Publications-Theses

題名 大中取小法建立最佳投資組合
Portfolio Optimization Using Minimax Selection Rule
作者 楊芯純
Shin-Chuen Yang
貢獻者 劉明郎
楊芯純
Shin-Chuen Yang
關鍵詞 大中取小原則
投資組合優化
混合整數線性規劃
mini-max principle
portfolio optimization
mixed integer linear program
日期 2002
上傳時間 17-Sep-2009 13:44:38 (UTC+8)
摘要 本文提出一個新的混合整數線性規劃模型建立投資組合。這個模型所採用的風險函數為最大損失的絕對值,而不是一般常用的損失變異數。在給定的報酬水準下,模型尋找在觀測期間中最小的最大損失的投資組合,即為大中取小的原則。模型也同時考慮實務上常遇見之情況,如:交易成本、最小交易單位、固定交易費用比率、資產總類數等限制。因此,模型內需使用整數變數及二元變數,導致模型的計算求解過程變得比不含整數變數及二元變數的模型困難許多。我們以固定整數變數的啟發式演算法增進求解的效率,並以台灣股票市場的資料做為實證計算的對象。
A new mixed integer linear program (MILP) for selecting portfolio based on historical return is proposed. This model uses the downside risk rather than the variance as a risk measure. The portfolio is chosen that minimizes the maximum downside risk over all past observation periods to reach a given return level. That is a mini-max principle. The model incorporates the practical characteristics such as transaction costs, minimum transaction units, fixed proportional transaction rates, and cardinality constraint. For this reason a set of integer variables and binary variables are introduced. The introduction, however, increases the computational complexity in model solution. Due to the difficulty of the MILP problem, a heuristic algorithm has been developed for the solution. The computational results are presented by applying the model to the Taiwan stock market.
參考文獻 Brooke, A., D. Kendrick, and A. Meeraus, GAMS-A User’s Guide, The Scientific Press, Redwood City, CA (1988).
Cai, X., K. L. Teo, X. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule, Management Science 46, 957-972 (2000).
Feinstein, C. D. and M. N. Thapa, A reformulation of a mean-absolute deviation portfolio optimization model, Management Science 39, 1552-1553 (1993).
Ghezzi, L. L., A maxmin policy for bond management, European Journal of Operational Research 114, 389-394 (1999).
IBM, Optimization Subroutine Library Guide and Reference Relese 2, Kingston, NY, Third Edition, (1991).
Konno, H. and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science 37, 519-531 (1991).
Konno, H. and A. Wijayanayake, Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints, Mathematical Programming, Series B 89, 233-250 (2001).
Lee, S. M. and D. L. Chesser, Goal programming for portfolio selection, The Journal of Portfolio Management Spring, 22-26 (1980).
Mansini, R. and M. G. Speranza, Heuristic algorithms for the portfolio selection problem with minimum transaction lots, European Journal of Operational Research 114, 219-233 (1999).
Markowitz, H., Portfolio selection, Journal of Finance 7, 77-91 (1952).
Markowitz, H., Portfolio selection (2nd ed.), Blackwell, Cambridge, MA(1991).
Meade, N. and G. R. Salkin, Index funds-construction and performance measurement, Journal of the Operational Research Society 40, 871-879 (1989).
Sharpe, W. F., A linear programming algorithm for mutual fund portfolio selection, Management Science 13, 499-510 (1967).
Sharpe, W. F., A linear programming approximation for the general portfolio analysis problem, Journal of Financial and Quantitative Analysis December, 1263-1275 (1971).
Speranza, M. G., Linear programming models for portfolio optimization, Finance 14, 107-123 (1993).
Speranza, M. G., A heuristic algorithm for a portfolio optimization model applied to the Milan stock market, Computers & Operations Research 5, 433-441 (1996).
Xia, Y., B. Liu, S. Wang and K. K. Lai, A model for portfolio selection with order of expected returns, Computers & Operations Research 27, 409-422 (2000).
Young, M. R., A minimax portfolio selection rule with linear programming solution, Management Science 44, 673-683 (1998).
Yu, G., Min-max optimization of several classical discrete optimization problems, Journal of Optimization Theory and Applications 98, 221-242 (1998).
呂建鴻,考量下層風險的最佳投資組合,國立政治大學應用數學研究所碩士論文 (民91)。
描述 碩士
國立政治大學
應用數學研究所
89751003
91
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0089751003
資料類型 thesis
dc.contributor.advisor 劉明郎zh_TW
dc.contributor.author (Authors) 楊芯純zh_TW
dc.contributor.author (Authors) Shin-Chuen Yangen_US
dc.creator (作者) 楊芯純zh_TW
dc.creator (作者) Shin-Chuen Yangen_US
dc.date (日期) 2002en_US
dc.date.accessioned 17-Sep-2009 13:44:38 (UTC+8)-
dc.date.available 17-Sep-2009 13:44:38 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:44:38 (UTC+8)-
dc.identifier (Other Identifiers) G0089751003en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32556-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 89751003zh_TW
dc.description (描述) 91zh_TW
dc.description.abstract (摘要) 本文提出一個新的混合整數線性規劃模型建立投資組合。這個模型所採用的風險函數為最大損失的絕對值,而不是一般常用的損失變異數。在給定的報酬水準下,模型尋找在觀測期間中最小的最大損失的投資組合,即為大中取小的原則。模型也同時考慮實務上常遇見之情況,如:交易成本、最小交易單位、固定交易費用比率、資產總類數等限制。因此,模型內需使用整數變數及二元變數,導致模型的計算求解過程變得比不含整數變數及二元變數的模型困難許多。我們以固定整數變數的啟發式演算法增進求解的效率,並以台灣股票市場的資料做為實證計算的對象。zh_TW
dc.description.abstract (摘要) A new mixed integer linear program (MILP) for selecting portfolio based on historical return is proposed. This model uses the downside risk rather than the variance as a risk measure. The portfolio is chosen that minimizes the maximum downside risk over all past observation periods to reach a given return level. That is a mini-max principle. The model incorporates the practical characteristics such as transaction costs, minimum transaction units, fixed proportional transaction rates, and cardinality constraint. For this reason a set of integer variables and binary variables are introduced. The introduction, however, increases the computational complexity in model solution. Due to the difficulty of the MILP problem, a heuristic algorithm has been developed for the solution. The computational results are presented by applying the model to the Taiwan stock market.en_US
dc.description.tableofcontents 摘要 iii
ABSTRACT iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究的目的與架構 2
第二章 文獻回顧 3
第三章 相關模型探討 8
3.1 Markowitz模型 8
3.2 Konno-Yamazaki模型 9
3.3 Young模型 15
第四章 大中取小法的規劃模型 18
4.1 不含實際交易限制的模型 18
4.2 含實際交易限制的模型 21
第五章 啟發式演算法與實證的結果與討論 25
5.1 啟發式演算法 25
5.2 大中取小投資組合的效能與討論 26
5.3 實證的結果與討論 26
第六章 結論與建議 32
參考文獻 33
附錄 附表 35
zh_TW
dc.format.extent 952007 bytes-
dc.format.extent 956409 bytes-
dc.format.extent 956567 bytes-
dc.format.extent 958047 bytes-
dc.format.extent 969516 bytes-
dc.format.extent 991186 bytes-
dc.format.extent 982023 bytes-
dc.format.extent 1010696 bytes-
dc.format.extent 955322 bytes-
dc.format.extent 959758 bytes-
dc.format.extent 981029 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0089751003en_US
dc.subject (關鍵詞) 大中取小原則zh_TW
dc.subject (關鍵詞) 投資組合優化zh_TW
dc.subject (關鍵詞) 混合整數線性規劃zh_TW
dc.subject (關鍵詞) mini-max principleen_US
dc.subject (關鍵詞) portfolio optimizationen_US
dc.subject (關鍵詞) mixed integer linear programen_US
dc.title (題名) 大中取小法建立最佳投資組合zh_TW
dc.title (題名) Portfolio Optimization Using Minimax Selection Ruleen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Brooke, A., D. Kendrick, and A. Meeraus, GAMS-A User’s Guide, The Scientific Press, Redwood City, CA (1988).zh_TW
dc.relation.reference (參考文獻) Cai, X., K. L. Teo, X. Yang and X. Y. Zhou, Portfolio optimization under a minimax rule, Management Science 46, 957-972 (2000).zh_TW
dc.relation.reference (參考文獻) Feinstein, C. D. and M. N. Thapa, A reformulation of a mean-absolute deviation portfolio optimization model, Management Science 39, 1552-1553 (1993).zh_TW
dc.relation.reference (參考文獻) Ghezzi, L. L., A maxmin policy for bond management, European Journal of Operational Research 114, 389-394 (1999).zh_TW
dc.relation.reference (參考文獻) IBM, Optimization Subroutine Library Guide and Reference Relese 2, Kingston, NY, Third Edition, (1991).zh_TW
dc.relation.reference (參考文獻) Konno, H. and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science 37, 519-531 (1991).zh_TW
dc.relation.reference (參考文獻) Konno, H. and A. Wijayanayake, Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints, Mathematical Programming, Series B 89, 233-250 (2001).zh_TW
dc.relation.reference (參考文獻) Lee, S. M. and D. L. Chesser, Goal programming for portfolio selection, The Journal of Portfolio Management Spring, 22-26 (1980).zh_TW
dc.relation.reference (參考文獻) Mansini, R. and M. G. Speranza, Heuristic algorithms for the portfolio selection problem with minimum transaction lots, European Journal of Operational Research 114, 219-233 (1999).zh_TW
dc.relation.reference (參考文獻) Markowitz, H., Portfolio selection, Journal of Finance 7, 77-91 (1952).zh_TW
dc.relation.reference (參考文獻) Markowitz, H., Portfolio selection (2nd ed.), Blackwell, Cambridge, MA(1991).zh_TW
dc.relation.reference (參考文獻) Meade, N. and G. R. Salkin, Index funds-construction and performance measurement, Journal of the Operational Research Society 40, 871-879 (1989).zh_TW
dc.relation.reference (參考文獻) Sharpe, W. F., A linear programming algorithm for mutual fund portfolio selection, Management Science 13, 499-510 (1967).zh_TW
dc.relation.reference (參考文獻) Sharpe, W. F., A linear programming approximation for the general portfolio analysis problem, Journal of Financial and Quantitative Analysis December, 1263-1275 (1971).zh_TW
dc.relation.reference (參考文獻) Speranza, M. G., Linear programming models for portfolio optimization, Finance 14, 107-123 (1993).zh_TW
dc.relation.reference (參考文獻) Speranza, M. G., A heuristic algorithm for a portfolio optimization model applied to the Milan stock market, Computers & Operations Research 5, 433-441 (1996).zh_TW
dc.relation.reference (參考文獻) Xia, Y., B. Liu, S. Wang and K. K. Lai, A model for portfolio selection with order of expected returns, Computers & Operations Research 27, 409-422 (2000).zh_TW
dc.relation.reference (參考文獻) Young, M. R., A minimax portfolio selection rule with linear programming solution, Management Science 44, 673-683 (1998).zh_TW
dc.relation.reference (參考文獻) Yu, G., Min-max optimization of several classical discrete optimization problems, Journal of Optimization Theory and Applications 98, 221-242 (1998).zh_TW
dc.relation.reference (參考文獻) 呂建鴻,考量下層風險的最佳投資組合,國立政治大學應用數學研究所碩士論文 (民91)。zh_TW