Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 CPFR銷售預測模式之探討
作者 曾永勝
貢獻者 林我聰
曾永勝
關鍵詞 協同規劃、預測與再補貨
銷售預測
混合預測模型
類神經網路
演化策略法
Collaborative Planning, Forecasting and Replenishment
Sales Forecasting
Mixed Forecasting Structure
Artificial Neural Network
Evolution Strategy
日期 2005
上傳時間 14-Sep-2009 09:18:30 (UTC+8)
摘要 協同規劃、預測與再補貨(Collaborative Planning, Forecasting and Replenishment; CPFR),是目前供應鏈管理下重要的討論議題;台灣近年來由於加入WTO與製造業外移使競爭壓力加劇,全球運籌需求提升,使廠商間的合作更加密切,且近年來企業資訊環境與基礎建設逐漸成熟,有助於協同商務之發展。在CPFR流程與供應鏈協同作業環境下,一個供需雙方協同且績效良好的銷售預測具有關鍵的重要性,是管理決策與協同合作時的重要依據;但是多數的企業並沒有一個結構化、有系統化的預測流程及方法,進行多點且不同方法之預測,這樣的銷售預測較無穩定的品質,亦較難提供管理者合理的數據解釋。
     在CPFR流程下,強調買賣雙方透過完整、即時資訊的交流,進行短期、單一銷售預測,以提供雙方後續訂單預測、訂單補貨等決策的依據。本研究利用演算法(類神經網路和演化策略法)找出更適合混合性預測架構的解釋變數,再以較適合於實數解之演化策略法於修改黃蘭禎(2004)的三階段之預測模型架構,最後採用實驗方法,進行模型績效驗證。
Collaborative Planning, forecasting and replenishment (CPFR) is an important issue of supply chain management currently. Because of the severer competition resulted from entrance into WTO and industry integration, cooperation between Taiwanese companies becomes more intensely; enterprises’ information environment and foundation construction attain to maturity also boost the development of collaboration business. In CPRF process and supply chain operation environment, it is critical that a good performance sale forecasting collaborated by both supplier and buyer sides, and it is also the basis of policy decision and collaboration. However, the majority of the companies lack for a structural and systematical forecasting process to proceed with a multi-points forecasting with different methods. This kind of sale forecasting is less of stable quality and is harder to provide the managers a reasonable statistics explanation.
     Under the CPRF process, both buyers and sellers are able to obtain the short-term and single sale forecasting by real time information communication. Furthermore, the follow-up order forecasting and replenishment strategy decision can be also established through this process. This research finds the variables that are more suitable to the mixed structure by usage of the algorithms, ANN and Evolution Strategy. And this research uses Evolution Strategy that is more suitable to real question to improve the mixed structure of Huang (2004). In the end, experimentation is adopted in order to verify the performance of the model.
參考文獻 中文參考文獻
[1] 林郁文,「以產品生命週期為基礎之多世代產品競爭主動式雙贏價模式」,東海大學工業工程與經營資訊研究所碩士論文,2003年6月。
[2] 陳建安,「整合類神經往路與遺傳演算法為輔之模糊類神經網路於智慧型訂單選取之應用」,國立台北科技大學生產系統工程與管理研究所碩士論文, 2000年6月。
[3] 蘇木村、張孝德,「機器學習類神經網路、模糊系統以及基因演算法則」,全華科技圖書股份有限公司出版,2003年2版。
[4] 姚銘忠、張倫、林晏妃、黃曉玲,「工具機業導入協同規劃與補貨模式之探討」,第一屆知識管理與與協同規劃研討會,2002年。
[5] 張炳螣、張晴翔、廖嘉偉,「協同預測應用於IC 半導體之整合模式」,第一屆知識管理與與協同規劃研討會,2002年。
[6] 廖嘉偉,「前導性協同預測架構與實施系統之研究」,東海大學工業工程與經營資訊研究所碩士論文,2003年。
[7] 黃蘭禎,「CPFR流程下之短期預測模型」,政治大學資訊管理所碩士論文, 2004年。
[8] 葉怡成,「類神經網路模式應用與實作」,儒林圖書有限公司,2003年8版。
英文參考文獻
[1] Anderson, D. and Lee, H., White paper: The Internet-enabled supply chain: from the first click to the Last Mile, available at http://www.manufacturing.net/scm/contents/pdf/anderson_lee_wp.pdf, 1999.
[2] Arminger, G., Sales and Order Forecasts in the CPFR Process for Retail, Collaborative planning, forecasting, and replenishment –How to create a supply chain advantage, American Management Association, New York Publishing, pp. 53-68, 2002.
[3] Aviv, Y., The Effect of Collaborative Forecasting on Supply Chain Performance, Management Science, Vol. 47, No. 10, pp. 1326-1343, 2001.
[4] Aviv, Y., Gaining Benefits from Joint Forecasting and Replenishment Processes: the Case of Auto-Correlated Demand, Manufacturing & Service Operations Management, Vol. 4, No. 1, pp. 55-74, 2002.
[5] Arminger, G., Sales and order forecasts in the CPFR process for retail, inSeifert, D. (Ed.), 2003.
[6] Barry and Linoff, Data Mining Technologies, NY: Wisely, 1997.
[7] Chen, F., Drezner, Z., and Ryan, J. K., Simchi-Levi, D., Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Time and Information, Management Science, Vol. 46, pp.436-443, 2000.
[8] Chuen-Lung Chen, David B. K. and Patrick G. D., A new approach to applying feedforward neural networks to the prediction of musculoskeletal disorder risk, Applied Ergonomics, Vol. 31 pp.269-282, 2004.
[9] Chuen-Lung Chen, David B. K. and Patrick G. D., Using Feedforward Neural Networks and Forward Selection of Input Variables for an Ergonomics Data Classification Problem, Human Factors and Ergonomics in Manufacturing, Vol. 14 pp.31-49, 2004.
[10] Ellram, L. M., Supply Chain Management - The Industrial Organization Perspective, International Journal of Physical Distribution & Logistics Management, Vol. 21, No. 1, 13-22, 1991.
[11] Goldberg, D. E., Generic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing, 1989.
[12] Jeong, B. ,Jung, H. S. and Park, N. K., A computerized casual forecasting system using genetic algorithms in supply chain mgmt, the Journal of Systems and Software, Vol. 60, pp. 223-237, 2002.
[13] Johnson, James, Wood, Donald, Contemporary Logiatics 6th edition, Upper Saddle River, NJ: Prentice Hall, 1996.
[14] Herrera, M. L. and Verdegay, J. H., Fuzzy connectives based crossover operation to model genetic algorithms population diversity, Fuzzy Set and Systems, Vol. 92, pp. 21-30, 1997.
[15] Helms, M., Ettkin, L. P. and Chapman, S., Supply Chain Forecasting-Collaborative forecasting supports supply chain management, Business Process Management Journal, Vol. 6, Iss. 5, pp.392-394, 2000.
[16] Hoffmeister, F. Beack, T. and Schwefel, H.-P., A Survey of Evolution Strategies, Proceedings of the Fourth International Conference on Genetic Algorithms, R. Belew and L. B. Booker (Eds.), Morgan Kaufmann, San Mateo, pp. 2-9, 1991.
[17] Hoffmeister, F., Beack, T., Genetic algorithms and evolution strategies: similarities and differences, Tech. Report no. SYS-1/92, University of Dortmund, 1992.
[18] Holmstrom, J. , Framling, K. , Kaipia, R. and Saranen, J. , Collaborative Planning Forecasting and Replenishment: New Solutions Needed for Mass Collaboration, the Journal of Supply Chain Management ,Vol. 7, No. 3, pp. 136-145, 2002.
[19] Jain, L., Which Forecasting Model should We Use? The journal of business forecasting, Vol.19, No. 3, pp. 2, 28, 35, 2000.
[20] Jain, L., Benchmarking forecasting models, The Journal of Business Forecasting, Methods and System, Vol.21, No. 3 , pp.18-20,30, 2002.
[21] Kolter, P., Marketing management-Analysis, Planning, Implementation and Control, 9th Ed, Englewood Cliffs, N.J., Prentice-Hall Inc., 1991.
[22] Lambert, Douglas M. and Martha C. Cooper, Issues in Supply Chain Management, Industrial Marketing Management, Vol. 29, pp.65-83, 2000.
[23] Lapide, L., New developments in business forecasting: Debunking executive conventional wisdom, The journal of business forecasting, vol.19, No.2, pp.16-17, 2000.
[24] LeVee, G. S., The Key to Understanding the Forecasting Process, Journal of Business Forecasting, Vol.11, No.4, pp.12-16, 1992.
[25] Master, T., Practical Neural Network Recipes in C++, Academic Press Inc., San Diego, CA. 1993.
[26] Mills, T. C., Time Series Techniques for Economics, Cambridge University Press, United Kingdom, 1990.
[27] Mulhern, F. J., Williams, J. D. and Leone, R. P., Variability of Brand Price Elasticity across Retail Stores: Ethnic, Income, and Brand Determinants, Journal of Retailing, Vol.74, No. 3, pp. 427-446, 1998.
[28] Nolan, W. Jr., Game Plan for A Successful Collaboration Forecasting process, the Journal of Business Forecasting, Spring, pp.2-6, 2001.
[29] Ozturkmen, Z. A., Forecasting in the Rapid Changing Telecommunications Industry: AT&T`s Experience, The journal of business forecasting, Vol.19, No.3, pp.3-4, 2000.
[30] Shankar, V. and Krishnamurthi, L., Relating Price Sensitivity to Retail Promotional Variables and Pricing Policy: An Empirical Analysis, Journal of Retailing, Vol.72, No. 3, pp. 249-272, 1996.
[31] Seifert, D., Collaborative Planning, Forecasting and Replenishment, Preprint Edition, pp.39-52, 2002.
[32] Stank, T. P. and Keller, S. B., Supply Chain Collaboration and Logistical Service performance, Journal of Business Logistics, Vol. 22, No.1, pp.29-45, 2001.
[33] Shankar, Venkatesh and Lakshman Krishnamurthi, Relating Price Sensitivity to Retailer Promotional Variables and Priceing Policy: An Empiricial Analysis, Journal of Retailing, Vol. 72, No.3, pp. 249-272, 1996.
[34] Voss, G. B. and Seiders, K., Exploring the Effect of Retail Sector and Firm Characteristics on Retail Price Promotion Strategy, Journal of Retailing, Vol. 79, pp.37-52, 2003.
[35] Thomas Back, Frank Hoffmeister, and Hans-Paul Schwefel, A survey of evolution strategies, Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2-9, July 1991.
描述 碩士
國立政治大學
資訊管理研究所
92356030
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0923560301
資料類型 thesis
dc.contributor.advisor 林我聰zh_TW
dc.contributor.author (Authors) 曾永勝zh_TW
dc.creator (作者) 曾永勝zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 14-Sep-2009 09:18:30 (UTC+8)-
dc.date.available 14-Sep-2009 09:18:30 (UTC+8)-
dc.date.issued (上傳時間) 14-Sep-2009 09:18:30 (UTC+8)-
dc.identifier (Other Identifiers) G0923560301en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/31128-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊管理研究所zh_TW
dc.description (描述) 92356030zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 協同規劃、預測與再補貨(Collaborative Planning, Forecasting and Replenishment; CPFR),是目前供應鏈管理下重要的討論議題;台灣近年來由於加入WTO與製造業外移使競爭壓力加劇,全球運籌需求提升,使廠商間的合作更加密切,且近年來企業資訊環境與基礎建設逐漸成熟,有助於協同商務之發展。在CPFR流程與供應鏈協同作業環境下,一個供需雙方協同且績效良好的銷售預測具有關鍵的重要性,是管理決策與協同合作時的重要依據;但是多數的企業並沒有一個結構化、有系統化的預測流程及方法,進行多點且不同方法之預測,這樣的銷售預測較無穩定的品質,亦較難提供管理者合理的數據解釋。
     在CPFR流程下,強調買賣雙方透過完整、即時資訊的交流,進行短期、單一銷售預測,以提供雙方後續訂單預測、訂單補貨等決策的依據。本研究利用演算法(類神經網路和演化策略法)找出更適合混合性預測架構的解釋變數,再以較適合於實數解之演化策略法於修改黃蘭禎(2004)的三階段之預測模型架構,最後採用實驗方法,進行模型績效驗證。
zh_TW
dc.description.abstract (摘要) Collaborative Planning, forecasting and replenishment (CPFR) is an important issue of supply chain management currently. Because of the severer competition resulted from entrance into WTO and industry integration, cooperation between Taiwanese companies becomes more intensely; enterprises’ information environment and foundation construction attain to maturity also boost the development of collaboration business. In CPRF process and supply chain operation environment, it is critical that a good performance sale forecasting collaborated by both supplier and buyer sides, and it is also the basis of policy decision and collaboration. However, the majority of the companies lack for a structural and systematical forecasting process to proceed with a multi-points forecasting with different methods. This kind of sale forecasting is less of stable quality and is harder to provide the managers a reasonable statistics explanation.
     Under the CPRF process, both buyers and sellers are able to obtain the short-term and single sale forecasting by real time information communication. Furthermore, the follow-up order forecasting and replenishment strategy decision can be also established through this process. This research finds the variables that are more suitable to the mixed structure by usage of the algorithms, ANN and Evolution Strategy. And this research uses Evolution Strategy that is more suitable to real question to improve the mixed structure of Huang (2004). In the end, experimentation is adopted in order to verify the performance of the model.
en_US
dc.description.tableofcontents 第一章 緒論 1
     1.1研究背景 1
     1.2研究動機 2
     1.3研究目的 4
     1.4研究方法 4
     1.5研究架構與步驟 5
     1.6研究範圍 6
     1.7章節架構 6
     第二章 文獻探討 8
     2.1供應鏈管理 8
     2.2協同規劃、預測和再補貨(CPFR) 11
     2.3銷售預測與預測方法 14
     2.4類神經網路 21
     2.5演化策略法 25
     第三章 混合預測模型架構 30
     3.1研究架構 30
     3.2資料蒐集整理與應用 32
     3.3時間序列---指數平滑模型時間序列 33
     3.4模型變數之訓練與選取 34
     3.5多元線性回歸模型 41
     3.6演化策略法求最佳化之混合預測模型 41
     3.7 驗證方法、工具與績效衡量指標 44
     第四章、實驗分析與模型績效驗證 47
     4.1資料敘述與分析 47
     4.2 產品A 預測實驗與績效 48
     4.3 產品B 預測實驗與績效 59
     第五章、結論與建議 66
     5.1 結論 66
     5.2 後續研究方向與建議 67
     中文參考文獻 68
     英文參考文獻 69
     
     
     圖 目 錄
     圖1- 1、本研究架構與步驟示意圖 5
     圖2- 1、供應鏈管理圖示 9
     圖2- 2、黃蘭禎(2004)之三階段預測模型架構圖 20
     圖2- 3、類神經網路主要架構圖 22
     圖2- 4、網路架構分類圖 23
     圖3- 1、混合預測模型架構圖 30
     圖3- 2、本研究各階段劃分與資料應用示意圖 33
     圖3- 3、以時間序列變數為輸入變數的類神經網路的架構圖 38
     圖3- 4、以時間序列變數及另一個解釋變數的引進為輸入變數的類神經網路的架構圖 39
     圖4- 1、兩產品各週銷售之資料圖 47
     圖4- 2、本研究各階段劃分與資料應用示意圖 48
     圖4- 3、產品A 時間序列實際銷售量與預測曲線圖 49
     圖4- 4、產品B 時間序列實際銷售量與預測曲線圖 59
     
     
     
     
     
     表 目 錄
     表1- 1、協同預測或CPFR 流程相關文獻—著重於管理面者 2
     表1- 2、協同預測或CPFR 流程相關文獻—著重於預測技術者 3
     表2- 1、供應鏈管理之定義整理 8
     表2- 2、CPFR 的三階段與九流程步驟 13
     表2- 3、CPFR流程模型中的銷售預測與訂單預測之差異 14
     表2- 4、因果銷售預測函數型態 18
     表3- 1、本研究模型與欲比較之模型特性對照表 45
     表4- 1、產品A 時間序列模型參數敏感度訓練分析(霍特的兩參數線性指數平滑法) 48
     表4- 2、演化策略法代數績效測試前10名 50
     表4- 3、演化策略法「突變率」績效測試前10名 51
     表4- 4、演化策略法「策略參數」績效測試前10名 52
     表4- 5、產品A變數選取流程之第一輪結果 53
     表4- 6、產品A變數選取流程之第二輪結果 53
     表4- 7、產品A變數選取流程之第三輪結果 54
     表4- 8、產品A變數選取流程之第四輪結果 55
     表4- 9、產品A變數選取流程之第五輪結果 55
     表4- 10、產品A 第三階段回歸模型分析與模型參數表 56
     表4- 11、產品A 演化策略模型第一期初始值 57
     表4- 12、產品A之10次實驗平均績效 57
     表4- 13、產品B變數選取流程之第一輪結果 59
     表4- 14、產品B變數選取流程之第二輪結果 60
     表4- 15、產品B變數選取流程之第三輪結果 60
     表4- 16、產品B變數選取流程之第四輪結果 61
     表4- 17、產品B變數選取流程之第五輪結果 61
     表4- 18、產品B變數選取流程之第六輪結果 62
     表4- 19、產品B 第三階段回歸模型分析與模型參數表 63
     表4- 20、產品B 演化策略模型第一期初始值 63
     表4- 21、產品B之10次實驗平均績效 64
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0923560301en_US
dc.subject (關鍵詞) 協同規劃、預測與再補貨zh_TW
dc.subject (關鍵詞) 銷售預測zh_TW
dc.subject (關鍵詞) 混合預測模型zh_TW
dc.subject (關鍵詞) 類神經網路zh_TW
dc.subject (關鍵詞) 演化策略法zh_TW
dc.subject (關鍵詞) Collaborative Planning, Forecasting and Replenishmenten_US
dc.subject (關鍵詞) Sales Forecastingen_US
dc.subject (關鍵詞) Mixed Forecasting Structureen_US
dc.subject (關鍵詞) Artificial Neural Networken_US
dc.subject (關鍵詞) Evolution Strategyen_US
dc.title (題名) CPFR銷售預測模式之探討zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文參考文獻zh_TW
dc.relation.reference (參考文獻) [1] 林郁文,「以產品生命週期為基礎之多世代產品競爭主動式雙贏價模式」,東海大學工業工程與經營資訊研究所碩士論文,2003年6月。zh_TW
dc.relation.reference (參考文獻) [2] 陳建安,「整合類神經往路與遺傳演算法為輔之模糊類神經網路於智慧型訂單選取之應用」,國立台北科技大學生產系統工程與管理研究所碩士論文, 2000年6月。zh_TW
dc.relation.reference (參考文獻) [3] 蘇木村、張孝德,「機器學習類神經網路、模糊系統以及基因演算法則」,全華科技圖書股份有限公司出版,2003年2版。zh_TW
dc.relation.reference (參考文獻) [4] 姚銘忠、張倫、林晏妃、黃曉玲,「工具機業導入協同規劃與補貨模式之探討」,第一屆知識管理與與協同規劃研討會,2002年。zh_TW
dc.relation.reference (參考文獻) [5] 張炳螣、張晴翔、廖嘉偉,「協同預測應用於IC 半導體之整合模式」,第一屆知識管理與與協同規劃研討會,2002年。zh_TW
dc.relation.reference (參考文獻) [6] 廖嘉偉,「前導性協同預測架構與實施系統之研究」,東海大學工業工程與經營資訊研究所碩士論文,2003年。zh_TW
dc.relation.reference (參考文獻) [7] 黃蘭禎,「CPFR流程下之短期預測模型」,政治大學資訊管理所碩士論文, 2004年。zh_TW
dc.relation.reference (參考文獻) [8] 葉怡成,「類神經網路模式應用與實作」,儒林圖書有限公司,2003年8版。zh_TW
dc.relation.reference (參考文獻) 英文參考文獻zh_TW
dc.relation.reference (參考文獻) [1] Anderson, D. and Lee, H., White paper: The Internet-enabled supply chain: from the first click to the Last Mile, available at http://www.manufacturing.net/scm/contents/pdf/anderson_lee_wp.pdf, 1999.zh_TW
dc.relation.reference (參考文獻) [2] Arminger, G., Sales and Order Forecasts in the CPFR Process for Retail, Collaborative planning, forecasting, and replenishment –How to create a supply chain advantage, American Management Association, New York Publishing, pp. 53-68, 2002.zh_TW
dc.relation.reference (參考文獻) [3] Aviv, Y., The Effect of Collaborative Forecasting on Supply Chain Performance, Management Science, Vol. 47, No. 10, pp. 1326-1343, 2001.zh_TW
dc.relation.reference (參考文獻) [4] Aviv, Y., Gaining Benefits from Joint Forecasting and Replenishment Processes: the Case of Auto-Correlated Demand, Manufacturing & Service Operations Management, Vol. 4, No. 1, pp. 55-74, 2002.zh_TW
dc.relation.reference (參考文獻) [5] Arminger, G., Sales and order forecasts in the CPFR process for retail, inSeifert, D. (Ed.), 2003.zh_TW
dc.relation.reference (參考文獻) [6] Barry and Linoff, Data Mining Technologies, NY: Wisely, 1997.zh_TW
dc.relation.reference (參考文獻) [7] Chen, F., Drezner, Z., and Ryan, J. K., Simchi-Levi, D., Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Time and Information, Management Science, Vol. 46, pp.436-443, 2000.zh_TW
dc.relation.reference (參考文獻) [8] Chuen-Lung Chen, David B. K. and Patrick G. D., A new approach to applying feedforward neural networks to the prediction of musculoskeletal disorder risk, Applied Ergonomics, Vol. 31 pp.269-282, 2004.zh_TW
dc.relation.reference (參考文獻) [9] Chuen-Lung Chen, David B. K. and Patrick G. D., Using Feedforward Neural Networks and Forward Selection of Input Variables for an Ergonomics Data Classification Problem, Human Factors and Ergonomics in Manufacturing, Vol. 14 pp.31-49, 2004.zh_TW
dc.relation.reference (參考文獻) [10] Ellram, L. M., Supply Chain Management - The Industrial Organization Perspective, International Journal of Physical Distribution & Logistics Management, Vol. 21, No. 1, 13-22, 1991.zh_TW
dc.relation.reference (參考文獻) [11] Goldberg, D. E., Generic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing, 1989.zh_TW
dc.relation.reference (參考文獻) [12] Jeong, B. ,Jung, H. S. and Park, N. K., A computerized casual forecasting system using genetic algorithms in supply chain mgmt, the Journal of Systems and Software, Vol. 60, pp. 223-237, 2002.zh_TW
dc.relation.reference (參考文獻) [13] Johnson, James, Wood, Donald, Contemporary Logiatics 6th edition, Upper Saddle River, NJ: Prentice Hall, 1996.zh_TW
dc.relation.reference (參考文獻) [14] Herrera, M. L. and Verdegay, J. H., Fuzzy connectives based crossover operation to model genetic algorithms population diversity, Fuzzy Set and Systems, Vol. 92, pp. 21-30, 1997.zh_TW
dc.relation.reference (參考文獻) [15] Helms, M., Ettkin, L. P. and Chapman, S., Supply Chain Forecasting-Collaborative forecasting supports supply chain management, Business Process Management Journal, Vol. 6, Iss. 5, pp.392-394, 2000.zh_TW
dc.relation.reference (參考文獻) [16] Hoffmeister, F. Beack, T. and Schwefel, H.-P., A Survey of Evolution Strategies, Proceedings of the Fourth International Conference on Genetic Algorithms, R. Belew and L. B. Booker (Eds.), Morgan Kaufmann, San Mateo, pp. 2-9, 1991.zh_TW
dc.relation.reference (參考文獻) [17] Hoffmeister, F., Beack, T., Genetic algorithms and evolution strategies: similarities and differences, Tech. Report no. SYS-1/92, University of Dortmund, 1992.zh_TW
dc.relation.reference (參考文獻) [18] Holmstrom, J. , Framling, K. , Kaipia, R. and Saranen, J. , Collaborative Planning Forecasting and Replenishment: New Solutions Needed for Mass Collaboration, the Journal of Supply Chain Management ,Vol. 7, No. 3, pp. 136-145, 2002.zh_TW
dc.relation.reference (參考文獻) [19] Jain, L., Which Forecasting Model should We Use? The journal of business forecasting, Vol.19, No. 3, pp. 2, 28, 35, 2000.zh_TW
dc.relation.reference (參考文獻) [20] Jain, L., Benchmarking forecasting models, The Journal of Business Forecasting, Methods and System, Vol.21, No. 3 , pp.18-20,30, 2002.zh_TW
dc.relation.reference (參考文獻) [21] Kolter, P., Marketing management-Analysis, Planning, Implementation and Control, 9th Ed, Englewood Cliffs, N.J., Prentice-Hall Inc., 1991.zh_TW
dc.relation.reference (參考文獻) [22] Lambert, Douglas M. and Martha C. Cooper, Issues in Supply Chain Management, Industrial Marketing Management, Vol. 29, pp.65-83, 2000.zh_TW
dc.relation.reference (參考文獻) [23] Lapide, L., New developments in business forecasting: Debunking executive conventional wisdom, The journal of business forecasting, vol.19, No.2, pp.16-17, 2000.zh_TW
dc.relation.reference (參考文獻) [24] LeVee, G. S., The Key to Understanding the Forecasting Process, Journal of Business Forecasting, Vol.11, No.4, pp.12-16, 1992.zh_TW
dc.relation.reference (參考文獻) [25] Master, T., Practical Neural Network Recipes in C++, Academic Press Inc., San Diego, CA. 1993.zh_TW
dc.relation.reference (參考文獻) [26] Mills, T. C., Time Series Techniques for Economics, Cambridge University Press, United Kingdom, 1990.zh_TW
dc.relation.reference (參考文獻) [27] Mulhern, F. J., Williams, J. D. and Leone, R. P., Variability of Brand Price Elasticity across Retail Stores: Ethnic, Income, and Brand Determinants, Journal of Retailing, Vol.74, No. 3, pp. 427-446, 1998.zh_TW
dc.relation.reference (參考文獻) [28] Nolan, W. Jr., Game Plan for A Successful Collaboration Forecasting process, the Journal of Business Forecasting, Spring, pp.2-6, 2001.zh_TW
dc.relation.reference (參考文獻) [29] Ozturkmen, Z. A., Forecasting in the Rapid Changing Telecommunications Industry: AT&T`s Experience, The journal of business forecasting, Vol.19, No.3, pp.3-4, 2000.zh_TW
dc.relation.reference (參考文獻) [30] Shankar, V. and Krishnamurthi, L., Relating Price Sensitivity to Retail Promotional Variables and Pricing Policy: An Empirical Analysis, Journal of Retailing, Vol.72, No. 3, pp. 249-272, 1996.zh_TW
dc.relation.reference (參考文獻) [31] Seifert, D., Collaborative Planning, Forecasting and Replenishment, Preprint Edition, pp.39-52, 2002.zh_TW
dc.relation.reference (參考文獻) [32] Stank, T. P. and Keller, S. B., Supply Chain Collaboration and Logistical Service performance, Journal of Business Logistics, Vol. 22, No.1, pp.29-45, 2001.zh_TW
dc.relation.reference (參考文獻) [33] Shankar, Venkatesh and Lakshman Krishnamurthi, Relating Price Sensitivity to Retailer Promotional Variables and Priceing Policy: An Empiricial Analysis, Journal of Retailing, Vol. 72, No.3, pp. 249-272, 1996.zh_TW
dc.relation.reference (參考文獻) [34] Voss, G. B. and Seiders, K., Exploring the Effect of Retail Sector and Firm Characteristics on Retail Price Promotion Strategy, Journal of Retailing, Vol. 79, pp.37-52, 2003.zh_TW
dc.relation.reference (參考文獻) [35] Thomas Back, Frank Hoffmeister, and Hans-Paul Schwefel, A survey of evolution strategies, Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2-9, July 1991.zh_TW