dc.contributor.advisor | 陳天進 | zh_TW |
dc.contributor.advisor | Chen, Ten Ging | en_US |
dc.contributor.author (Authors) | 歐姿君 | zh_TW |
dc.contributor.author (Authors) | Ou, Tze Chun | en_US |
dc.creator (作者) | 歐姿君 | zh_TW |
dc.creator (作者) | Ou, Tze Chun | en_US |
dc.date (日期) | 2007 | en_US |
dc.date.accessioned | 17-Sep-2009 13:48:01 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:48:01 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:48:01 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0094751008 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32586 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 應用數學研究所 | zh_TW |
dc.description (描述) | 94751008 | zh_TW |
dc.description (描述) | 96 | zh_TW |
dc.description.abstract (摘要) | Haymen猜測:對任意的超越半純函數 f(z),f`(z)f(z)^n 取所有值無窮多次,其中至多只有一個例外值。這個著名的猜測,大部分的情形已被證明是正確的。另外,Hayman 證明 f`(z)-af(z)^n 取所有有限值無窮多次,其中 a 為一複數且 n≧5 的正整數。在本篇論文裡,我們將探討以小函數為係數的半純函數微分多項式之值分佈問題。並將Hayman的結果推廣至 f^{k}(z)f(z)^n 與 f^{k}(z)-af(z)^n 的情形。同時,我們也證明一些A類半純函數與其導數的值分佈結果。 | zh_TW |
dc.description.abstract (摘要) | A famous conjecture of Hayman says that if f(z) is a transcendental meromorphic function, then f`(z)f(z)^n assumes all finite values except possibly zero infinitely often. The conjecture was solved in most cases. Another result of Hayman says that f`(z)-af(z)^n, where n≧5 and a is a complex number, assumes all finite values infinitely often. In this thesis, we will study the value distribution of some differential polynomial in a meromorphic function with small functions as coefficents. In fact, we will generalize Hayman`s results to the cases f^(k)(z)f(z)^n and f^(k)(z)-af(z)^n. Also, the value distribution of meromorphic functions of class A with their derivatives are obtained. | en_US |
dc.description.tableofcontents | 謝辭......................................................i Abstract................................................iii 中文摘要..................................................iv 1 Introduction............................................1 2 Basic Theory of Nevanlinna`s Value Distribution Theory......................4 3.Some Lemmas.............................14 4.Value Distribution of Meromorphic Functions in class A with Their Derivatives..............16 5.Value Distribution of Meromorphic Functions with Their Derivatives...............................21 6.References.............................................................33 | zh_TW |
dc.format.extent | 48050 bytes | - |
dc.format.extent | 26614 bytes | - |
dc.format.extent | 105669 bytes | - |
dc.format.extent | 27078 bytes | - |
dc.format.extent | 68917 bytes | - |
dc.format.extent | 48977 bytes | - |
dc.format.extent | 90519 bytes | - |
dc.format.extent | 50712 bytes | - |
dc.format.extent | 64474 bytes | - |
dc.format.extent | 110536 bytes | - |
dc.format.extent | 43269 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0094751008 | en_US |
dc.subject (關鍵詞) | 值分佈理論 | zh_TW |
dc.subject (關鍵詞) | 半純函數 | zh_TW |
dc.subject (關鍵詞) | value distribution theory | en_US |
dc.subject (關鍵詞) | meromorphic function | en_US |
dc.title (題名) | 半純函數與其導數之值分佈 | zh_TW |
dc.title (題名) | On The Value Distribution Of Meromorphic Functions With Their Derivatives | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic | zh_TW |
dc.relation.reference (參考文獻) | function of finite order, Rev. Mat. Iber., 11 (1995), 355-373. | zh_TW |
dc.relation.reference (參考文獻) | [2] H. H. Chen and M. L. Fang, On the value distribution of fnf0, Sci. China Ser. | zh_TW |
dc.relation.reference (參考文獻) | A, 38 (1995), 789-798. | zh_TW |
dc.relation.reference (參考文獻) | [3] J. Clunie, On integral and meromorphic function, J. London Math. Soc., 37 | zh_TW |
dc.relation.reference (參考文獻) | (1962), 17-27. | zh_TW |
dc.relation.reference (參考文獻) | [4] J. Clunie, On a result of Hayman, J. London Math. Soc., 42 (1967), 389-392. | zh_TW |
dc.relation.reference (參考文獻) | [5] P. Csillag, ¨ Uber ganze funktionen, welche drei nicht verschwindende ableitungen | zh_TW |
dc.relation.reference (參考文獻) | besitzen, Math. Ann., 110 (1935), 745-752. | zh_TW |
dc.relation.reference (參考文獻) | [6] G. Frank, Eine vermutung von Hayman ¨uber nullstellen meromorpher funktion, | zh_TW |
dc.relation.reference (參考文獻) | Math. Z., 149 (1976), 29-36. | zh_TW |
dc.relation.reference (參考文獻) | [7] G. Frank, W. Hennekemper and G. Polloczek, ¨ Uber die nullstellen meromorpher | zh_TW |
dc.relation.reference (參考文獻) | funktionen und deren ableitungen, Math. Ann., no.2 225 (1977), 145-154. | zh_TW |
dc.relation.reference (參考文獻) | [8] W. K. Hayman, Picard values of meromorphic functions and their derivatives, | zh_TW |
dc.relation.reference (參考文獻) | Ann. Math., 70 (1959), 9-42. | zh_TW |
dc.relation.reference (參考文獻) | [9] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. | zh_TW |
dc.relation.reference (參考文獻) | [10] W. K. Hayman, Reseach Problems in Function Theory, London: Athlone Press, | zh_TW |
dc.relation.reference (參考文獻) | 1967. | zh_TW |
dc.relation.reference (參考文獻) | [11] J. K. Langley, Proof of a conjecture of Hayman concerning f and f00, J. London | zh_TW |
dc.relation.reference (參考文獻) | Math. Soc., no.2 48 (1993), 500-514. | zh_TW |
dc.relation.reference (參考文獻) | [12] E. Mues, ¨ Uber ein problem von Hayman, Math. Z., 164 (1979), 239-259. | zh_TW |
dc.relation.reference (參考文獻) | [13] E. Mues, Meromorphic functions sharing four values, Complex Variables, 12 | zh_TW |
dc.relation.reference (參考文獻) | (1989), 169–179. | zh_TW |
dc.relation.reference (參考文獻) | [14] W. Saxer, Sur les valeurs exceptionelles des d´eriv´ees successives des fonctions | zh_TW |
dc.relation.reference (參考文獻) | meromorphes, C. R. Acad. Sci. Paris, 182 (1926), 831-833. | zh_TW |
dc.relation.reference (參考文獻) | [15] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, | zh_TW |
dc.relation.reference (參考文獻) | Kluwer Academic Publishers, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [16] C. C. Yang and C. T. Chuang, Fixed points and factorization theory of meromorphic | zh_TW |
dc.relation.reference (參考文獻) | functions, Peking Univ. Press, 1988. | zh_TW |
dc.relation.reference (參考文獻) | [17] L. Zalcman, On some problems of Hayman, preprint (Bar-Ilan University). | zh_TW |
dc.relation.reference (參考文獻) | [18] L. Yang, Value distribution theory, Berlin Heidelberg: Springer-Verlag, Beijing: | zh_TW |
dc.relation.reference (參考文獻) | Science Press, 1993. | zh_TW |
dc.relation.reference (參考文獻) | [19] F. Gross, Factorizatioin of meromorphic functions, U. S. Government Printing | zh_TW |
dc.relation.reference (參考文獻) | Office, Washington, D. C.,1972. | zh_TW |
dc.relation.reference (參考文獻) | [20] H. X. Yi and C. C. Yang, Uniqueness theory of meromorphic functions, Pure | zh_TW |
dc.relation.reference (參考文獻) | and Applied Math. Monographs No. 32, Science Press, Beijing, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [21] R. Nevanlinna, Le th´eor"eme de Picard-Borel et la th´eorie des fonctions | zh_TW |
dc.relation.reference (參考文獻) | m´eromorphes, Gauthiers-Villars, Paris, 1929. | zh_TW |
dc.relation.reference (參考文獻) | [22] H. Milloux, Les fonctions m´eromorphes et leurs d´eriv´ees, Paris, 1940. | zh_TW |
dc.relation.reference (參考文獻) | [23] K. Y. Chen, Some Results on the Uniqueness of Meromorphic Functions, PHD | zh_TW |
dc.relation.reference (參考文獻) | thesis, National Chengchi University, 2007. | zh_TW |