dc.contributor.advisor | 廖四郎 | zh_TW |
dc.contributor.author (Authors) | 邵智羚 | zh_TW |
dc.creator (作者) | 邵智羚 | zh_TW |
dc.date (日期) | 2004 | en_US |
dc.date.accessioned | 14-Sep-2009 09:35:00 (UTC+8) | - |
dc.date.available | 14-Sep-2009 09:35:00 (UTC+8) | - |
dc.date.issued (上傳時間) | 14-Sep-2009 09:35:00 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0923520271 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/31236 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 金融研究所 | zh_TW |
dc.description (描述) | 92352027 | zh_TW |
dc.description (描述) | 93 | zh_TW |
dc.description.abstract (摘要) | 經由愈來愈多的實證研究發現,的確在利率的變動過程中,除了包含連續性行為,即遵循”擴散”模式(diffusion process),亦包含了不連續性行為,也就是有著跳躍(jump)的情形發生。因此顯示出假設利率隨機過程僅為連續性的擴散模型已是不足夠的,跳躍-擴散模型(Jump-diffusion model)顯然會比純粹擴散模型有著更好的解釋能力。而市場模型(LIBOR market model)的提出,則說明了遠期LIBOR利率模型較能描述市場實際的利率型態,並且可方便使用市場資訊,進行模型參數校準。 所以本研究旨在以LIBOR market model 加上跳躍過程,即遠期LIBOR利率的跳躍-擴散模型,分別針對歐洲美元期貨與利率結構型債券中的滾雪球式累息債券建立評價方法。由於所選用動態模型的複雜度,使得封閉解的求出不易,因此在文中,最後是採用蒙地卡羅模擬法,求兩商品的數值解。在後續研究上,本文還挑出了幾個最直接影響商品價值的因素,如殖利率、波動度、跳躍幅度等,進行各種情境下商品價值的敏感度分析,以提供投資人與發行商在考量風險因子所在時的一個參考。 | zh_TW |
dc.description.tableofcontents | 謝辭 i 摘要 ii 目錄 iii 表目錄 iv 圖目錄 v 第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究架構 2 第二章 文獻回顧 4 第一節 短期利率期貨 4 第二節 利率結構型債券 7 第三節 利率評價模型 10 一、純粹擴散模型 10 二、跳躍-擴散模型 15 第三章 研究方法 20 第一節 遠期LIBOR利率之跳躍-擴散模型建立 20 第二節 利率衍生性商品評價方法 33 一、短期利率期貨-以歐洲美元期貨為例 33 二、利率結構型債券-以滾雪球式累息債券為例 38 第三節 模型校準與參數估計 42 一、最適化隱含參數估計法 43 二、波動度期間結構 46 三、拔靴法殖利率曲線估計 48 第四章 實證研究 52 第一節 模型參數與基本設定 52 第二節 實證研究結果與分析 54 一、歐洲美元期貨評價與分析 54 二、美元指標連結滾雪球式累息債券評價與分析 58 第五章 結論與建議 70 參考文獻 72 附錄 75 | zh_TW |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0923520271 | en_US |
dc.subject (關鍵詞) | 跳躍擴散模型 | zh_TW |
dc.subject (關鍵詞) | 市場模型 | zh_TW |
dc.subject (關鍵詞) | 歐洲美元期貨 | zh_TW |
dc.subject (關鍵詞) | 利率結構型債券 | zh_TW |
dc.subject (關鍵詞) | jump-diffusion model | en_US |
dc.subject (關鍵詞) | LIBOR market model | en_US |
dc.subject (關鍵詞) | Eurodollar futures | en_US |
dc.subject (關鍵詞) | interest rate structured note | en_US |
dc.title (題名) | 跳躍擴散模型下之短期利率期貨與結構型債券評價 | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 國內文獻: | zh_TW |
dc.relation.reference (參考文獻) | 1. 王麗妙,「以跳躍-擴散模型評價單一型認購權證之實證研究」,國立高雄第一科技大學金融營運系研究所,碩士論文,民國88年。 | zh_TW |
dc.relation.reference (參考文獻) | 2. 李國榮,「跳躍-擴散過程下之債券及債券選擇權訂價」,國立中山大學財務管理學系研究所,碩士論文,民國88年。 | zh_TW |
dc.relation.reference (參考文獻) | 3. 林丙輝、葉仕國,「台灣金融市場跳躍-擴散利率模型之實證研究」,中國財務學刊,第六卷第一期,77-106頁,民國87年7月。 | zh_TW |
dc.relation.reference (參考文獻) | 4. 林盈志,「固定收益證券之金融創新-結構型債券」,寶來金融創新雙月刊,第九期,民國88年11月。 | zh_TW |
dc.relation.reference (參考文獻) | 5. 黃珮菁,「路徑相依利率結構型債券之評價」,國立政治大學金融研究所,碩士論文,民國93年。 | zh_TW |
dc.relation.reference (參考文獻) | 6. 廖志展,「在跳躍擴散過程下評價利率期貨選擇權」,國立政治大學國際貿易系研究所,碩士論文,民國93年。 | zh_TW |
dc.relation.reference (參考文獻) | 7. 謝嫚綺,「結構型債券之評價與分析」,國立政治大學金融研究所,碩士論文,民國93年。 | zh_TW |
dc.relation.reference (參考文獻) | 國外文獻: | zh_TW |
dc.relation.reference (參考文獻) | 1. Amin, K., I., and Morton, A. J. (1994), “Implied volatility functions in arbitrage-free term structure models.”, Journal of Financial Economics, 35, pp.141-180. | zh_TW |
dc.relation.reference (參考文獻) | 2. Babbs, S., and Webber, N. (1997), “Term structure modeling under alternative official regimes.”, in Mathematics of derivative securities, M. A. H. Dempster and S. R. Pliska (Eds.), Cambridge University Press, Cambridge, UK. | zh_TW |
dc.relation.reference (參考文獻) | 3. Björk, T., Kabanov, Y., and Runggaldier, W. (1997), “Bond market structure in the presence of marked point processes.”, Mathematical Finance, 7(2), pp.211-223. | zh_TW |
dc.relation.reference (參考文獻) | 4. Brace, A., Gatarek, G., and Musiela, M. (1997), “The market model of interest rate dynamics.”, Mathematical Finance, 7(2), pp.127-147. | zh_TW |
dc.relation.reference (參考文獻) | 5. Brigo, D., and Mercurio, F. (2001), “Interest Rate Models Theory and Practice.”, Springer-Verlag, Heidelberg , Germany. | zh_TW |
dc.relation.reference (參考文獻) | 6. Chiarella, C., and Tô, T.-D. (2003), “The jump component of the volatility structure of interest rate futures markets : and international comparison.”, The Journal of Futures Markets, 23(12), pp.1125-1158. | zh_TW |
dc.relation.reference (參考文獻) | 7. Das, S. R. (1999), “The surprise element: jumps in interest rate diffusions.”, Working paper, Harvard Business School. | zh_TW |
dc.relation.reference (參考文獻) | 8. El-Jahel, L., Lindberg, H., and Perraudin, W. (1997), “Interest rate distributions, yield curve modeling and monetary policy.”, in Mathematics of derivative securities, M. A. H. Dempster and S. R. Pliska (Eds.), Cambridge University Press, Cambridge, UK. | zh_TW |
dc.relation.reference (參考文獻) | 9. Glasserman, P. (2003), “Monte Carlo Methods in Financial Engineering.”, B. Rozovskii and M. Yor (Eds.), Springer-Verlag, New York, USA. | zh_TW |
dc.relation.reference (參考文獻) | 10. Glasserman, P., and Kou, S. G. (2003), “The term structure of simple forward rates with jump risk.” , Mathematical Finance, 13(1), pp.383-410. | zh_TW |
dc.relation.reference (參考文獻) | 11. Heath, D., Jarrow, R., and Morton, A. (1992), “Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation.”, Econometrica, 60(1), pp.77-105. | zh_TW |
dc.relation.reference (參考文獻) | 12. Ho, T. S. Y., and Lee, S. B. (1986), “Term structure movements and pricing interest rate contingent claims.”, Journal of Finance, 41, pp.1011-1029. | zh_TW |
dc.relation.reference (參考文獻) | 13. Hull, J. C., and White, A. (1990), “Pricing interest-rate-derivative securities.”, Review of Financial Studies, 3(4), pp.573-592. | zh_TW |
dc.relation.reference (參考文獻) | 14. Hull, J. C. and White A. (2000), “Forward rate volatilities, swap rate volatilities, and implementation of the LIBOR market model.”, Journal of Fixed Income, 9, pp.46-62. | zh_TW |
dc.relation.reference (參考文獻) | 15. Johannes, M. (2004), “The statistical and economic role of jumps in continuous-time interest rate models.”, Journal of Finance, ,pp.227-260. | zh_TW |
dc.relation.reference (參考文獻) | 16. Miltersen, K. R., Sandmann, K., and Sondermann, D. (1997), “Closed form solutions for term structure derivatives with log-normal interest rates.”, Journal of Finance”, 52(1), pp.409-430. | zh_TW |
dc.relation.reference (參考文獻) | 17. Shirakawa, H. (1991), ”Interest rate option pricing with Poisson-Gaussian forward rate curve processes.”, Mathematical Finance, 1(4), pp.77-94. | zh_TW |
dc.relation.reference (參考文獻) | 18. Shreve, S. E. (2004), “Stochastic Calculus for Finance II: Continuous-Time Models.”, Springer-Verlag, USA. | zh_TW |
dc.relation.reference (參考文獻) | 19. Sundaresan, S. M. (2002), “Fixed Income Markets and Their Derivatives, 2e.”, South-Western, USA. | zh_TW |
dc.relation.reference (參考文獻) | 20. Zagst, R. (2002), “Interest-Rate Management.” , Springer-Verlag, Heidelberg, Germany. | zh_TW |