Publications-Theses

題名 利用最小平方蒙地卡羅法評價百幕達式利率交換選擇權
作者 陳妙津
貢獻者 廖四郎<br>吳柏林
陳妙津
關鍵詞 百慕達式利率交換選擇權
蒙地卡羅
日期 2005
上傳時間 17-Sep-2009 13:50:33 (UTC+8)
摘要   利率是金融市場一項非常重要的指標,其波動可說是直接地或間接地牽動整個金融市場的表現。劵商在承作各項金融商品買賣以及公司舉債時都不得不考慮利率波動可能造成的極大風險,於是在避險需求的帶動下,具有避險功能的利率衍生性商品種類愈來愈多,其結構也日趨複雜。而在眾多的利率衍生性商品中,利率交換選擇權佔有非常高的交易量。本文先介紹何謂利率交換選擇權、選擇權的買賣雙方如何執行契約、承作選擇權可能產生的風險以及選擇權目前的市場概況。熟悉了此金融商品後,另一個重要的問題即是進行評價。由於歐式利率交換選擇權已有公式解,故本文的重點在於使用數值方法中的最小平方蒙地卡羅法評價百慕達式利率交換選擇權。
參考文獻 參考文獻
1.Broadie, M., Glasserman, P. (1997). “Pricing American-  Style Securities Using Simulation”. Journal of Economic  Dynamics and Control, Vol.21, No.8/9, 1323-1352.
2.Broadie, M., Glasserman, P. (1997). “Monte Carlo Methods  for Pricing High-Dimensional American Options: An    
 Overview”. Net Exposure, Issue 3, 15-37.
3.Boyle, P.P. (1977). “Options:A Monte Carlo Approach”.  
 Journal of Financial Economics, 4, pp.323-338.
4.Ibanez, A., Zapatero,F. (2001). “ Monte Carlo Valuation  of American Options Through Computation of the Optimal   Exercise Frontier”. Working paper.
5.Longstaff, F., Schwartz, E. (2001). “ Valuing American  
 Options by Simulation: A Simple Least-Squares Approach”.
 The Review of Financial Studies 14(1) 113-147.
6.MB. Jensen (2001). “ Efficient Method of Moments
 Estimation of the Longstaff and Schwartz Interest Rate
 Model”. Working paper, Department of Business Studies,
 Aalborg University.
7.P. Jäckel (2000). “Non-recombining Trees for the Pricing
 of Interest Rate Derivatives in the BGM/J Framework”.
 Internal report, The Royal Bank of Scotland, 135
 Bishopsgate, London EC2M 3UR.
8.P. Jäckel (2000). “Monte Carlo in the BGM/J framework:
 Using a Non-recombining Tree to Design a new pricing
 method for Bermudan Swaptions”. Internal report, The
 Royal Bank of Scotland, 135 Bishopsgate, London EC2M 3UR.
9.R. Bilger (2003). “ Valuing American-Asian Options with
 the Longstaff-Schwartz Algorithm”. master’s thesis,
 University of Oxford.
10.R. Pietersz, A. Pelsser (2003). “ Risk Managing
  Bermudan Swaptions in the Libor BGM Model”. Finance 1-
  28.
11.Tilley, J. (1993). “Valuing American Options in a Path
  SimulationModel”. Transactions of the Society of
  Actuaries, 45, pp.83-104.
12.(2004). “Valuation of Energy Derivatives with Monte
  Carlo Methods”. master’s thesis, University of Oxford.
描述 碩士
國立政治大學
應用數學研究所
92751013
94
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0927510131
資料類型 thesis
dc.contributor.advisor 廖四郎<br>吳柏林zh_TW
dc.contributor.author (Authors) 陳妙津zh_TW
dc.creator (作者) 陳妙津zh_TW
dc.date (日期) 2005en_US
dc.date.accessioned 17-Sep-2009 13:50:33 (UTC+8)-
dc.date.available 17-Sep-2009 13:50:33 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:50:33 (UTC+8)-
dc.identifier (Other Identifiers) G0927510131en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32609-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 應用數學研究所zh_TW
dc.description (描述) 92751013zh_TW
dc.description (描述) 94zh_TW
dc.description.abstract (摘要)   利率是金融市場一項非常重要的指標,其波動可說是直接地或間接地牽動整個金融市場的表現。劵商在承作各項金融商品買賣以及公司舉債時都不得不考慮利率波動可能造成的極大風險,於是在避險需求的帶動下,具有避險功能的利率衍生性商品種類愈來愈多,其結構也日趨複雜。而在眾多的利率衍生性商品中,利率交換選擇權佔有非常高的交易量。本文先介紹何謂利率交換選擇權、選擇權的買賣雙方如何執行契約、承作選擇權可能產生的風險以及選擇權目前的市場概況。熟悉了此金融商品後,另一個重要的問題即是進行評價。由於歐式利率交換選擇權已有公式解,故本文的重點在於使用數值方法中的最小平方蒙地卡羅法評價百慕達式利率交換選擇權。zh_TW
dc.description.tableofcontents 目錄
第一章 緒論  ……………………………………………………………1
第二章 LIBOR市場模型  ………………………………………………6
第一節 利率模型的發展概況  ………………………………6
第二節 建立LIBOR市場模型 ………………………………8
第三節 遠期LIBOR利率在不同計價單位下的動態過程 …10
第三章 最小平方蒙地卡羅法(LSM)  …………………………………11
第一節 LSM的適用時機 ……………………………………11
第二節 LSM的作法 …………………………………………13
第三節 LSM的實作範例 ……………………………………16
第四章 利率交換選擇權商品的評價及應用 ……………………………22  
第一節 利用LSM評價百幕達式利率交換選擇權  …………22
第二節 如何利用選擇權商品避險 ……………………………33
第五章 結論  ……………………………………………………………36
附錄 …………………………………………………………………………38
參考文獻 ……………………………………………………………………40
zh_TW
dc.format.extent 43240 bytes-
dc.format.extent 75534 bytes-
dc.format.extent 58543 bytes-
dc.format.extent 48795 bytes-
dc.format.extent 119367 bytes-
dc.format.extent 127782 bytes-
dc.format.extent 148079 bytes-
dc.format.extent 180278 bytes-
dc.format.extent 100347 bytes-
dc.format.extent 67175 bytes-
dc.format.extent 38354 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0927510131en_US
dc.subject (關鍵詞) 百慕達式利率交換選擇權zh_TW
dc.subject (關鍵詞) 蒙地卡羅zh_TW
dc.title (題名) 利用最小平方蒙地卡羅法評價百幕達式利率交換選擇權zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 參考文獻zh_TW
dc.relation.reference (參考文獻) 1.Broadie, M., Glasserman, P. (1997). “Pricing American-  Style Securities Using Simulation”. Journal of Economic  Dynamics and Control, Vol.21, No.8/9, 1323-1352.zh_TW
dc.relation.reference (參考文獻) 2.Broadie, M., Glasserman, P. (1997). “Monte Carlo Methods  for Pricing High-Dimensional American Options: An    zh_TW
dc.relation.reference (參考文獻)  Overview”. Net Exposure, Issue 3, 15-37.zh_TW
dc.relation.reference (參考文獻) 3.Boyle, P.P. (1977). “Options:A Monte Carlo Approach”.  zh_TW
dc.relation.reference (參考文獻)  Journal of Financial Economics, 4, pp.323-338.zh_TW
dc.relation.reference (參考文獻) 4.Ibanez, A., Zapatero,F. (2001). “ Monte Carlo Valuation  of American Options Through Computation of the Optimal   Exercise Frontier”. Working paper.zh_TW
dc.relation.reference (參考文獻) 5.Longstaff, F., Schwartz, E. (2001). “ Valuing American  zh_TW
dc.relation.reference (參考文獻)  Options by Simulation: A Simple Least-Squares Approach”.zh_TW
dc.relation.reference (參考文獻)  The Review of Financial Studies 14(1) 113-147.zh_TW
dc.relation.reference (參考文獻) 6.MB. Jensen (2001). “ Efficient Method of Momentszh_TW
dc.relation.reference (參考文獻)  Estimation of the Longstaff and Schwartz Interest Ratezh_TW
dc.relation.reference (參考文獻)  Model”. Working paper, Department of Business Studies,zh_TW
dc.relation.reference (參考文獻)  Aalborg University.zh_TW
dc.relation.reference (參考文獻) 7.P. Jäckel (2000). “Non-recombining Trees for the Pricingzh_TW
dc.relation.reference (參考文獻)  of Interest Rate Derivatives in the BGM/J Framework”.zh_TW
dc.relation.reference (參考文獻)  Internal report, The Royal Bank of Scotland, 135zh_TW
dc.relation.reference (參考文獻)  Bishopsgate, London EC2M 3UR.zh_TW
dc.relation.reference (參考文獻) 8.P. Jäckel (2000). “Monte Carlo in the BGM/J framework:zh_TW
dc.relation.reference (參考文獻)  Using a Non-recombining Tree to Design a new pricingzh_TW
dc.relation.reference (參考文獻)  method for Bermudan Swaptions”. Internal report, Thezh_TW
dc.relation.reference (參考文獻)  Royal Bank of Scotland, 135 Bishopsgate, London EC2M 3UR.zh_TW
dc.relation.reference (參考文獻) 9.R. Bilger (2003). “ Valuing American-Asian Options withzh_TW
dc.relation.reference (參考文獻)  the Longstaff-Schwartz Algorithm”. master’s thesis,zh_TW
dc.relation.reference (參考文獻)  University of Oxford.zh_TW
dc.relation.reference (參考文獻) 10.R. Pietersz, A. Pelsser (2003). “ Risk Managingzh_TW
dc.relation.reference (參考文獻)   Bermudan Swaptions in the Libor BGM Model”. Finance 1-zh_TW
dc.relation.reference (參考文獻)   28.zh_TW
dc.relation.reference (參考文獻) 11.Tilley, J. (1993). “Valuing American Options in a Pathzh_TW
dc.relation.reference (參考文獻)   SimulationModel”. Transactions of the Society ofzh_TW
dc.relation.reference (參考文獻)   Actuaries, 45, pp.83-104.zh_TW
dc.relation.reference (參考文獻) 12.(2004). “Valuation of Energy Derivatives with Montezh_TW
dc.relation.reference (參考文獻)   Carlo Methods”. master’s thesis, University of Oxford.zh_TW