Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 市場模型下評價反浮動利率債劵
作者 曾鼎翔
貢獻者 廖四郎
曾鼎翔
關鍵詞 市場模型
反浮動利率債劵
日期 2005
上傳時間 14-Sep-2009 09:35:05 (UTC+8)
摘要 本文採用市場模型(The LIBOR Market Model)來評價反浮動利率債劵,之前評價利率衍生性商品大多採用Hull and White 模型,而本文改採用LIBOR Market Model來評價反浮動利率商品,使用此模型的好處在於LIBOR Market Model是將HJM模型間斷化,而直接推導出市場上可以觀察到的LIBOR利率的隨機過程,用它來描述市場利率期間結構,同時也必須考慮LIBOR利率的波動度,而透過實際市場資料的校準以符合市場上的利率期間結構以及波動結構,來對衍生性商品做定價與避險。
     
     實證部分以法國巴黎銀行所發行的BNP反浮動利率連動債來做例子,利用LIBOR Market Model並做蒙地卡羅法做模擬,進而求得商品價格以及避險參數Delta值。
參考文獻 1、Brace,A.,D.Gatarek , and M. Musiela (1997). The market model of interest rate dynamics . Mathematical Finance.
2、Cox,J.C.,J.E.Ingersoll,Jr., and S.A.Ross,(1985),A theory of the term structure of interest rates. Econometerica,53,385-407.
3、Damiano Brigo and Fabio Mercurio. Interest Rate Models Theory and practice.
4、Heath,D.,R.Jarrow, and A. Morton. (1990). Bond pricing and the term structure of interest rates. Econometrica. 53,385-407
5、Heath,D.,R.Jarrow, and A. Morton. (1992).Bond pricing and the term structure of interest rates: anew methodology for contingent claims valuation.Econometrica.60,77-105.
6、Ho,T.S.Y.,ands.B.Lee,(1986),Term structure movements and pricing interest rate contingent claims. Journal of Finance.
7、Hull,J.C. and A. White,(1990),Pricing interest-rate-derivative securities. Review of Financial Studies,3,423-440.
8、Hull,J.C. and A. White,(1993),Bond option based on a model for the evolution of bond prices. Advances in Futures and Options Research,6,1-3.
9、Hull,J.C. and A. White,(2000),Forward Rate Volatilities,Swap Rate Volatilities, and The Implementation of The LIBOR Market Model, Journal of Fixed Income.
10、Jamshidian,F.(1997).LIBOR and swap market models and measures. Finance and Stochastics.1,293-330.
11、Longstaff,F.A. and E. Schwartz. (1992). Interest rate volatility and the termstructure: a two-factor general equilibrium model. Journal of Finance.47,1259-1282.
12、Miltersen,K.,K. Sandmann, and D.Sondermann.(1997).Closed form solutions for term structure derivatives with lognormal interest rate.Journal of Finance.52,409-430.
13、Yan,H.(2001).Dynamic models of the term structure.Financial Analysts Journal.60-76.
描述 碩士
國立政治大學
金融研究所
92352028
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0923520281
資料類型 thesis
dc.contributor.advisor 廖四郎zh_TW
dc.contributor.author (Authors) 曾鼎翔zh_TW
dc.creator (作者) 曾鼎翔zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 14-Sep-2009 09:35:05 (UTC+8)-
dc.date.available 14-Sep-2009 09:35:05 (UTC+8)-
dc.date.issued (上傳時間) 14-Sep-2009 09:35:05 (UTC+8)-
dc.identifier (Other Identifiers) G0923520281en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/31237-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 金融研究所zh_TW
dc.description (描述) 92352028zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本文採用市場模型(The LIBOR Market Model)來評價反浮動利率債劵,之前評價利率衍生性商品大多採用Hull and White 模型,而本文改採用LIBOR Market Model來評價反浮動利率商品,使用此模型的好處在於LIBOR Market Model是將HJM模型間斷化,而直接推導出市場上可以觀察到的LIBOR利率的隨機過程,用它來描述市場利率期間結構,同時也必須考慮LIBOR利率的波動度,而透過實際市場資料的校準以符合市場上的利率期間結構以及波動結構,來對衍生性商品做定價與避險。
     
     實證部分以法國巴黎銀行所發行的BNP反浮動利率連動債來做例子,利用LIBOR Market Model並做蒙地卡羅法做模擬,進而求得商品價格以及避險參數Delta值。
zh_TW
dc.description.tableofcontents 第一章 緒論……………………………………………………………1
     
     第一節 研究動機…………………………………………………………….1
     
     第二節 研究目的…………………………………………………………….3
     
     第三節 研究架構…………………………………………………………….3
     
     第二章 文獻回顧……………………………………………………..5
     
     第一節 利率連結商品介紹………………………………………………….5
     
     第二節 利率模型發展過程………………………………………………….7
     
     
     第三章 評價方法……………………………………………………..14
     
     第一節 LIBOR Market Model……………………………………………….14
     
     第二節 模型架構介紹……………………………………………………….14
     
     第三節 遠期LIBOR利率模型……………………………………………….15
     
     第四節 測度轉換…………………………………………………………….19
     
     第五節 衍生性商品評價…………………………………………………….22
     
     第四章 實證分析………………………………………………………26
     
     
     第五章 避險分析……………………………………………………..42
     
     第一節 避險方式介紹……………………………………………………..42
     
     第二節 避險參數分析……………………………………………………..43
     
     第六章 結論與建議……………………………………………………………44
     
     參考文獻……………………………………………………………
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0923520281en_US
dc.subject (關鍵詞) 市場模型zh_TW
dc.subject (關鍵詞) 反浮動利率債劵zh_TW
dc.title (題名) 市場模型下評價反浮動利率債劵zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1、Brace,A.,D.Gatarek , and M. Musiela (1997). The market model of interest rate dynamics . Mathematical Finance.zh_TW
dc.relation.reference (參考文獻) 2、Cox,J.C.,J.E.Ingersoll,Jr., and S.A.Ross,(1985),A theory of the term structure of interest rates. Econometerica,53,385-407.zh_TW
dc.relation.reference (參考文獻) 3、Damiano Brigo and Fabio Mercurio. Interest Rate Models Theory and practice.zh_TW
dc.relation.reference (參考文獻) 4、Heath,D.,R.Jarrow, and A. Morton. (1990). Bond pricing and the term structure of interest rates. Econometrica. 53,385-407zh_TW
dc.relation.reference (參考文獻) 5、Heath,D.,R.Jarrow, and A. Morton. (1992).Bond pricing and the term structure of interest rates: anew methodology for contingent claims valuation.Econometrica.60,77-105.zh_TW
dc.relation.reference (參考文獻) 6、Ho,T.S.Y.,ands.B.Lee,(1986),Term structure movements and pricing interest rate contingent claims. Journal of Finance.zh_TW
dc.relation.reference (參考文獻) 7、Hull,J.C. and A. White,(1990),Pricing interest-rate-derivative securities. Review of Financial Studies,3,423-440.zh_TW
dc.relation.reference (參考文獻) 8、Hull,J.C. and A. White,(1993),Bond option based on a model for the evolution of bond prices. Advances in Futures and Options Research,6,1-3.zh_TW
dc.relation.reference (參考文獻) 9、Hull,J.C. and A. White,(2000),Forward Rate Volatilities,Swap Rate Volatilities, and The Implementation of The LIBOR Market Model, Journal of Fixed Income.zh_TW
dc.relation.reference (參考文獻) 10、Jamshidian,F.(1997).LIBOR and swap market models and measures. Finance and Stochastics.1,293-330.zh_TW
dc.relation.reference (參考文獻) 11、Longstaff,F.A. and E. Schwartz. (1992). Interest rate volatility and the termstructure: a two-factor general equilibrium model. Journal of Finance.47,1259-1282.zh_TW
dc.relation.reference (參考文獻) 12、Miltersen,K.,K. Sandmann, and D.Sondermann.(1997).Closed form solutions for term structure derivatives with lognormal interest rate.Journal of Finance.52,409-430.zh_TW
dc.relation.reference (參考文獻) 13、Yan,H.(2001).Dynamic models of the term structure.Financial Analysts Journal.60-76.zh_TW