dc.contributor.advisor | 李蔡彥 | zh_TW |
dc.contributor.author (Authors) | 周旭騏 | zh_TW |
dc.creator (作者) | 周旭騏 | zh_TW |
dc.date (日期) | 2002 | en_US |
dc.date.accessioned | 17-Sep-2009 13:52:18 (UTC+8) | - |
dc.date.available | 17-Sep-2009 13:52:18 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 13:52:18 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0090753002 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32619 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 90753002 | zh_TW |
dc.description (描述) | 91 | zh_TW |
dc.description.abstract (摘要) | 群體機器人運動的自動產生,可以應用在可移式機器人群的路徑規劃或電腦動畫中虛擬人群的模擬上。文獻上研究對此運動計劃問題,多以分離式或集中式的方法來解決。分離法是把群體的計劃,切割為多個個別機器人的連續計劃。本論文採優先順序的分離法依序解決個別機器人的計劃;而個別計畫的方法係採用位能場與A*搜尋法,我們並針對群體運動的特性提出改進方案。分離法的搜尋由於受到前面計劃結果的限制,因此缺乏計劃的完整性;相對而言,集中法同時考慮所有機器人的組態,因此可以完整地搜尋整個群體機器人的組態空間。我們首先採用的集中法是以位能場為基礎的隨機路徑計劃法。此法雖然具備完整性,但在機器人數量多時,機器人間的碰撞機會太高,所以計劃所需時間通常較長。因此,我們設計了一個採用階層式動態編隊方式的集中式計畫法。階層式動態編隊就是以球形樹組織機器人隊伍,依照搜尋時的狀況,動態地進行隊伍的分離或合併。同隊伍中的機器人會維持一致的運動方向,因此減少了機器人間發生碰撞的機會,因而改善了計劃的效率。我們實驗比較分離法、集中法、與動態編隊法,並分析各種情況下適合的計劃方法,以提出使用建議。我們並且設計了一個平滑化路徑的方法,將計劃出來的群體運動路徑調整平順,以應用在電腦動畫的製作過程中,自動產生擬真的虛擬人群運動。 | zh_TW |
dc.description.abstract (摘要) | The automatic generation of crowd motions can be used in planning the path of many mobile robots and in simulating the motions of virtual humans in computer animation. In the literature, there exist two categories of approaches to this problem: decoupled and centralized approaches. The decoupled approach divides the planning problem into several sub-problems, each of which is for a robot. In this thesis we have used a prioritized planning approach with an artificial potential field and the A* search algorithm to solve each sub-problem in a given order. This decoupled approach usually is not complete because later planning must be under the constraint of previous planned results. On the other hand, the centralized approach considers the configurations of all robots and can be made complete by searching the composite configuration space. In this thesis, we use the randomized path planner (RPP) with a potential field as an example of the centralized approach. However, this planner is not very efficient for a large number of robots because of frequent inter-collisions between robots. Therefore we propose a hierarchical dynamic grouping method to improve the centralized RPP method. The robots are organized as groups enclosed by a sphere tree structure that can split or merge dynamically according to the environment. The robots in the same group always move with the same direction. Consequently the collisions between robots decrease significantly during the search and the planning efficiency is greatly improved. We have designed extensive experiments to compare the performance of the decoupled approach, the centralized approach and the dynamic grouping method. We also analyze these approaches in various scenarios in order to illustrate their tradeoffs. In addition, we have designed a path-smoothing method and apply the planning result to a production process of computer animation. | en_US |
dc.description.tableofcontents | 目錄第一章 序論 …………………………………………………………………11.1 簡介 …………………………………………………………………….11.2 問題定義 ……………………………………………………………….41.3 研究方向與論文貢獻 ………………………………………………….61.4 本論文的章節架構 …………………………………………………….7第二章 相關研究 …………………………………………………………..82.1 運動計劃 ……………………………………………………………….82.1.1 區域分割法 ………………………………………………………….92.1.2 街圖法 ………………………………………………………………102.1.3 位能場法 ……………………………………………………………132.1.4 機器人運動計劃的複雜度 …………………………………………132.2 群體運動計劃 …………………………………………………………152.2.1 分離式群體運動計劃 ………………………………………………162.2.2 集中式群體運動計劃 ………………………………………………182.2.3 其他的群體運動計劃方法 …………………………………………192.3 群體運動模擬 …………………………………………………………202.4 球形樹 …………………………………………………………………22第三章 分離式群體運動計劃 …………………………………………….243.1 位能場 …………………………………………………………………243.2 最佳優先搜尋法 ………………………………………………………263.3 分離式的運動計劃與A*搜尋法 ………………………………………283.4 改進分離式群體運動計劃的方法 ……………………………………313.5 分離式計劃的範例 ……………………………………………………343.6 實驗結果 ………………………………………………………………37第四章 集中式群體運動計劃 …………………………………………….404.1 集中式的計劃方法 ……………………………………………………404.2 位能場隨機路徑計劃 …………………………………………………414.3 改進集中式群體運動計劃的方法 ……………………………………454.4 集中式計劃的範例 ……………………………………………………464.5 實驗結果 ………………………………………………………………50第五章 階層式動態編隊的集中式群體運動計劃 ……………………….525.1 建立球形樹 ……………………………………………………………525.2 使用球形樹配合位能場隨機路徑計劃 ………………………………555.3 球形樹的碰撞偵測 ……………………………………………………595.4 階層式動態編隊的範例 ………………………………………………635.5 實驗結果 ………………………………………………………………66第六章 實驗與分析 ……………………………………………………….696.1 系統流程 ………………………………………………………………696.2 實驗 ……………………………………………………………………706.2.1 實驗一 ………………………………………………………………706.2.2 實驗二 ………………………………………………………………766.2.3 實驗三 ………………………………………………………………806.3 討論 ……………………………………………………………………83第七章 應用的範例與考量 ……………………………………………….857.1 動畫的製作 ……………………………………………………………857.2 路徑的平滑化 …………………………………………………………90第八章 結論與未來發展 ………………………………………………….938.1 結論 ……………………………………………………………………938.2 未來發展 ………………………………………………………………94參考文獻 …………………………………………………………………..95 | zh_TW |
dc.format.extent | 29544 bytes | - |
dc.format.extent | 15454 bytes | - |
dc.format.extent | 25672 bytes | - |
dc.format.extent | 88913 bytes | - |
dc.format.extent | 226215 bytes | - |
dc.format.extent | 1205443 bytes | - |
dc.format.extent | 1278230 bytes | - |
dc.format.extent | 1265594 bytes | - |
dc.format.extent | 1635922 bytes | - |
dc.format.extent | 1984902 bytes | - |
dc.format.extent | 1623309 bytes | - |
dc.format.extent | 18961 bytes | - |
dc.format.extent | 41527 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0090753002 | en_US |
dc.subject (關鍵詞) | 群體運動計劃 | zh_TW |
dc.subject (關鍵詞) | 分離式 | zh_TW |
dc.subject (關鍵詞) | 集中式 | zh_TW |
dc.subject (關鍵詞) | 階層式動態編隊 | zh_TW |
dc.subject (關鍵詞) | 球形樹 | zh_TW |
dc.title (題名) | 以階層式動態編隊的方法計劃群體運動 | zh_TW |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 參考文獻 | zh_TW |
dc.relation.reference (參考文獻) | [1] B. Aronov, M. T. de Berg, A. F. van der Stappen, P. Svestka, J. M. Vleugels, “Motion Planning for Multiple Robots,” Technical Report UU-CS-1998-30, Department of Computer Science, Utrecht University, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [2] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing Schedules for Prioritized Path Planning of Multi-Robot Systems,” Proceedings of the International Conference on Robotics and Automation (ICRA), 2001. | zh_TW |
dc.relation.reference (參考文獻) | [3] R. Bohlin and L. E. Kavraki, “A Randomized Algorithm for Robot Path Planning Based on Lazy Evaluation,” Handbook on Randomized Computing, pp. 221–249, Kluwer Academic Publishers, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [4] J. Barraquand, L. Kavraki, J.C. Latombe, T.Y. Li, and P. Raghavan, “A Random Sampling Scheme for Path Planning,” International Journal of Robotics Research, 16(6), pp.759-774, Dec. 1997. | zh_TW |
dc.relation.reference (參考文獻) | [5] J. Barraquand and J.C. Latombe, “Robot Motion Planning: A Distributed Representation Approach,” International Journal of Robotics Research, 10(6):628-649, 1991. | zh_TW |
dc.relation.reference (參考文獻) | [6] O. B. Bayazit, J. M. Lien, and N. M. Amato, “Simulating Flocking Behaviors in Complex Environments,” Technical Report TR02-003, PARASOL LAB, Department of Computer Science, Texas A&M University, April 2002. | zh_TW |
dc.relation.reference (參考文獻) | [7] J. Barraquand, B. Langlois, and J.C. Latombe, “Numerical Potential Field Techniques for Robot Path Planning,” IEEE Transactions on Systems, Man, and Cybernetics, 22(2):224-241, 1992. | zh_TW |
dc.relation.reference (參考文獻) | [8] Thomas Chadzelek, Jens Eckstein, and Elmar Schömer, “Heuristic Motion Planning with Movable Obstacles,” the 8th Canadian Conference on Computational Geometry, 1996. | zh_TW |
dc.relation.reference (參考文獻) | [9] Y.U. Cao, A.S. Fukunaga, A.B. Kahng, and F. Meng, “Cooperative Mobile Robotics: Antecedents and Directions,” Proceedings of IEEE/TSJ International Conference on Intelligent Robots and Systems, pp.226-234, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [10] C.M. Clark, S.M. Rock, and J.C. Latombe, “Motion Planning for Multiple Mobile Robot Systems Using Dynamic Networks,“ Proceedings of IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [11] M. Erdmann and T. Lozano-Perez, “On Multiple Moving Objects,” AI Memo No. 883, Artificial Intelligence Laboratory, MIT, 1986. | zh_TW |
dc.relation.reference (參考文獻) | [12] R. Fierro, P. Song, A. Das, and V. Kumar, “Cooperative Control of Robot Formations,” in Cooperative Control and Optimization, Kluwer Academic Press, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [13] V. Gervasi and G. Prencipe, “Flocking by a Set of Autonomous Mobile Robots,” Technical Report TR-01-24, Dipartimento di Informatica, Universita di Pisa, Italy, Oct. 2001. | zh_TW |
dc.relation.reference (參考文獻) | [14] K. Gupta, “Motion Planning for “Flexible” Shapes (Systems with Many Degrees of Freedom): A Survey,” The Visual Computer, Volume 14, Issue 5/6, pp.288-302, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [15] S. Hert, V. Lumelsky, “Planar Curve Routing for Tethered-Robot Motion Planning,” International Journal of Computational Geometry & Applications, Vol. 17, No. 3, 225-252, 1997. | zh_TW |
dc.relation.reference (參考文獻) | [16] Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe, “Planning Motions with Intentions,” Computer Graphics (SIGGRAPH’ 94), pp.395-408, 1994. | zh_TW |
dc.relation.reference (參考文獻) | [17] L. E. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars, “Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces,” IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996. | zh_TW |
dc.relation.reference (參考文獻) | [18] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston, 1991. | zh_TW |
dc.relation.reference (參考文獻) | [19] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” TR 98-11, Computer Science Dept., Iowa State University, Oct. 1998. | zh_TW |
dc.relation.reference (參考文獻) | [20] T.Y. Li and J.S. Chen, “Incremental 3D Collision Detection with Hierarchical Data Structures,” in Proceedings of ACM Symposium on Virtual Reality Software and Technology (VRST’98), pp.139-144, Taipei, Taiwan, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [21] T. Y. Li, Y. J. Jeng, and S. I. Chang, “Simulating Virtual Human Crowds with a Leader-Follower Model,” Proceedings of the 2001 Computer Animation Conference, Korea, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [22] S. M. LaValle and S. A. Hutchinson, “Optimal Motion Planning for Multiple Robots Having Independent Goals,” IEEE Transactions on Robotics and Automation, 14(6):912--925, 1998. | zh_TW |
dc.relation.reference (參考文獻) | [23] T. Y. Li and Y. C. Shie, “An Incremental Learning Approach to Motion Planning with Roadmap Management,” in Proceedings of International Conference on Robotics and Automation, Washington, 2002. | zh_TW |
dc.relation.reference (參考文獻) | [24] L. E. Parker, “Current Research in Multi-Robot Systems,” Journal of Artificial Life and Robotics, vol. 7, 2003. | zh_TW |
dc.relation.reference (參考文獻) | [25] G. Prencipe, “A New Distributed Model to Control and Coordinate a Set of Autonomous Mobile Robots: The CORDA Model,” Technical Report TR-00-10, Dipartimento di Informatica, Universita di Pisa, Italy, 2000. | zh_TW |
dc.relation.reference (參考文獻) | [26] S. Quinlan, "Efficient Distance Computation between Non-Convex Objects," Proceedings of International Conference on Robotics and Automation, San Diego, CA, 1994. | zh_TW |
dc.relation.reference (參考文獻) | [27] C. Reynolds, “Flocks, Herds, and Schools: A Distributed Behavioral Model,” Proceedings of ACM SIGGRAPH ’87, pp.25-34, 1987. | zh_TW |
dc.relation.reference (參考文獻) | [28] C. W. Reynolds, “Steering Behaviors For Autonomous Characters,” Proceedings of Game Developers Conference, pp.763-782, 1999. | zh_TW |
dc.relation.reference (參考文獻) | [29] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, New Jersey, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [30] J. H. Reif and H. Wang, “Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots,” Robotics and Autonomous Systems, Vol. 27, no.3, pp.171-194, 1999. | zh_TW |
dc.relation.reference (參考文獻) | [31] G. Sanchez and J.C. Latombe, “A Single-Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking,” International Symposium on Robotics Research (ISRR`01), Lorne, Victoria, Australia, November 2001. | zh_TW |
dc.relation.reference (參考文獻) | [32] G. Sanchez and J.C. Latombe, “Using a PRM Planner to Compare Centralized and Decoupled Planning for Multi-Robot Systems,” Proceedings IEEE International Conference on Robotics and Automation, 2002. | zh_TW |
dc.relation.reference (參考文獻) | [33] T. Simeon, S. Leroy, J.-P. Laumond, “Path Coordination for Multiple Mobile Robots: a Resolution Complete Algorithm,” IEEE Transaction on Robotics and Automation, Vol 18 n 1, Feb 2002. | zh_TW |
dc.relation.reference (參考文獻) | [34] P. Svestka and M. H. Overmars, “Coordinated Path Planning for Multiple Robots,” Technical Report UU-CS-1996-43, Department of Computer Science, Utrecht University, 1996. | zh_TW |