are decided after first string and third string are given separately gets an advantage in appearing with larger probability.Namely, given any string 1, we want to find a string 2 such that any string 3 corresponds to at least one string (string 4) making
      a larger probability for team 2 in appearing earlier than team 1.
      Based on the result from computer calculation, team 2 advantage over team 1 when the string length is 4, 5, and 6. This thesis also shows that team 2 gets an advantage for cases where string 1 is (0,0,...,0), (0,0,...,0,1), (1,1,...,1), (1,1,...,1,0) ,when the string length is
      larger than 6.
en_US
dc.description.tableofcontents 第一章 緒論..............................................1
      第一節 符號介紹......................................1
      第二節 文獻回顧......................................2
      第三節 問題介紹......................................4
     第二章 電腦計算結果......................................6
      第一節 字串長度為3的後選優勢探討....................6
      第二節 字串長度為4,5,6的後選優勢探討................9
     第三章 失敗的策略.......................................11
     第四章 主要定理........................................ 17
      第一節 為 時的隊伍二後選優勢................17
      第二節 為 時的隊伍二後選優勢............52
      第三節 隊伍二必不敗的策略...........................55
     第五章 結論.............................................58
     附錄.....................................................60
     參考文獻.................................................70
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0096354018en_US
dc.subject (關鍵詞) 字串zh_TW
dc.subject (關鍵詞) 等候時間zh_TW
dc.subject (關鍵詞) 馬可夫鏈zh_TW
dc.subject (關鍵詞) stringen_US
dc.subject (關鍵詞) waiting timeen_US
dc.subject (關鍵詞) markov chainen_US
dc.title (題名) 依序選擇四字串使第二字串或第四字串先出現的後選優勢探討zh_TW
dc.title (題名) On the first occurrence of four strings with teamsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1]Chen, R. (1989) A circular property of the occurrence of sequence patterns in the fair coin-tossing process, Adv. Appl. Probability,zh_TW
dc.relation.reference (參考文獻) Vol.21, pp.938-940.zh_TW
dc.relation.reference (參考文獻) [2]Chen, R. and Lin, H.E. (1984) On fair coin toissing process, J.zh_TW
dc.relation.reference (參考文獻) Multivariate Anal., Vol15, pp.222-227.zh_TW
dc.relation.reference (參考文獻) [3]Chen, R. and Zame, A. (1979) On fair coin-toissing game, J.zh_TW
dc.relation.reference (參考文獻) Multivariate Anal., Vol9, pp.150-157.zh_TW
dc.relation.reference (參考文獻) [4]Chen, R., Hung, Y.-C., Chen M.-R.and Zame, A.,On the first occurrence of complement strings (unpublished).zh_TW
dc.relation.reference (參考文獻) [5]Chen, R., Rosenberg, B. and Zame, A. (1979) On the first occurrence of strings, (unpublished).zh_TW
dc.relation.reference (參考文獻) [6]Gerber, H. V. and Li, S.Y.R. (1981) The occurrence of sequence patterns in repeated experiments and hitting times in a Markov chain, Stoch.zh_TW
dc.relation.reference (參考文獻) Process and Their Application, Vol.11, pp.101-108.zh_TW
dc.relation.reference (參考文獻) [7]Guibs,L. and Odlyko, A. M. (1981) String overlaps, pattern matching, and nontransitive games.,J. Combin. Theory Ser.A, Vol.30, pp.1183-208.zh_TW
dc.relation.reference (參考文獻) [8]Li, S. Y. R. (1980) A martingale approach to the study of occurrence of sequence patterns in repeated experiments ,Annals of Probability,zh_TW
dc.relation.reference (參考文獻) Vol.8, pp.1171-1176.zh_TW
dc.relation.reference (參考文獻) [9]Pozdnyakov, V. (2008) On occurrence of patterns in markov chains: Method of gambling teams, Stat. & Prob. Letters, Vol.78, Pages2559-2838.zh_TW
dc.relation.reference (參考文獻) [10]Williams, D. (1991) Probability with Martingales, Cambridge University Press, Cambridge.zh_TW