Publications-Theses

題名 由選擇權市場價格建構具一致性之評價模型
Building a Consistent Pricing Model from Observed Option Prices via Linear Programming
作者 劉桂芳
Liu, Kuei-fang
貢獻者 劉明郎
Liu, Ming-long
劉桂芳
Liu, Kuei-fang
關鍵詞 評價選擇權
風險中立機率測度
等價平賭測度
線性規劃
options pricing
risk-neutral probability measure
equivalent martingale measure
linear programming
日期 2004
上傳時間 17-Sep-2009 13:50:05 (UTC+8)
摘要 本論文研究如何由觀測的選擇權市場價格還原風險中立機率測度(等價平賭測度)。首先建構選擇權投資組合的套利模型,其中假設選擇權為單期,到期日時的狀態為離散點且個數有限,並且對應同一標的資產且不同履約價格。若市場不存在套利機會時,可使用拉格朗日乘數法則將選擇權套利模型導出拉格朗日乘子的可行性問題。將可行性問題作為限制式重新建構線性規劃模型以還原風險中立機率測度,並且利用此風險中立機率測度評價選擇權的公正價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。
This thesis investigates how to recover the risk-neutral probability (equivalent martingale measure) from observed market prices of options. It starts with building an arbitrage model of options portfolio in which the options are assumed to be in one-period time, finite discrete-states, and corresponding to the same underlying asset with different strike prices. If there is no arbitrage opportunity in the market, we can use Lagrangian multiplier method to obtain a Lagrangian multiplier feasibility problem from the arbitrage model. We employ the feasibility problem as the constraints to construct a linear programming model to recover the risk-neutral probability, and utilize this risk-neutral probability to evaluate the fair price of options. Finally, we take TXO as an example to verify the pricing ability of this model.
參考文獻 Black, F. and M. Scholes (1973), “Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81(3), 637-659.
Churchill, R. V. (1963), “Fourier Series and Boundary Value Problems.” 2nd ed. New York, McGraw-Hill.
Cox, J. and S. Ross (1976), “The Valuation of Options for Alternative Stochastic Processes.” Journal of Financial Economics 3, 145-166.
Cox, J., S. Ross, and M. Rubinstein (1979), “Option Pricing: A Simplified Approach.” Journal of Financial Economics 7(3), 229-263.
Derman, E. and I. Kani (1998), “Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility.” International Journal of Theoretical and Applied Finance 1, 7-22.
Harrison, J. and S. Pliska (1981), “Martingales and Stochastic Integrals in the Theory of Continuous Time Trading.” Stochastic Processes and their Applications 11, 215-260.
Haugh, M. (2004), “Martingale Pricing Theory.” Lecture Note, Department of Industrial Engineering and Operation Research, Columbia University.
Ito K. (1951), “On Stochastic Differential Equation Memories.” American Mathematical Society 4, 1-51.
Jackwerth, J. (1997), “Generalized Binomial Trees.” Journal of Derivatives 5(2), 7-17.
Jackwerth, J. (1999), “Option-Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review.” Journal of Derivatives 7(2), 66-82.
King, A. (2002), “Duality and Martingale: A Stochastic Programming Perspective on Contingent Claims.” Mathematical Programming Ser. B 91, 543-562.
Melick, W. and C. Thomas (1997), “Recovering an Asset’s Implied PDF from Option Prices: An Application to Crude Oil During the Gulf Crisis.” Journal of Financial and Quantitative Analysis 32, 91-115.
Rubinstein M. and J. Jackwerth (1997), “Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns.” in: The Legacy of Fisher Black, editor: Bruce N. Lehmann, Oxford University Press, Oxford.
Rubinstein, M. (1994), “Implied Binomial Trees.” Journal of Derivatives 49(3), 771-818.
Sharpe, W. F. (1978), “Investments.” Prentice-Hall International.
Sherrick, B., P. Garcia, and V. Tirupattur (1995), “Recovering Probabilistic Information from Option Markets: Tests of Distributional Assumptions.” Working paper, University of Illinois at Urbana-Champaign.
楊靜宜 (2004),選擇權交易策略的整數線性規劃模型,政治大學應用數學研究所碩士論文。
描述 碩士
國立政治大學
應用數學研究所
91751007
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0917510071
資料類型 thesis
dc.contributor.advisor 劉明郎zh_TW
dc.contributor.advisor Liu, Ming-longen_US
dc.contributor.author (Authors) 劉桂芳zh_TW
dc.contributor.author (Authors) Liu, Kuei-fangen_US
dc.creator (作者) 劉桂芳zh_TW
dc.creator (作者) Liu, Kuei-fangen_US
dc.date (日期) 2004en_US
dc.date.accessioned 17-Sep-2009 13:50:05 (UTC+8)-
dc.date.available 17-Sep-2009 13:50:05 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:50:05 (UTC+8)-
dc.identifier (Other Identifiers) G0917510071en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32605-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 91751007zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要) 本論文研究如何由觀測的選擇權市場價格還原風險中立機率測度(等價平賭測度)。首先建構選擇權投資組合的套利模型,其中假設選擇權為單期,到期日時的狀態為離散點且個數有限,並且對應同一標的資產且不同履約價格。若市場不存在套利機會時,可使用拉格朗日乘數法則將選擇權套利模型導出拉格朗日乘子的可行性問題。將可行性問題作為限制式重新建構線性規劃模型以還原風險中立機率測度,並且利用此風險中立機率測度評價選擇權的公正價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。zh_TW
dc.description.abstract (摘要) This thesis investigates how to recover the risk-neutral probability (equivalent martingale measure) from observed market prices of options. It starts with building an arbitrage model of options portfolio in which the options are assumed to be in one-period time, finite discrete-states, and corresponding to the same underlying asset with different strike prices. If there is no arbitrage opportunity in the market, we can use Lagrangian multiplier method to obtain a Lagrangian multiplier feasibility problem from the arbitrage model. We employ the feasibility problem as the constraints to construct a linear programming model to recover the risk-neutral probability, and utilize this risk-neutral probability to evaluate the fair price of options. Finally, we take TXO as an example to verify the pricing ability of this model.en_US
dc.description.tableofcontents 摘要..................................................v
ABSTRACT.............................................vi
目次................................................vii
圖目次.............................................viii
表目次...............................................ix
第一章 緒論...........................................1
1.1 研究動機與研究方法............................1
1.2 文章架構......................................2
第二章 文獻回顧.......................................3
2.1 PDE與EMM評價模型.............................3
2.2 二元樹與隱含二元樹............................6
2.3 隨機規劃法還原風險中立機率測度................9
2.4 回顧還原風險中立機率測度的方法...............12
第三章 由市場價格建構選擇權評價模型..................15
3.1 選擇權的套利模型.............................15
3.2 還原風險中立機率測度.........................20
第四章 實證研究......................................28
4.1 資料來源.....................................28
4.2 結果分析.....................................29
4.2.1評價價格與市場價格之比較........................29
4.2.2風險中立機率測度的型態..........................40
第五章 結論與建議....................................43
參考文獻.............................................45
附表.................................................47
zh_TW
dc.format.extent 7956 bytes-
dc.format.extent 9693 bytes-
dc.format.extent 13427 bytes-
dc.format.extent 15944 bytes-
dc.format.extent 18973 bytes-
dc.format.extent 69125 bytes-
dc.format.extent 76613 bytes-
dc.format.extent 90433 bytes-
dc.format.extent 22023 bytes-
dc.format.extent 16416 bytes-
dc.format.extent 38914 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0917510071en_US
dc.subject (關鍵詞) 評價選擇權zh_TW
dc.subject (關鍵詞) 風險中立機率測度zh_TW
dc.subject (關鍵詞) 等價平賭測度zh_TW
dc.subject (關鍵詞) 線性規劃zh_TW
dc.subject (關鍵詞) options pricingen_US
dc.subject (關鍵詞) risk-neutral probability measureen_US
dc.subject (關鍵詞) equivalent martingale measureen_US
dc.subject (關鍵詞) linear programmingen_US
dc.title (題名) 由選擇權市場價格建構具一致性之評價模型zh_TW
dc.title (題名) Building a Consistent Pricing Model from Observed Option Prices via Linear Programmingen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) Black, F. and M. Scholes (1973), “Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81(3), 637-659.zh_TW
dc.relation.reference (參考文獻) Churchill, R. V. (1963), “Fourier Series and Boundary Value Problems.” 2nd ed. New York, McGraw-Hill.zh_TW
dc.relation.reference (參考文獻) Cox, J. and S. Ross (1976), “The Valuation of Options for Alternative Stochastic Processes.” Journal of Financial Economics 3, 145-166.zh_TW
dc.relation.reference (參考文獻) Cox, J., S. Ross, and M. Rubinstein (1979), “Option Pricing: A Simplified Approach.” Journal of Financial Economics 7(3), 229-263.zh_TW
dc.relation.reference (參考文獻) Derman, E. and I. Kani (1998), “Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility.” International Journal of Theoretical and Applied Finance 1, 7-22.zh_TW
dc.relation.reference (參考文獻) Harrison, J. and S. Pliska (1981), “Martingales and Stochastic Integrals in the Theory of Continuous Time Trading.” Stochastic Processes and their Applications 11, 215-260.zh_TW
dc.relation.reference (參考文獻) Haugh, M. (2004), “Martingale Pricing Theory.” Lecture Note, Department of Industrial Engineering and Operation Research, Columbia University.zh_TW
dc.relation.reference (參考文獻) Ito K. (1951), “On Stochastic Differential Equation Memories.” American Mathematical Society 4, 1-51.zh_TW
dc.relation.reference (參考文獻) Jackwerth, J. (1997), “Generalized Binomial Trees.” Journal of Derivatives 5(2), 7-17.zh_TW
dc.relation.reference (參考文獻) Jackwerth, J. (1999), “Option-Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review.” Journal of Derivatives 7(2), 66-82.zh_TW
dc.relation.reference (參考文獻) King, A. (2002), “Duality and Martingale: A Stochastic Programming Perspective on Contingent Claims.” Mathematical Programming Ser. B 91, 543-562.zh_TW
dc.relation.reference (參考文獻) Melick, W. and C. Thomas (1997), “Recovering an Asset’s Implied PDF from Option Prices: An Application to Crude Oil During the Gulf Crisis.” Journal of Financial and Quantitative Analysis 32, 91-115.zh_TW
dc.relation.reference (參考文獻) Rubinstein M. and J. Jackwerth (1997), “Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns.” in: The Legacy of Fisher Black, editor: Bruce N. Lehmann, Oxford University Press, Oxford.zh_TW
dc.relation.reference (參考文獻) Rubinstein, M. (1994), “Implied Binomial Trees.” Journal of Derivatives 49(3), 771-818.zh_TW
dc.relation.reference (參考文獻) Sharpe, W. F. (1978), “Investments.” Prentice-Hall International.zh_TW
dc.relation.reference (參考文獻) Sherrick, B., P. Garcia, and V. Tirupattur (1995), “Recovering Probabilistic Information from Option Markets: Tests of Distributional Assumptions.” Working paper, University of Illinois at Urbana-Champaign.zh_TW
dc.relation.reference (參考文獻) 楊靜宜 (2004),選擇權交易策略的整數線性規劃模型,政治大學應用數學研究所碩士論文。zh_TW