Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 排列檢定法應用於空間資料之比較
Permutation test on spatial comparison
作者 王信忠
Wang, Hsin-Chung
貢獻者 蔡紋琦
王信忠
Wang, Hsin-Chung
關鍵詞 費雪(Fisher)正確檢定
Cramer-von Mises 統計量
排列檢定
可交換性
空間分佈
貝氏(Bayesian)方法
檢定力比較
空間自我迴歸(CAR)模型
auto-Poisson模型
auto-Gaussian模型
群聚
Fisher`s exact test
Cramer-von Mises statistic
permutation test
exchangeable
spatial distributions
Bayesian approach
power comparison
spatial conditionally autoregressive (CAR) model
auto-Poisson model
auto-Gaussian model
cluster
日期 2005
上傳時間 2009-09-14
摘要 本論文主要是探討在二維度空間上二母體分佈是否一致。我們利用排列
     (permutation)檢定方法來做比較, 並藉由費雪(Fisher)正確檢定方法的想法而提出重標記 (relabel)排列檢定方法或稱為費雪排列檢定法。
     我們透過可交換性的特質證明它是正確 (exact) 的並且比 Syrjala (1996)所建議的排列檢定方法有更高的檢定力 (power)。
      本論文另提出二個空間模型: spatial multinomial-relative-log-normal 模型 與 spatial Poisson-relative-log-normal 模型
     來配適一般在漁業中常有的右斜長尾次數分佈並包含很多0 的空間資料。另外一般物種可能因天性或自然環境因素像食物、溫度等影響而有群聚行為發生, 這二個模型亦可描述出空間資料的群聚現象以做適當的推論。
This thesis proposes the relabel (Fisher`s) permutation test inspired by Fisher`s exact test to compare between distributions of two (fishery) data sets locating on a two-dimensional lattice. We show that the permutation test given by Syrjala (1996} is not exact, but our relabel permutation test is exact and, additionally, more powerful.
      This thesis also studies two spatial models: the spatial multinomial-relative-log-normal model and the spatial
     Poisson-relative-log-normal model. Both models not only exhibit characteristics of skewness with a long right-hand tail and of high proportion of zero catches which usually appear in fishery data, but also have the ability to describe various types of aggregative behaviors.
參考文獻 Aitchison, J. and Ho, C. H. (1989), “The multivariate Poisson-log normal distribution.”,Biometrika, 76, 643–653.
Anderson, T.W. (1962), “On the distribution of the Two-ample Cramer-von Mises Crite-rion.”, The Annals of mathematical Statistics, 33, 1148–1159.
Anderson, T.W. and Darling, D.A. (1952), “Asymptotic Theory of Certain ”Goodness of Fit” Criteria Based on Stochastic Processes.”, The Annals of Mathematical Statistics,23, 193–212.
Armistead, C.E. and Nichol, D.G. (1993), “1990 Bottom trawl survey of the eastern Bering Sea continental shelf.”, United States Department of Commerce,NOAA Technical Mem-orandum NMFS-AFSC-7.
Besag, J.E. (1974), “Spatial interaction and statistical analysis of lattice systems.”, Journal of the Royal Society B, 36, 192–225.
Brodeur, R.D., Sugisaki, H., and Hunt, G. L. (2002), “Increases in jellyfish biomas in the bering sea: implications for the ecosystem.”, Marine Ecology Process Series ., 233,89–103.
Conover, W.J. (1999), Practical Nonparametric Statistic. Third edition, Wiley, New York.
Cressie, N. (1993), Statistics for Spatial Data, Revised Edition., Wiley, New York.
Cui, H. (2002), “The average projection type weighted cramer-von mises statistics for testing some distribution.”, Science in China (ser. A), 45(5), 562–577.
Deluis, M., Raventos, J., Gonzalez-Hidalgo, J.C., Sanchez, J.R., and Cortina, J. (2000), “Spatial analysis of rainfall trends in the region of valencia (east spain).”, Int. J. Clima-tol., 20, 1451–1469.
Edgington, E.S. (1980), Randomization tests. Second edition., Marcel-Dekker, New York.
Fisz, M. (1960), “On a Result by M.Rosenblatt Concerning the Von Mises-Smirnov Test.”, The Annals of Mathematical Statistics, 31, 427–429.
Good, P. (2000), A practical guide to resampling methods for testing hypotheses. Second edition., Spring-Verlag, New York.
Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A., and Andrews, J. (2004), “Analysis of the spatial distributions of mature cod (gadus morhua) and haddock (melanogrammus aeglefinus) abundance in the north sea (1980-1999) using generalised additive models.”, Fisheries Research., 70, 17–25.
Leach, M.K. and Givnish, T.J. (1999), “Gradients in the composition, structure, and di-versity of remnant oak savannas in southern wisconsin.”, Ecological Monograph., 69,353–374.
Lehmann, E.L. (1986), Testing Statistical Hypotheses.Second Edition, Spring-Verlag, New York.
Pearson, K. (1900), “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.”, Philosophy Magazine, 50, 157–172.
Swain, D.P. and Wade, E.J. (2003), “Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): tests of predictions of the ideal free distribution.”,Can J. Fish. Aquat. Sci., 60, 897–909.
Syrjala, S.E. (1996), “A statistical test for a difference between the spatial distribution of two populations”, Ecology, 77(1), 75–80.
Terceiro, M. (2003), “The statistical properties of recreational catch rate data for some fish stocks off the northeast U.S. coast.”, NMFS Scientific Publications Office.Fish Bull.,101, 653–672.
Wilks, S.S. (1938), “The large-sample distribution of the likelihood ratio for testing com-posite hypotheses.”, Annals of Mathematical Statistics, 9, 60–62.
Wilson, C.D, Hollowed, A.B., Shima, M., Walline, P., and Stienessen, S. (2003), “In-teractions between commercial fishing and walleye pollock.”, Alaska Fishery Research
Bulletin., 10, 61–77.62
描述 博士
國立政治大學
統計研究所
90354503
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0903545031
資料類型 thesis
dc.contributor.advisor 蔡紋琦zh_TW
dc.contributor.author (Authors) 王信忠zh_TW
dc.contributor.author (Authors) Wang, Hsin-Chungen_US
dc.creator (作者) 王信忠zh_TW
dc.creator (作者) Wang, Hsin-Chungen_US
dc.date (日期) 2005en_US
dc.date.accessioned 2009-09-14-
dc.date.available 2009-09-14-
dc.date.issued (上傳時間) 2009-09-14-
dc.identifier (Other Identifiers) G0903545031en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/30930-
dc.description (描述) 博士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 90354503zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本論文主要是探討在二維度空間上二母體分佈是否一致。我們利用排列
     (permutation)檢定方法來做比較, 並藉由費雪(Fisher)正確檢定方法的想法而提出重標記 (relabel)排列檢定方法或稱為費雪排列檢定法。
     我們透過可交換性的特質證明它是正確 (exact) 的並且比 Syrjala (1996)所建議的排列檢定方法有更高的檢定力 (power)。
      本論文另提出二個空間模型: spatial multinomial-relative-log-normal 模型 與 spatial Poisson-relative-log-normal 模型
     來配適一般在漁業中常有的右斜長尾次數分佈並包含很多0 的空間資料。另外一般物種可能因天性或自然環境因素像食物、溫度等影響而有群聚行為發生, 這二個模型亦可描述出空間資料的群聚現象以做適當的推論。
zh_TW
dc.description.abstract (摘要) This thesis proposes the relabel (Fisher`s) permutation test inspired by Fisher`s exact test to compare between distributions of two (fishery) data sets locating on a two-dimensional lattice. We show that the permutation test given by Syrjala (1996} is not exact, but our relabel permutation test is exact and, additionally, more powerful.
      This thesis also studies two spatial models: the spatial multinomial-relative-log-normal model and the spatial
     Poisson-relative-log-normal model. Both models not only exhibit characteristics of skewness with a long right-hand tail and of high proportion of zero catches which usually appear in fishery data, but also have the ability to describe various types of aggregative behaviors.
en_US
dc.description.tableofcontents 1 INTRODUCTION 10
     2 SYRJALA’s PERMUTATION TEST 13
     2.1 Introduction 13
     2.2 Test statistic 17
     2.3 Switch permutation is exchangeable? 18
     3 SPATIAL MODEL 20
     3.1 Model description 21
     3.1.1 Conditionally autoregressive model 22
     3.1.2 Spatial multinomial-relative-log-normal model 23
     3.1.3 Spatial Poisson-relative-log-normal model 24
     3.2 Model justification 24
     3.2.1 Examples of spatial multinomial-relative-log-normal distribution 26
     3.2.2 Examples of spatial Poisson-relative-log-normal distribution 29
     3.2.3 Highly skewed with a long right-hand tail 32
     4 RELABEL PERMUTATION 35
     4.1 Procedure of the relabel permutation 35
     4.2 Illustration 36
     4.3 Exchangeable 38
     4.4 The relabel permutation test 42
     5 NUMERICAL ANALYSIS 44
     5.1 Simulation design 44
     5.2 Size comparison 45
     5.3 Power comparison 47
     6 CONCLUSION AND DISCUSSIONS 55
     6.1 Auto-models 55
     6.2 Test statistic 57
     6.3 Invariant property 58
     6.4 Dimension reduction 59
     REFERENCE 60
     A APPENDIX 63
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0903545031en_US
dc.subject (關鍵詞) 費雪(Fisher)正確檢定zh_TW
dc.subject (關鍵詞) Cramer-von Mises 統計量zh_TW
dc.subject (關鍵詞) 排列檢定zh_TW
dc.subject (關鍵詞) 可交換性zh_TW
dc.subject (關鍵詞) 空間分佈zh_TW
dc.subject (關鍵詞) 貝氏(Bayesian)方法zh_TW
dc.subject (關鍵詞) 檢定力比較zh_TW
dc.subject (關鍵詞) 空間自我迴歸(CAR)模型zh_TW
dc.subject (關鍵詞) auto-Poisson模型zh_TW
dc.subject (關鍵詞) auto-Gaussian模型zh_TW
dc.subject (關鍵詞) 群聚zh_TW
dc.subject (關鍵詞) Fisher`s exact testen_US
dc.subject (關鍵詞) Cramer-von Mises statisticen_US
dc.subject (關鍵詞) permutation testen_US
dc.subject (關鍵詞) exchangeableen_US
dc.subject (關鍵詞) spatial distributionsen_US
dc.subject (關鍵詞) Bayesian approachen_US
dc.subject (關鍵詞) power comparisonen_US
dc.subject (關鍵詞) spatial conditionally autoregressive (CAR) modelen_US
dc.subject (關鍵詞) auto-Poisson modelen_US
dc.subject (關鍵詞) auto-Gaussian modelen_US
dc.subject (關鍵詞) clusteren_US
dc.title (題名) 排列檢定法應用於空間資料之比較zh_TW
dc.title (題名) Permutation test on spatial comparisonen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Aitchison, J. and Ho, C. H. (1989), “The multivariate Poisson-log normal distribution.”,Biometrika, 76, 643–653.zh_TW
dc.relation.reference (參考文獻) Anderson, T.W. (1962), “On the distribution of the Two-ample Cramer-von Mises Crite-rion.”, The Annals of mathematical Statistics, 33, 1148–1159.zh_TW
dc.relation.reference (參考文獻) Anderson, T.W. and Darling, D.A. (1952), “Asymptotic Theory of Certain ”Goodness of Fit” Criteria Based on Stochastic Processes.”, The Annals of Mathematical Statistics,23, 193–212.zh_TW
dc.relation.reference (參考文獻) Armistead, C.E. and Nichol, D.G. (1993), “1990 Bottom trawl survey of the eastern Bering Sea continental shelf.”, United States Department of Commerce,NOAA Technical Mem-orandum NMFS-AFSC-7.zh_TW
dc.relation.reference (參考文獻) Besag, J.E. (1974), “Spatial interaction and statistical analysis of lattice systems.”, Journal of the Royal Society B, 36, 192–225.zh_TW
dc.relation.reference (參考文獻) Brodeur, R.D., Sugisaki, H., and Hunt, G. L. (2002), “Increases in jellyfish biomas in the bering sea: implications for the ecosystem.”, Marine Ecology Process Series ., 233,89–103.zh_TW
dc.relation.reference (參考文獻) Conover, W.J. (1999), Practical Nonparametric Statistic. Third edition, Wiley, New York.zh_TW
dc.relation.reference (參考文獻) Cressie, N. (1993), Statistics for Spatial Data, Revised Edition., Wiley, New York.zh_TW
dc.relation.reference (參考文獻) Cui, H. (2002), “The average projection type weighted cramer-von mises statistics for testing some distribution.”, Science in China (ser. A), 45(5), 562–577.zh_TW
dc.relation.reference (參考文獻) Deluis, M., Raventos, J., Gonzalez-Hidalgo, J.C., Sanchez, J.R., and Cortina, J. (2000), “Spatial analysis of rainfall trends in the region of valencia (east spain).”, Int. J. Clima-tol., 20, 1451–1469.zh_TW
dc.relation.reference (參考文獻) Edgington, E.S. (1980), Randomization tests. Second edition., Marcel-Dekker, New York.zh_TW
dc.relation.reference (參考文獻) Fisz, M. (1960), “On a Result by M.Rosenblatt Concerning the Von Mises-Smirnov Test.”, The Annals of Mathematical Statistics, 31, 427–429.zh_TW
dc.relation.reference (參考文獻) Good, P. (2000), A practical guide to resampling methods for testing hypotheses. Second edition., Spring-Verlag, New York.zh_TW
dc.relation.reference (參考文獻) Hedger, R., McKenzie, E., Heath, M., Wright, P., Scott, B., Gallego, A., and Andrews, J. (2004), “Analysis of the spatial distributions of mature cod (gadus morhua) and haddock (melanogrammus aeglefinus) abundance in the north sea (1980-1999) using generalised additive models.”, Fisheries Research., 70, 17–25.zh_TW
dc.relation.reference (參考文獻) Leach, M.K. and Givnish, T.J. (1999), “Gradients in the composition, structure, and di-versity of remnant oak savannas in southern wisconsin.”, Ecological Monograph., 69,353–374.zh_TW
dc.relation.reference (參考文獻) Lehmann, E.L. (1986), Testing Statistical Hypotheses.Second Edition, Spring-Verlag, New York.zh_TW
dc.relation.reference (參考文獻) Pearson, K. (1900), “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.”, Philosophy Magazine, 50, 157–172.zh_TW
dc.relation.reference (參考文獻) Swain, D.P. and Wade, E.J. (2003), “Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): tests of predictions of the ideal free distribution.”,Can J. Fish. Aquat. Sci., 60, 897–909.zh_TW
dc.relation.reference (參考文獻) Syrjala, S.E. (1996), “A statistical test for a difference between the spatial distribution of two populations”, Ecology, 77(1), 75–80.zh_TW
dc.relation.reference (參考文獻) Terceiro, M. (2003), “The statistical properties of recreational catch rate data for some fish stocks off the northeast U.S. coast.”, NMFS Scientific Publications Office.Fish Bull.,101, 653–672.zh_TW
dc.relation.reference (參考文獻) Wilks, S.S. (1938), “The large-sample distribution of the likelihood ratio for testing com-posite hypotheses.”, Annals of Mathematical Statistics, 9, 60–62.zh_TW
dc.relation.reference (參考文獻) Wilson, C.D, Hollowed, A.B., Shima, M., Walline, P., and Stienessen, S. (2003), “In-teractions between commercial fishing and walleye pollock.”, Alaska Fishery Researchzh_TW
dc.relation.reference (參考文獻) Bulletin., 10, 61–77.62zh_TW