Publications-Theses

Article View/Open

Publication Export

Google ScholarTM

NCCU Library

Citation Infomation

Related Publications in TAIR

題名 Multifractal Analysis for the Stock Index Futures Returns with Wavelet Transform Modulus Maxima
股價指數期貨報酬率的多重碎形分析與小波轉換的模數最大值
作者 洪榕壕
Hung,Jung-Hao
貢獻者 謝淑貞
Shieh,Shwu-Jane
洪榕壕
Hung,Jung-Hao
關鍵詞 分數布朗運動
自我相似
維度
多重碎形
小波轉換模數最大植
Fractional Brownian Motion
Multifractal
Hausdorff dimemsion
Local Hölder exponent
Wavelet transform modulus maxima
日期 2005
上傳時間 14-Sep-2009 13:28:08 (UTC+8)
摘要   本文應用資產報酬率的多重碎形模型,該模型為一整合財務時間序列上的厚尾及波動持續性的連續時間過程。多重碎形的方法允許我們估計隨時間變動的報酬率高階動差,進而推論財務時間序列的產生機制。我們利用小波轉換的模數最大值計算多重碎形譜,透過譜分解得到資產報率分配的高階動差資訊。根據實證結果,我們得到S&P和DJIA的股價指數期貨報酬率符合動差尺度行為且資料也展現幕律的形態。根據估計出的譜形態為對數常態分配。實證結果也顯示S&P和DJIA的股價指數期貨報酬率均具有長記憶及多重碎形的特性。
  We apply the multifractal model of asset returns (MMAR), a class of continuous-time processes that incorporate the thick tails and volatility persistence of financial time series. The multifractal approach allows for higher moments of returns that may vary with the time horizon and leads to infer about the generating mechanism of the financial time series. The multifractal spectrum is calculated by the Wavelet Transform Modulus Maxima (WTMM) provides information on the higher moments of the distribution of asset returns and the multiplicative cascade of volatilities. We obtain the evidences of multifractality in the moment-scaling behavior of S&P and DJIA stock index futures returns and the moments of the data represent a power law. According to the shape of the estimated spectrum we infer a log normal distribution.The empirical evidences show that both of them have long memory and multifractal property.
參考文獻 Arneodo, A., Grasseau, G., and Holschneider, M., “Wavelet Transform of Multifractals,” Physical Review Letters, v61, # 20, November (1988), 2281-2284.
Arneodo, A., Barry, E., J. Delour., Muzy, J. F., The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232-275 (1995).
Arneodo, A., Bacry, E., Muzy, J. F.,“Random cascades on wavelet dyadic trees,”Journal of Mathematical Physics, v39, # 8, August (1998), 4142-4164.
Audit, B., Barry, E., Muzy, J. F., Arneodo, A., (2002), Wavelet based estimator of scaling behavior, IEEE. in Information Theory 48, 11, pp 2938-2954.
Barry, E., J. Delour., Muzy, J. F., Modelling financial time series using multifractal random walks., Physica A, 299, 84-92 (2001).
Baillie, R. T., “Long Memory Processes and Fractional Integration in Econometrics,” Journal of Econometrics 73:1 (1996), 5–59.
Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen, “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 74:1 (1996), 3–30.
Baillie, R. T., C. F. Chung, and M. A. Tieslau, “Analyzing Inflation by the Fractionally Integrated ARFIMA-GARCH Model,” Journal of Applied Econometrics 11:1 (1996), 23–40.
Billingsley, P., Probability and Measure, (New York: John Wiley and Sons, 1995).
Billingsley, P., Convergence of Probability Measures, (New York: John Wiley and Sons, 1999).
Bollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 31:3 (1986), 307–327.
Breidt, F.J., Crato, N. and P. de Lima, 1998, The detection and estimation of long
memory in stochastic volatility, Journal of Econometrics, 83, pp.325-348.
Calvet, L., A. Fisher, and B. B. Mandelbrot, “Large Deviation Theory and the Distribution of Price Changes,” Cowles Foundation discussion paper no. 1165, Yale University, available from the SSRN database at http://www.ssrn.com (1997).
Calvet, L., and A. Fisher, “Forecasting Multifractal Volatility,” Journal of Econometrics 105:1 (2001), 27–58.
Calvet, L., and A. Fisher, “Multifractality in Asset Returns: Theory and Evidence,” Review of Economics and Statistics 84 (2002), 381--406.
Calvet, L., and A. Fisher,“How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,” Journal of Financial Econometrics, 2 (2004), 49--83
Campbell, J., A. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets (Princeton: Princeton University Press, 1997).
Engle, R. F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom In ation,” Econometrica 50:4 (1982), 987–1007.
Engle, R.F. and T. Bollerslev, 1986, Modeling the persistence of conditional
variance, Econometric Reviews, 5, pp.1-50.
Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, (New
York: John Wiley and Sons, 1990)
Fisher, A., L. Calvet, and B. B. Mandelbrot, “Multifractality of Deutsche Mark/US Dollar Exchange Rates,” Cowles Foundation discussion paper no. 1166, Yale University, available from the SSRN database at http://www.ssrn.com (1997).
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation101(23):e215-e220[CirculationElectronicPages;http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13).
Lo, A. W., “Long Memory in Stock Market Prices,” Econometrica 59:5 (1991), 1279–1313.
Mandelbrot, B. B., A. Fisher, and L. Calvet, “The Multifractal Model of Asset Returns,” Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://www.ssrn.com (1997).
Mandelbrot, B. B., and J. W. van Ness, “Fractional Brownian Motion, Fractional Noises and Application, ” SIAM Review 10:4 (1968), 422–437.
Mandelbrot, B.B, Fractals and Scaling in Finance: Discontinuity, Concetration, Risk. Springer, New York (1997).
Muzy, J. F., Bacry, E. and A. Arneodo, Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data, Physical Review Letters, v. 67, # 25, December (1991), pp. 3515-3518.
Muzy, J.F., Bacry ,E. and A. Arneodo,Multifractal formalism for fractal signals. The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E 47, 875 (1993).
X. S., Huiping C., Ziqin W., Yongzhuang Yuan, Multifractal analysis of Hang Seng index inHong Kong stockmark et, Phys. A 291 (2001) 553–562.
X. S., Huiping C.,Yongzhuang Y., Ziqin W., Predictability of multifractal analysis of Hang Seng stockindex in Hong Kong, Phys. A 301 (2001) 473–482.
Yu W., Dengshi H., Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index, Phys. A 355 (2005) 497-508.
描述 碩士
國立政治大學
經濟研究所
93258041
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093258041
資料類型 thesis
dc.contributor.advisor 謝淑貞zh_TW
dc.contributor.advisor Shieh,Shwu-Janeen_US
dc.contributor.author (Authors) 洪榕壕zh_TW
dc.contributor.author (Authors) Hung,Jung-Haoen_US
dc.creator (作者) 洪榕壕zh_TW
dc.creator (作者) Hung,Jung-Haoen_US
dc.date (日期) 2005en_US
dc.date.accessioned 14-Sep-2009 13:28:08 (UTC+8)-
dc.date.available 14-Sep-2009 13:28:08 (UTC+8)-
dc.date.issued (上傳時間) 14-Sep-2009 13:28:08 (UTC+8)-
dc.identifier (Other Identifiers) G0093258041en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32233-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 經濟研究所zh_TW
dc.description (描述) 93258041zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要)   本文應用資產報酬率的多重碎形模型,該模型為一整合財務時間序列上的厚尾及波動持續性的連續時間過程。多重碎形的方法允許我們估計隨時間變動的報酬率高階動差,進而推論財務時間序列的產生機制。我們利用小波轉換的模數最大值計算多重碎形譜,透過譜分解得到資產報率分配的高階動差資訊。根據實證結果,我們得到S&P和DJIA的股價指數期貨報酬率符合動差尺度行為且資料也展現幕律的形態。根據估計出的譜形態為對數常態分配。實證結果也顯示S&P和DJIA的股價指數期貨報酬率均具有長記憶及多重碎形的特性。zh_TW
dc.description.abstract (摘要)   We apply the multifractal model of asset returns (MMAR), a class of continuous-time processes that incorporate the thick tails and volatility persistence of financial time series. The multifractal approach allows for higher moments of returns that may vary with the time horizon and leads to infer about the generating mechanism of the financial time series. The multifractal spectrum is calculated by the Wavelet Transform Modulus Maxima (WTMM) provides information on the higher moments of the distribution of asset returns and the multiplicative cascade of volatilities. We obtain the evidences of multifractality in the moment-scaling behavior of S&P and DJIA stock index futures returns and the moments of the data represent a power law. According to the shape of the estimated spectrum we infer a log normal distribution.The empirical evidences show that both of them have long memory and multifractal property.en_US
dc.description.tableofcontents I. Introduction...........................................................................................................1
     II. Methodology..........................................................................................................4
     2.1 Fractional Brownian Motion................................................................................4
     2.2. Fractal and Multifractal.......................................................................................7
     2.2.1 Hausdorff dimension.........................................................................................9
     2.2.2 Box dimension................................................................................................10
     2.2.3 Information dimension....................................................................................11
     2.2.4 Correlation dimension.....................................................................................12
     2.2.5 Scaling invariance...........................................................................................13
     2.2.6 Multifractal......................................................................................................15
     2.2.7 Multifractal Processes.....................................................................................20
     2.2.8 Partition Functions..........................................................................................21
     2.3 Local Hölder Exponents, Multifractal Spectrum and Generalized Fractal Dimension...................................................................................................................22
     2.3.1 Local Hölder Exponents.................................................................................22
     2.3.2 The Multifractal Spectrum...........................................................................24
     2.3.3 Generalized fractal dimensions......................................................................30
     2.4 Multifractal analysis based on Wavelet Transform Modulus Maxima......................................................................................................................31
     III. Empirical result analysis...................................................................................37
     3.1 The Empirical result analysis of S&P and DJIA..............................................37
     IV. Conclusions.......................................................................................................49
zh_TW
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093258041en_US
dc.subject (關鍵詞) 分數布朗運動zh_TW
dc.subject (關鍵詞) 自我相似zh_TW
dc.subject (關鍵詞) 維度zh_TW
dc.subject (關鍵詞) 多重碎形zh_TW
dc.subject (關鍵詞) 小波轉換模數最大植zh_TW
dc.subject (關鍵詞) Fractional Brownian Motionen_US
dc.subject (關鍵詞) Multifractalen_US
dc.subject (關鍵詞) Hausdorff dimemsionen_US
dc.subject (關鍵詞) Local Hölder exponenten_US
dc.subject (關鍵詞) Wavelet transform modulus maximaen_US
dc.title (題名) Multifractal Analysis for the Stock Index Futures Returns with Wavelet Transform Modulus Maximazh_TW
dc.title (題名) 股價指數期貨報酬率的多重碎形分析與小波轉換的模數最大值zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Arneodo, A., Grasseau, G., and Holschneider, M., “Wavelet Transform of Multifractals,” Physical Review Letters, v61, # 20, November (1988), 2281-2284.zh_TW
dc.relation.reference (參考文獻) Arneodo, A., Barry, E., J. Delour., Muzy, J. F., The thermodynamics of fractals revisited with wavelets, Physica A, 213, 232-275 (1995).zh_TW
dc.relation.reference (參考文獻) Arneodo, A., Bacry, E., Muzy, J. F.,“Random cascades on wavelet dyadic trees,”Journal of Mathematical Physics, v39, # 8, August (1998), 4142-4164.zh_TW
dc.relation.reference (參考文獻) Audit, B., Barry, E., Muzy, J. F., Arneodo, A., (2002), Wavelet based estimator of scaling behavior, IEEE. in Information Theory 48, 11, pp 2938-2954.zh_TW
dc.relation.reference (參考文獻) Barry, E., J. Delour., Muzy, J. F., Modelling financial time series using multifractal random walks., Physica A, 299, 84-92 (2001).zh_TW
dc.relation.reference (參考文獻) Baillie, R. T., “Long Memory Processes and Fractional Integration in Econometrics,” Journal of Econometrics 73:1 (1996), 5–59.zh_TW
dc.relation.reference (參考文獻) Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen, “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 74:1 (1996), 3–30.zh_TW
dc.relation.reference (參考文獻) Baillie, R. T., C. F. Chung, and M. A. Tieslau, “Analyzing Inflation by the Fractionally Integrated ARFIMA-GARCH Model,” Journal of Applied Econometrics 11:1 (1996), 23–40.zh_TW
dc.relation.reference (參考文獻) Billingsley, P., Probability and Measure, (New York: John Wiley and Sons, 1995).zh_TW
dc.relation.reference (參考文獻) Billingsley, P., Convergence of Probability Measures, (New York: John Wiley and Sons, 1999).zh_TW
dc.relation.reference (參考文獻) Bollerslev, T., “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 31:3 (1986), 307–327.zh_TW
dc.relation.reference (參考文獻) Breidt, F.J., Crato, N. and P. de Lima, 1998, The detection and estimation of longzh_TW
dc.relation.reference (參考文獻) memory in stochastic volatility, Journal of Econometrics, 83, pp.325-348.zh_TW
dc.relation.reference (參考文獻) Calvet, L., A. Fisher, and B. B. Mandelbrot, “Large Deviation Theory and the Distribution of Price Changes,” Cowles Foundation discussion paper no. 1165, Yale University, available from the SSRN database at http://www.ssrn.com (1997).zh_TW
dc.relation.reference (參考文獻) Calvet, L., and A. Fisher, “Forecasting Multifractal Volatility,” Journal of Econometrics 105:1 (2001), 27–58.zh_TW
dc.relation.reference (參考文獻) Calvet, L., and A. Fisher, “Multifractality in Asset Returns: Theory and Evidence,” Review of Economics and Statistics 84 (2002), 381--406.zh_TW
dc.relation.reference (參考文獻) Calvet, L., and A. Fisher,“How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,” Journal of Financial Econometrics, 2 (2004), 49--83zh_TW
dc.relation.reference (參考文獻) Campbell, J., A. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets (Princeton: Princeton University Press, 1997).zh_TW
dc.relation.reference (參考文獻) Engle, R. F., “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom In ation,” Econometrica 50:4 (1982), 987–1007.zh_TW
dc.relation.reference (參考文獻) Engle, R.F. and T. Bollerslev, 1986, Modeling the persistence of conditionalzh_TW
dc.relation.reference (參考文獻) variance, Econometric Reviews, 5, pp.1-50.zh_TW
dc.relation.reference (參考文獻) Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, (Newzh_TW
dc.relation.reference (參考文獻) York: John Wiley and Sons, 1990)zh_TW
dc.relation.reference (參考文獻) Fisher, A., L. Calvet, and B. B. Mandelbrot, “Multifractality of Deutsche Mark/US Dollar Exchange Rates,” Cowles Foundation discussion paper no. 1166, Yale University, available from the SSRN database at http://www.ssrn.com (1997).zh_TW
dc.relation.reference (參考文獻) Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation101(23):e215-e220[CirculationElectronicPages;http://circ.ahajournals.org/cgi/content/full/101/23/e215]; 2000 (June 13).zh_TW
dc.relation.reference (參考文獻) Lo, A. W., “Long Memory in Stock Market Prices,” Econometrica 59:5 (1991), 1279–1313.zh_TW
dc.relation.reference (參考文獻) Mandelbrot, B. B., A. Fisher, and L. Calvet, “The Multifractal Model of Asset Returns,” Cowles Foundation discussion paper no. 1164, Yale University, paper available from the SSRN database at http://www.ssrn.com (1997).zh_TW
dc.relation.reference (參考文獻) Mandelbrot, B. B., and J. W. van Ness, “Fractional Brownian Motion, Fractional Noises and Application, ” SIAM Review 10:4 (1968), 422–437.zh_TW
dc.relation.reference (參考文獻) Mandelbrot, B.B, Fractals and Scaling in Finance: Discontinuity, Concetration, Risk. Springer, New York (1997).zh_TW
dc.relation.reference (參考文獻) Muzy, J. F., Bacry, E. and A. Arneodo, Wavelets and Multifractal Formalism for Singular Signals: Application to Turbulence Data, Physical Review Letters, v. 67, # 25, December (1991), pp. 3515-3518.zh_TW
dc.relation.reference (參考文獻) Muzy, J.F., Bacry ,E. and A. Arneodo,Multifractal formalism for fractal signals. The structure-function approach versus the wavelet-transform modulus-maxima method, Phys. Rev. E 47, 875 (1993).zh_TW
dc.relation.reference (參考文獻) X. S., Huiping C., Ziqin W., Yongzhuang Yuan, Multifractal analysis of Hang Seng index inHong Kong stockmark et, Phys. A 291 (2001) 553–562.zh_TW
dc.relation.reference (參考文獻) X. S., Huiping C.,Yongzhuang Y., Ziqin W., Predictability of multifractal analysis of Hang Seng stockindex in Hong Kong, Phys. A 301 (2001) 473–482.zh_TW
dc.relation.reference (參考文獻) Yu W., Dengshi H., Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng index, Phys. A 355 (2005) 497-508.zh_TW