Publications-Theses

題名 還原風險中立機率測度的雙目標規劃模型
Recovering Risk-Neutral Probability via Biobjective Programming Model
作者 廖彥茹
貢獻者 劉明郎
廖彥茹
關鍵詞 評價選擇權
風險中立機率測度
機率平賭測度
非線性規劃
option pricing
risk-neutral probability measure
martingale measure
programming
日期 2005
上傳時間 17-Sep-2009 13:46:23 (UTC+8)
摘要 本論文提出利用機率平賭性質由選擇權市場價格還原風險中立機率測度的雙目標規劃模型。假設對應同一標的資產且不同履約價的選擇權均為歐式選擇權,到期時標的資產的狀態為離散點且個數有限。若市場不存在套利機會時,建構出最小化離差總和及最大化平滑的雙目標規劃模型。將此雙目標規劃模型利用權重法轉換成單一目標之非線性模型,即可還原風險中立機率測度,並利用此風險中立機率測度評價選擇權的公平價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。
This thesis proposes a biobjective nonlinear programming model to derive risk-neutral probability distribution of underlying asset. The method are used to choose probabilities that minimize the deviation between the observed price and the theoretical price as well as maximize the smoothness of the resulting probabilities. A weighting method is used to covert the model into a single objective model. Given a non-arbitrage observed option price, a risk-neutral probability distribution consistent with the observed option can be recovered by the model. This risk-neutral probability is then utilized to evaluate the fair price of options. Finally, an empirical study applying to Taiwan’s market is given to verify the pricing ability of this model.
參考文獻 Adams K. J. and Van Deventer, “Fitting yield curve and forward rate curves with maximum smoothness”, Journal of Fixed Income 4, 52-62, 1994.
Bachelier, L., “Theorie de la speculation”, Annales Sciences de L’Ecole Normale Superieure 17, 21-86, 1900.
Black, F. and M. Scholes, “The pricing of options and corporate liabilities”, Journal of Political Economy 81, 637-659, 1973.
Breeden, D. and R. Litzenberger, “Prices of State--Contingent Claims Implicit in Option Prices”, Journal of Business 51, 621-651, 1978.
Brooke, A., D. Kendrick, and A. Meeraus, “GAMS - A user’s guide”, The Scientific Press, Reawood city, 1988.
Buono, M., B. G.-A. Russell, and U. Yaari, “The efficacy of term structure estimation techniques: A Monte Carlo study”, Journal of Fixed Income 1, 52-59, 1992.
A., “Mathematical techniques in finance”, Princeton University Press, 2004.
Cox, J. and M. Rubinstein, “Option markets”, Prentice-Hall, 1985.
Cox, J., S. Ross, and M. Rubinstein, “Option pricing: A simplified approach”, Journal of Financial Economics 7, 229-263, 1979.
Francis, L., “Martingale restrictions tests of option pricing models”, working papers, University of California at Los Angeles, 1990.
Garman, M. and S. Kohlhagen, "Foreign Currency Option Values", Journal of International Money and Finance 2, 231-37, 1983.
Harrison, J. and D. M. Kreps, "Martingales and arbitrage in multiperiod securities markets", Journal of Economic Theory 20, 381-408, 1979.
Harrison, J. and S. Pliska, “Martingales and stochastic integrals in the theory of continuous time trading”, Stochastic Processes and Their Applications 11, 215-260, 1981.
Haugh, M., “Martingale pricing theory”, lecture note, Department of Industrial Engineering and Operation Research, Columbia University, 2004.
Herzel, S., “Arbitrage opportunities on derivatives:A linear programming approach”, Dynamics of Continuous, Discrete and Impulsive System 12, 589-606, 2005.
Ito, K., “On stochastic differential equation memories”, American Mathematical Society 4, 1-51, 1951.
Jackwerth, J. C. and M. Rubinstein, “Recovering probability distributions from contemporaneous security prices”, working paper, University of California at Berkeley, 1995.
Jackwerth, J. C. and M. Rubinstein, “Recovering probability distributions from option prices”, Journal of Finance 51, 1611-1632, 1996.
Luenberger, D. G., “Linear and nonlinear programming”, 2nd edition, Addison-Wesley, 1984.
MaCulloch, J., “The tax adjusted yield curve”, Journal of Finance 30, 811-829, 1975.
Merton, R., “The theory of rational option pricing”, Bell Journal of Economics and Management Sciences 4, 141-183, 1973.
Rubinstein, M., “Implied binomial trees”, Journal of Finance 49, 771-818, 1994.
Shimko, D., “Bounds of probability”, RISK 6, 33-37, 1993.
Siegel, S., “Nonparametric statistics”, McGraw-Hill, 1956.
Vasicek, O. A. and H. G. Fong, “Term structure modeling using exponential splines”, Journal of Finance 37, 339-356, 1977.
Wiener, N., “Differential-space”, J. Math. Phys., Mass. Inst. Technol. 2, 131-174, 1923.
陳松男,金融工程學,華泰文化,2002。
陳威光,選擇權:理論.實務與應用,智聖文化,2001。
楊靜宜,選擇權策略的整數線性規劃模型,國立政治大學應用數學系碩士論文,2004。
劉明郎、楊靜宜、劉宣谷,選擇權交易策略的整數線性規劃模型,第二屆台灣作業研究學會年會 暨作業研究理論與實務學術研討會,台北,2005。
劉桂芳,由選擇權市場價格建構具一致性之評價模型,國立政治大學應用數學系碩士論文,2005。
描述 碩士
國立政治大學
應用數學研究所
92751012
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0092751012
資料類型 thesis
dc.contributor.advisor 劉明郎zh_TW
dc.contributor.author (Authors) 廖彥茹zh_TW
dc.creator (作者) 廖彥茹zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 17-Sep-2009 13:46:23 (UTC+8)-
dc.date.available 17-Sep-2009 13:46:23 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:46:23 (UTC+8)-
dc.identifier (Other Identifiers) G0092751012en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32572-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 92751012zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要) 本論文提出利用機率平賭性質由選擇權市場價格還原風險中立機率測度的雙目標規劃模型。假設對應同一標的資產且不同履約價的選擇權均為歐式選擇權,到期時標的資產的狀態為離散點且個數有限。若市場不存在套利機會時,建構出最小化離差總和及最大化平滑的雙目標規劃模型。將此雙目標規劃模型利用權重法轉換成單一目標之非線性模型,即可還原風險中立機率測度,並利用此風險中立機率測度評價選擇權的公平價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。zh_TW
dc.description.abstract (摘要) This thesis proposes a biobjective nonlinear programming model to derive risk-neutral probability distribution of underlying asset. The method are used to choose probabilities that minimize the deviation between the observed price and the theoretical price as well as maximize the smoothness of the resulting probabilities. A weighting method is used to covert the model into a single objective model. Given a non-arbitrage observed option price, a risk-neutral probability distribution consistent with the observed option can be recovered by the model. This risk-neutral probability is then utilized to evaluate the fair price of options. Finally, an empirical study applying to Taiwan’s market is given to verify the pricing ability of this model.en_US
dc.description.tableofcontents 摘要 iv
ABSTRACT v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究的目的與架構 2
第二章 文獻回顧 3
第三章 相關模型探討 5
3.1 選擇權的到期價值 5
3.2 選擇權評價方法 8
3.3 應用平滑特質建構風險中立機率測度 10
3.4 套利與無套利 14
第四章 還原風險中立機率測度的數學規劃模型 18
4.1 雙目標規劃模型 18
4.2 權重係數單一目標函數模型 20
第五章 實證研究 22
5.1 資料來源 22
5.2 結果分析 22
第六章 結論與建議 31
參考文獻 32
附錄 附表 35
zh_TW
dc.format.extent 39569 bytes-
dc.format.extent 43159 bytes-
dc.format.extent 77262 bytes-
dc.format.extent 45169 bytes-
dc.format.extent 45124 bytes-
dc.format.extent 45882 bytes-
dc.format.extent 107394 bytes-
dc.format.extent 64505 bytes-
dc.format.extent 112763 bytes-
dc.format.extent 42028 bytes-
dc.format.extent 51361 bytes-
dc.format.extent 124876 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0092751012en_US
dc.subject (關鍵詞) 評價選擇權zh_TW
dc.subject (關鍵詞) 風險中立機率測度zh_TW
dc.subject (關鍵詞) 機率平賭測度zh_TW
dc.subject (關鍵詞) 非線性規劃zh_TW
dc.subject (關鍵詞) option pricingen_US
dc.subject (關鍵詞) risk-neutral probability measureen_US
dc.subject (關鍵詞) martingale measureen_US
dc.subject (關鍵詞) programmingen_US
dc.title (題名) 還原風險中立機率測度的雙目標規劃模型zh_TW
dc.title (題名) Recovering Risk-Neutral Probability via Biobjective Programming Modelen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Adams K. J. and Van Deventer, “Fitting yield curve and forward rate curves with maximum smoothness”, Journal of Fixed Income 4, 52-62, 1994.zh_TW
dc.relation.reference (參考文獻) Bachelier, L., “Theorie de la speculation”, Annales Sciences de L’Ecole Normale Superieure 17, 21-86, 1900.zh_TW
dc.relation.reference (參考文獻) Black, F. and M. Scholes, “The pricing of options and corporate liabilities”, Journal of Political Economy 81, 637-659, 1973.zh_TW
dc.relation.reference (參考文獻) Breeden, D. and R. Litzenberger, “Prices of State--Contingent Claims Implicit in Option Prices”, Journal of Business 51, 621-651, 1978.zh_TW
dc.relation.reference (參考文獻) Brooke, A., D. Kendrick, and A. Meeraus, “GAMS - A user’s guide”, The Scientific Press, Reawood city, 1988.zh_TW
dc.relation.reference (參考文獻) Buono, M., B. G.-A. Russell, and U. Yaari, “The efficacy of term structure estimation techniques: A Monte Carlo study”, Journal of Fixed Income 1, 52-59, 1992.zh_TW
dc.relation.reference (參考文獻) A., “Mathematical techniques in finance”, Princeton University Press, 2004.zh_TW
dc.relation.reference (參考文獻) Cox, J. and M. Rubinstein, “Option markets”, Prentice-Hall, 1985.zh_TW
dc.relation.reference (參考文獻) Cox, J., S. Ross, and M. Rubinstein, “Option pricing: A simplified approach”, Journal of Financial Economics 7, 229-263, 1979.zh_TW
dc.relation.reference (參考文獻) Francis, L., “Martingale restrictions tests of option pricing models”, working papers, University of California at Los Angeles, 1990.zh_TW
dc.relation.reference (參考文獻) Garman, M. and S. Kohlhagen, "Foreign Currency Option Values", Journal of International Money and Finance 2, 231-37, 1983.zh_TW
dc.relation.reference (參考文獻) Harrison, J. and D. M. Kreps, "Martingales and arbitrage in multiperiod securities markets", Journal of Economic Theory 20, 381-408, 1979.zh_TW
dc.relation.reference (參考文獻) Harrison, J. and S. Pliska, “Martingales and stochastic integrals in the theory of continuous time trading”, Stochastic Processes and Their Applications 11, 215-260, 1981.zh_TW
dc.relation.reference (參考文獻) Haugh, M., “Martingale pricing theory”, lecture note, Department of Industrial Engineering and Operation Research, Columbia University, 2004.zh_TW
dc.relation.reference (參考文獻) Herzel, S., “Arbitrage opportunities on derivatives:A linear programming approach”, Dynamics of Continuous, Discrete and Impulsive System 12, 589-606, 2005.zh_TW
dc.relation.reference (參考文獻) Ito, K., “On stochastic differential equation memories”, American Mathematical Society 4, 1-51, 1951.zh_TW
dc.relation.reference (參考文獻) Jackwerth, J. C. and M. Rubinstein, “Recovering probability distributions from contemporaneous security prices”, working paper, University of California at Berkeley, 1995.zh_TW
dc.relation.reference (參考文獻) Jackwerth, J. C. and M. Rubinstein, “Recovering probability distributions from option prices”, Journal of Finance 51, 1611-1632, 1996.zh_TW
dc.relation.reference (參考文獻) Luenberger, D. G., “Linear and nonlinear programming”, 2nd edition, Addison-Wesley, 1984.zh_TW
dc.relation.reference (參考文獻) MaCulloch, J., “The tax adjusted yield curve”, Journal of Finance 30, 811-829, 1975.zh_TW
dc.relation.reference (參考文獻) Merton, R., “The theory of rational option pricing”, Bell Journal of Economics and Management Sciences 4, 141-183, 1973.zh_TW
dc.relation.reference (參考文獻) Rubinstein, M., “Implied binomial trees”, Journal of Finance 49, 771-818, 1994.zh_TW
dc.relation.reference (參考文獻) Shimko, D., “Bounds of probability”, RISK 6, 33-37, 1993.zh_TW
dc.relation.reference (參考文獻) Siegel, S., “Nonparametric statistics”, McGraw-Hill, 1956.zh_TW
dc.relation.reference (參考文獻) Vasicek, O. A. and H. G. Fong, “Term structure modeling using exponential splines”, Journal of Finance 37, 339-356, 1977.zh_TW
dc.relation.reference (參考文獻) Wiener, N., “Differential-space”, J. Math. Phys., Mass. Inst. Technol. 2, 131-174, 1923.zh_TW
dc.relation.reference (參考文獻) 陳松男,金融工程學,華泰文化,2002。zh_TW
dc.relation.reference (參考文獻) 陳威光,選擇權:理論.實務與應用,智聖文化,2001。zh_TW
dc.relation.reference (參考文獻) 楊靜宜,選擇權策略的整數線性規劃模型,國立政治大學應用數學系碩士論文,2004。zh_TW
dc.relation.reference (參考文獻) 劉明郎、楊靜宜、劉宣谷,選擇權交易策略的整數線性規劃模型,第二屆台灣作業研究學會年會 暨作業研究理論與實務學術研討會,台北,2005。zh_TW
dc.relation.reference (參考文獻) 劉桂芳,由選擇權市場價格建構具一致性之評價模型,國立政治大學應用數學系碩士論文,2005。zh_TW