dc.contributor.advisor | 沈錳坤 | zh_TW |
dc.contributor.advisor | Huang,Man-Kwan | en_US |
dc.contributor.author (Authors) | 黃郁君 | zh_TW |
dc.contributor.author (Authors) | Huang,Yu-Chun | en_US |
dc.creator (作者) | 黃郁君 | zh_TW |
dc.creator (作者) | Huang,Yu-Chun | en_US |
dc.date (日期) | 2003 | en_US |
dc.date.accessioned | 17-Sep-2009 13:52:11 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:52:11 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:52:11 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0089753011 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32618 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 89753011 | zh_TW |
dc.description (描述) | 92 | zh_TW |
dc.description.abstract (摘要) | 在這個資訊快速擴張的時代,許多種類的資料庫被應用在各式各樣的領域中。空間資料探勘即是一個例子,它在空間資料庫中探勘出頻繁的樣式以及空間關係。空間資料探勘是在空間資料庫中挖掘出有趣的、以前不知道的、但實際上是有用的樣式或空間關係。 在本篇論文中,我們探勘空間序列的問題。我們主要討論兩個主題:空間相關樣式,以及空間相似相關樣式。關於空間相關樣式,我們提出以Apriori為基礎以及深度優先為基礎的解法。在空間相關相似樣式部分,我們提出兩個演算法AP-mine以及AS-mine來解決我們的問題。在AP-mine中,我們提出一個名為AP-tree的資料結構來有效率的挖掘出空間相關相似樣式。最後我們以實驗來驗證我們的演算法。 | zh_TW |
dc.description.abstract (摘要) | With the growth of data, a variety of databases are applied in many applications. Spatial data mining is an example, and it discovers patterns or spatial relations from large spatial databases. Spatial data mining is the process of discovering interesting and previously unknown, but potential useful patterns or spatial relations from large spatial databases.In this thesis, we explore the problem of spatial sequential pattern mining. The two issues spatial co-relation patterns and approximate spatial co-relation patterns will be discussed. We utilize Apriori-based method and depth-first based method to solve the problem of spatial co-relation patterns. About approximate co-relation spatial patterns, we propose two algorithms, named AP-mine and AS-mine. In AP-mine, we propose a data structure, named AP-tree, to efficient mining the approximate spatial co-relation patterns. Lastly, We also perform the experiments to evaluate our spatial co-relation pattern mining algorithms. | en_US |
dc.description.tableofcontents | CHAPTER 1 Introduction 11.1 Overview 11.2 Paper Organization 3CHAPTER 2 Review of Literature 52.1 Location Prediction 62.2 Spatial Outliers 72.3 Spatial Co-location Rules 102.3.1. Problem Definition and Basic Concepts 102.3.2. Modeling the Co-location Rules 122.3.3. Mining Co-location Rules 152.4 Sequential Pattern Mining 172.4.1 Basic Concepts 182.4.2 Mining Closed Sequential Patterns 182.4.3 Mining Periodic Patterns 19CHAPTER 3 Mining Spatial Co-relation Patterns 213.1 Problem Definition 213.2 The Apriori-based Strategy 243.3 The Depth-first Strategy 32CHAPTER 4 Mining Approximate Spatial Co-relation Patterns 394.1 Problem Definition 394.2 AP-mine: Mining Frequent Approximate Patterns 414.2.1 Construction of AP-tree 424.2.2 Mining Frequent Approximate Patterns from AP-tree 464.3 AS-mine: Mining Approximate Spatial Co-relation Patterns 49CHAPTER 5 Performance and Evaluation 545.1 Generation of Synthetic Data 545.2 Mining Spatial Co-relation Patterns 555.3 Mining Approximate Spatial Co-relation Patterns 575.3.1 AP-mine 575.3.2 AS-mine 59CHAPTER 6 Conclusions 61References 62 List of FiguresFIG. 2.1. SPATIAL DATASETS TO EXPLAIN DIFFERENT MODELS TO DISCOVER CO-LOCATION PATTERNS 14FIG. 2.2. SPATIAL DATASETS 16FIG. 3.1. A SYMBOLIC PICTURE 22FIG. 3.2. PICTURE MATCHING EXAMPLE 23FIG. 3.3. SYMBOLIC PICTURES OF TABLE 3.1 24FIG. 3.4. GENERATING CANDIDATE SPATIAL PATTERNS 25FIG. 3.5. SYMBOLIC PICTURES 26FIG. 3.6. GENERATION OF CANDIDATE LENGTH-2 SPATIAL PATTERNS 26FIG. 3.7. GENERATION OF CANDIDATE LENGTH-3 SPATIAL PATTERNS 27FIG. 3.8. THE APRIORI-BASED ALGORITHM FOR MINING SPATIAL CO-RELATION PATTERNS 30FIG. 3.9. GENERATION THE SET OF CANDIDATE AND FREQUENT SPATIAL PATTERNS 31FIG. 3.10. THE DEPTH-FIRST BASED ALGORITHM FOR MINING SPATIAL CO-RELATION PATTERNS 34FIG. 3.11. GENERATING CANDIDATE BRANCHES OF A NODE 35FIG. 3.12. COUNTING FREQUENT EXTENSIONS OF A NODE 35FIG. 3.13. THE LEXICOGRAPHIC TREE OF SPATIAL CO-RELATION RULES 37FIG. 4.1. THE AP-MINE ALGORITHM FOR MINING FREQUENT APPROXIMATE PATTERNS 42FIG. 4.2. THE AP-TREE CONSTRUCTED OF APPROXIMATE PATTERNS IN TABLE 4.3 45FIG. 4.3. THE CONSTRUCTION OF AP-TREE 46FIG. 4.4. MAP ALGORITHM 47FIG. 4.5. THE CONDITIONAL AP-TREE BUILT FOR A, AP|A 48FIG. 4.6. THE CONDITIONAL AP-TREES AP|AB AND AP|A G 49FIG. 4.7. AS-MINE ALGORITHM 50FIG. 4.8. THE AP-TREE CONSTRUCTED OF APPROXIMATE 2D STRINGS IN THE X-DIRECTION OF TABLE 4.4 51FIG. 4.9. THE CONDITIONAL AP-TREES AP|A IN THE X-DIRECTION 52FIG. 4.10. THE CONDITIONAL AP-TREES AP|B IN THE X-DIRECTION 52FIG. 4.11. THE AP-TREE CONSTRUCTED OF APPROXIMATE 2D STRINGS IN THE Y-DIRECTION OF TABLE 4.4 53FIG. 4.12. THE CONDITIONAL AP-TREES AP|B IN THE Y-DIRECTION 53FIG. 5.1. EXECUTION TIMES FOR USING APRIORI-BASED STRATEGY 56FIG. 5.2. EXECUTION TIMES FOR USING DEPTH-FIRST BASED STRATEGY 56FIG. 5.3. COMPARISON OF EXECUTION TIMES OF SIX SYNTHETIC DATA 57FIG. 5.4. EXECUTION TIME OF THREE SYNTHETIC DATA FOR DIFFERENT MINIMUM SUPPORT 58FIG. 5.5. EXECUTION TIMES FOR DIFFERENT VARIETY OF OBJECTS IN THE DATABASE 59FIG. 5.6. EXECUTION TIMES FOR DIFFERENT AVERAGE LENGTHS OF STRINGS 59FIG. 5.7. EXECUTION TIMES FOR DIFFERENT MINIMUM SUPPORTS IN THE DATABASE 60 List of TablesTABLE 2.1. CO-LOCATION MINER ALGORITHM ILLUSTRATION ON SPATIAL DATASETS IN FIG. 2.2 17TABLE 3.1. A 2D STRING DATABASE SDB2D 24TABLE 4.1. A STRING DATABASE SDB OF EXAMPLE 4.1 40TABLE 4.2. A 2D STRING DATABASE SDB2D OF EXAMPLE 4.2 40TABLE 4.3. A STRING DATABASE SDB 44TABLE 4.4. APPROXIMATE STRINGS OF SDB 44TABLE 4.5. A 2D STRING DATABASE SDB2D OF EXAMPLE 4.5 51TABLE 4.6. APPROXIMATE STRINGS OF SDB2D 51TABLE 5.1. PARAMETERS DEFINITION 55TABLE 5.2. PARAMETER SETTINGS OF THE SYNTHETIC DATA 57 | zh_TW |
dc.format.extent | 43685 bytes | - |
dc.format.extent | 60465 bytes | - |
dc.format.extent | 70021 bytes | - |
dc.format.extent | 40372 bytes | - |
dc.format.extent | 30692 bytes | - |
dc.format.extent | 178421 bytes | - |
dc.format.extent | 222512 bytes | - |
dc.format.extent | 127064 bytes | - |
dc.format.extent | 64187 bytes | - |
dc.format.extent | 12671 bytes | - |
dc.format.extent | 55816 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0089753011 | en_US |
dc.subject (關鍵詞) | 資料探勘 | zh_TW |
dc.subject (關鍵詞) | 空間相關樣式 | zh_TW |
dc.subject (關鍵詞) | data mining | en_US |
dc.subject (關鍵詞) | spatial co-relation pattern | en_US |
dc.title (題名) | 探勘空間相關樣式之研究 | zh_TW |
dc.title (題名) | Mining Frequent Spatial Co-relation Patterns | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth First Generation of Long Patterns. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000. | zh_TW |
dc.relation.reference (參考文獻) | [2] R. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. A Tree Projection Algorithm for Finding Frequent Itemsets. Journal on Parallel Distributed Computing, Vol. 61, No. 3, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [3] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1993. | zh_TW |
dc.relation.reference (參考文獻) | [4] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases, 1994. | zh_TW |
dc.relation.reference (參考文獻) | [5] S. K. Chang, Q. Y. Shi, and C. W. Yan, Iconic Indexing by 2D Strings, IEEE Transactions Pattern Analysis and Machine Intelligence, Vol. 9, No. 3, 1987. | zh_TW |
dc.relation.reference (參考文獻) | [6] S. Chawla, S. Shekhar, W. Wu, and U. Ozesmi. Modeling Spatial Dependencies for Mining Geospatial Data: An Introduction. In Geographic data mining and Knowledge Discovery (GKD), Harvey Miller and Jiawei Han (editors), 1999. | zh_TW |
dc.relation.reference (參考文獻) | [7] S. Chawla, S. Shekhar, W. Wu, and U. Ozesmi. Extending Data Mining for Spatial Applications: A Case Study in Predicting Nest Locations. ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2000. | zh_TW |
dc.relation.reference (參考文獻) | [8] M. S. Chen, J. Han, and P. S. Yu. Data Mining: An Overview from a Database Perspective, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, 1996. | zh_TW |
dc.relation.reference (參考文獻) | [9] J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series Database. Proceedings of the IEEE International Conference on Data Engineering, 1999. | zh_TW |
dc.relation.reference (參考文獻) | [10] J. Han, W. Gong, and Y. Yin. Mining Segment-Wise Periodic Patterns in Time-Related Databases. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [11] J. Han, K. Koperski, and N. Stefanovic. GeoMiner: A System Prototype for Spatial Data Mining. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1997. | zh_TW |
dc.relation.reference (參考文獻) | [12] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2000. | zh_TW |
dc.relation.reference (參考文獻) | [13] D. Hawkins. Identification of Outliers. Chapman and Hall, 1980. | zh_TW |
dc.relation.reference (參考文獻) | [14] Y. Huang, S. Shekhar, and H. Xiong. Discovering Co-location Patterns from Spatial Datasets: A General Approach. Submitted to IEEE Transactions on Knowledge and Data Engineering, under second round review, 2002. | zh_TW |
dc.relation.reference (參考文獻) | [15] Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining Confident Co-location Rules without A Support Threshold. Proceedings of the 18th ACM Symposium on Applied Computing, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [16] K. Koperski and J. Han. Discovery of Spatial Association Rules in Geographic Information Databases. Proceedings of the 4th International Symposium on Large Spatial Databases, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [17] S. Y. Lee, M. K. Shan, and W. P. Yang. Similarity Retrieval of Iconic Image Databases. Pattern Recognition, Vol. 22, No. 6, 1989. | zh_TW |
dc.relation.reference (參考文獻) | [18] H. J. Loether and D. G. McTavish. Descriptive and Inferential Statistics: An Introduction. Allyn and Bacon, 1993. | zh_TW |
dc.relation.reference (參考文獻) | [19] Y. Morimoto. Mining Frequent Neighboring Class Sets in Spatial Databases. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [20] J. S. Park, M. S. Chen, and P. S. Yu. An Effective Hash-Based Algorithm for Mining Association Rules, Proceedings of ACM SIGMOD International Conference on Management of Data, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [21] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. Mining Access Patterns Efficiently from Web Logs. Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2000. | zh_TW |
dc.relation.reference (參考文獻) | [22] G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases. AAAI∕MIT Press, 1991. | zh_TW |
dc.relation.reference (參考文獻) | [23] S. Shekhar and S. Chawla. Introduction to Spatial Data Mining. In Spatial Databases: A Tour, Prentice Hall, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [24] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu, and C. T. Lu. Spatial Databases: Accomplishments and Research Needs. IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 1, 1999. | zh_TW |
dc.relation.reference (參考文獻) | [25] S. Shekhar and Y. Huang. Discovering Spatial Co-location Patterns: A Summary of Results. Proceedings of 7th International Symposium on Spatial and Temporal Databases, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [26] S. Shekhar, Y. Huang, W. Wu, C. T. Lu, and S. Chawla, What`s Spatial about Spatial Data Mining: Three Case Studies. In Data Mining for Scientific and Engineering Applications, Kluwer Academic Publishers, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [27] S. Shekhar, C. T. Lu, and P. Zhang. Detecting Graph-Based Spatial Outliers: Algorithms and Applications (Summary of Results). Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [28] S. Shekhar, C. T. Lu, and P. Zhang. Detecting Graph-based Spatial Outliers. Intelligent Data Analysis, 2002. | zh_TW |
dc.relation.reference (參考文獻) | [29] S. Shekhar, C. T. Lu, and P. Zhang. A Unified Approach to Detecting Spatial Outliers. Geoinformatica, Vol. 7, Issue 2, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [30] S. Shekhar, P. Schrater, R. Vatsavai, W. Wu, and S. Chawla. Spatial Contextual Classification and Prediction Models for Mining Geospatial Data. IEEE Transactions on Multimedia (special issue on Multimedia Databases), 2002. | zh_TW |
dc.relation.reference (參考文獻) | [31] S. Shekhar, P. Zhang, Y. Huang, and R. R. Vatsavai. Trends in Spatial Data Mining. In Data Mining: Next Generation Challenges and Future Directions, Hillol Kargupta and Anupam Joshi (editors), AAAI/MIT Press, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [32] S. Shekhar, P. Zhang, Y. Huang, and R. R. Vatsavai. Spatial Data Mining, Proceedings of SIAM International Conference on Data Mining, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [33] W. R. Tobler. Cellular Geography. In Philosophy in Geography, Dordrecht, 1979. | zh_TW |
dc.relation.reference (參考文獻) | [34] M. F. Worboys. GIS: A Computing Perspective. Taylor and Francis, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [35] X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns in Large Datasets. Proceedings of SIAM International Conference on Data Mining, 2003. | zh_TW |