Publications-Theses

題名 利用詞組檢索中文訴訟文書之研究
An Exploration of Indexing Chinese Judicial Documents with Term Pairs
作者 謝淳達
Hsieh,Chwen-Dar
貢獻者 劉昭麟
Liu,Chao-Lin
謝淳達
Hsieh,Chwen-Dar
關鍵詞 法學資訊
自然語言處理
Machine Learning
日期 2004
上傳時間 17-Sep-2009 13:55:29 (UTC+8)
摘要 本文將針對相似訴訟文書之搜尋進行研究與探討。在這裡所說的「相似案件」指的是有著相同犯罪行為的案件。判例是法院對於訴訟案件所作的確定判決的先例。在法律案件審判的過程中,對法官和律師而言,與目前的新案件案情相似的過去判例有時是有參考價值的。這意味著我們可以透過判例來推測新的訴訟案件可能的判決方向,因此搜尋過去判例是有其價值的。與一般常用的資訊檢索方法中以單一詞彙作為索引不同的是,我們嘗試以案件事實段中的詞組(兩個詞彙的組合)集合為基礎,由於詞組所包含的資訊比詞彙還多,我們希望透過詞組集合的比對,能夠更精確地找出類似於新案件的過去判例,藉此幫助一般人搜尋過去的相似判例,並能夠從過去判例中自行推測所遇上的法律糾紛可能的判決方向。然而,由於既有的電子詞典並未包含所有可能的詞彙,尤其是訴訟文件中常出現的一些特定詞彙,因此我們提出了一個可以從文件中自動擷取可能的中文詞彙的方法,並且利用這些擷取而得的詞彙協助我們分析判決書的事實段文字。此外我們將相似案件搜尋系統應用在實作「案件分類器」上,用以猜測新案件可能的案件類型。在我們的實驗中,我們提出的中文詞彙擷取方法TermSpotter所擷取出來的詞彙中,詞頻為30次以上的擷取正確率(人工判定為有用的詞彙數量╱程式輸出詞彙數量)為56.3%,而且這些詞彙經過人工過濾後,有三分之一的詞彙(953個)是HowNet電子詞典中所沒有的詞彙。而我們實作的案件分類器,在竊盜、搶奪、強盜、贓物、恐嚇、傷害、賭博七大類型案件的案由分類實驗有89.3%的正確率,而賭博罪的法條分類實驗也有81.9%的正確率。至於相似案件搜尋實驗中,我們以人工判斷其效果,目前所搜尋到的過去判例只有42%是值得參考的,未來仍有空間需要繼續嘗試改進。
I study information retrieval methods for retrieving similar judicial documents. Here “similar judicial documents” refers to “cases that have a similar process of criminal violation”. For judges and lawyers, it is sometimes worth referring to prior cases which are similar to the new case in the process of judgment. Information about the judgments of the similar prior cases helps people to obtain a rough picture about how the new cases might be judged. In this work, I use phrases, rather than individual words as indices of Chinese judicial documents. Phrases provide a better foundation for indexing and retrieving documents than individual words. Constituents of phrases make other component words in the phrase less unambiguous than when the words appear separately. I expect the system could help anyone who is not a legal expert to retrieve similar prior cases on their own.
The existing electronic dictionary does not collect all the possible words, especially the words that appear in specific-domain documents. Hence, I put forth an algorithm to automatically retrieve possible words in the corpus, and we will use these words as the basis to construct phrases in our system. Moreover, I implement the case classifier to automatically classify new cases into several different prosecution categories.
I put forth the algorithm “TermSpotter” to automatically retrieve possible words that occur more than 30 times. In the experiments, 56.3% of the retrieved words are considered as useful words after manual filtration. Among these useful words, about one third of the words are not included in HowNet, and some of them are legal-domain-specific words. The implemented case classifier categorizes new cases into seven different prosecution categories: larceny, robbery, robbery by threatening or disabling the victims, receiving stolen property, causing bodily harm, intimidation, and gambling. It reaches 89.3% in accuracy. The classifier can also categorize cases based on what criminal articles are violated. In the experiment of classifying gambling cases into four combinations of three articles, it reaches 81.9% in accuracy. In the experiment of retrieving prior cases which are similar to the new case, it only reaches 42% in accuracy judged by a practicing judge, so there is a lot of work to do to improve the classifier.
參考文獻 1. K. Al-Kofahi, A. Tyrrell, A. Vachher, T. Travers, P. Jackson, Combining multiple classifiers for text categorization, Proceedings of the Tenth International Conference on Information and Knowledge Management, 2001.
2. K. D. Ashley and E. L. Rissland, But, see, accord: Generating blue book citations in HYPO, Proceedings of the First International Conference on Artificial Intelligence and Law, pp.67-74, 1987.
3. S. Bruninghaus, K. D. Ashley, Toward adding knowledge to learning algorithms for indexing legal cases, Proceedings of the Seventh International Conference on Artificial Intelligence and Law, pp.9-17, 1999.
4. L.-F. Chien, Fast and quasi-natural language search for gigabytes of Chinese texts, Proceedings of the Eighteenth Special Interest Group on Information Retrieval, pp.112–120, 1995.
5. L.-F. Chien, PAT-tree-based keyword extraction for Chinese information retrieval, Proceedings of the Twentieth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.50-58, 1997.
6. J. L. Fagan, Automatic phrase indexing for document retrieval: An examination of syntactic and non-syntactic methods, Proceedings of the Tenth Annual ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.91-101, 1987.
7. D. Jurafsky, J. H. Martin, Speech and Language Processing, Prentice Hall, 1999.
8. K. L. Kwok, Comparing representations in Chinese information retrieval, Proceedings of the Twentieth Special Interest Group on Information Retrieval, pp.34–41, 1997.
9. O.-Y. Kwong, B.-K. Tsou, Automatic corpus-based extraction of Chinese legal terms, Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium, 2001.
10. L. S. Larkey, W. B. Croft, Combining classifiers in text categorization, Proceedings of the Nineteenth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.289-297, 1996.
11. C.-L. Liu, C.-T. Chang and J.-H. Ho, Case instance generation and refinement for case-based criminal summary judgments in Chinese, Journal of Information Science and Engineering, Vol.20, no.4, pp.783-800, 2004.
12. C. D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, The MIT Press, 1999.
13. E. Montañés, I. Díaz, J. Ranilla, E. F. Combarro, and J. Fernández, Scoring and selecting terms for text categorization, IEEE Intelligent Systems, Vol.20, no.3, pp.40-47, 2005.
14. I. Moulinier, H. Molina-Salgado, and P. Jackson, Thomson Legal and Regulatory at NTCIR-3: Japanese, Chinese and English retrieval experiments, Proceedings of the Third NTCIR Workshop on Research in Information Retrieval, Automatic Text Summarization and Question Answering, 2002.
15. J.-Y. Nie, J.-P. Chevallet, and M.-F. Bruandet, Between terms and words for European language IR and between words and bi-grams for Chinese IR, Proceedings of the Sixth Text Retrieval Conference, pp.697–710, 1997.
16. R. Sproat, C. Shih, A statistical method for finding word boundaries in Chinese text, Computer Processing of Chinese and Oriental Languages, Vol.4, pp.336-351, 1990.
17. P. Thompson, Automatic categorization of case law, Proceedings of the Eighth International Conference on Artificial Intelligence and Law, pp.70-77, 2001.
18. J.-J. Tsay, J.-D. Wang, A scalable approach for Chinese term extraction, International Computer Symposium, 2000.
19. I. H. Witten, E. Frank, Data Mining : Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 1999.
20. W. Yang, X. Li, Poster session: Chinese keyword extraction based on max-duplicated strings of the documents, Proceedings of the Twenty-fifth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.439-440, 2002.
21. 廖鼎銘, 觸犯多款法條之賭博與竊盜案件的法院文書的分類與分析, 碩士論文, 國立政治大學, 台北, 台灣, 2004.
22. HowNet電子詞典http://www.keenage.com/
23. 台灣司法院法學資料查詢系統http://nwjirs.judicial.gov.tw/FJUD/index.htm
24. 大陸法律法規庫http://search.law.com.cn:8080/
日本裁判所 http://www.courts.go.jp/index.htm
美國最高法院判例等法律文件查詢 http://www.law.cornell.edu/index.html
描述 碩士
國立政治大學
資訊科學學系
92753008
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0092753008
資料類型 thesis
dc.contributor.advisor 劉昭麟zh_TW
dc.contributor.advisor Liu,Chao-Linen_US
dc.contributor.author (Authors) 謝淳達zh_TW
dc.contributor.author (Authors) Hsieh,Chwen-Daren_US
dc.creator (作者) 謝淳達zh_TW
dc.creator (作者) Hsieh,Chwen-Daren_US
dc.date (日期) 2004en_US
dc.date.accessioned 17-Sep-2009 13:55:29 (UTC+8)-
dc.date.available 17-Sep-2009 13:55:29 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:55:29 (UTC+8)-
dc.identifier (Other Identifiers) G0092753008en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32645-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 92753008zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要) 本文將針對相似訴訟文書之搜尋進行研究與探討。在這裡所說的「相似案件」指的是有著相同犯罪行為的案件。判例是法院對於訴訟案件所作的確定判決的先例。在法律案件審判的過程中,對法官和律師而言,與目前的新案件案情相似的過去判例有時是有參考價值的。這意味著我們可以透過判例來推測新的訴訟案件可能的判決方向,因此搜尋過去判例是有其價值的。與一般常用的資訊檢索方法中以單一詞彙作為索引不同的是,我們嘗試以案件事實段中的詞組(兩個詞彙的組合)集合為基礎,由於詞組所包含的資訊比詞彙還多,我們希望透過詞組集合的比對,能夠更精確地找出類似於新案件的過去判例,藉此幫助一般人搜尋過去的相似判例,並能夠從過去判例中自行推測所遇上的法律糾紛可能的判決方向。然而,由於既有的電子詞典並未包含所有可能的詞彙,尤其是訴訟文件中常出現的一些特定詞彙,因此我們提出了一個可以從文件中自動擷取可能的中文詞彙的方法,並且利用這些擷取而得的詞彙協助我們分析判決書的事實段文字。此外我們將相似案件搜尋系統應用在實作「案件分類器」上,用以猜測新案件可能的案件類型。在我們的實驗中,我們提出的中文詞彙擷取方法TermSpotter所擷取出來的詞彙中,詞頻為30次以上的擷取正確率(人工判定為有用的詞彙數量╱程式輸出詞彙數量)為56.3%,而且這些詞彙經過人工過濾後,有三分之一的詞彙(953個)是HowNet電子詞典中所沒有的詞彙。而我們實作的案件分類器,在竊盜、搶奪、強盜、贓物、恐嚇、傷害、賭博七大類型案件的案由分類實驗有89.3%的正確率,而賭博罪的法條分類實驗也有81.9%的正確率。至於相似案件搜尋實驗中,我們以人工判斷其效果,目前所搜尋到的過去判例只有42%是值得參考的,未來仍有空間需要繼續嘗試改進。zh_TW
dc.description.abstract (摘要) I study information retrieval methods for retrieving similar judicial documents. Here “similar judicial documents” refers to “cases that have a similar process of criminal violation”. For judges and lawyers, it is sometimes worth referring to prior cases which are similar to the new case in the process of judgment. Information about the judgments of the similar prior cases helps people to obtain a rough picture about how the new cases might be judged. In this work, I use phrases, rather than individual words as indices of Chinese judicial documents. Phrases provide a better foundation for indexing and retrieving documents than individual words. Constituents of phrases make other component words in the phrase less unambiguous than when the words appear separately. I expect the system could help anyone who is not a legal expert to retrieve similar prior cases on their own.
The existing electronic dictionary does not collect all the possible words, especially the words that appear in specific-domain documents. Hence, I put forth an algorithm to automatically retrieve possible words in the corpus, and we will use these words as the basis to construct phrases in our system. Moreover, I implement the case classifier to automatically classify new cases into several different prosecution categories.
I put forth the algorithm “TermSpotter” to automatically retrieve possible words that occur more than 30 times. In the experiments, 56.3% of the retrieved words are considered as useful words after manual filtration. Among these useful words, about one third of the words are not included in HowNet, and some of them are legal-domain-specific words. The implemented case classifier categorizes new cases into seven different prosecution categories: larceny, robbery, robbery by threatening or disabling the victims, receiving stolen property, causing bodily harm, intimidation, and gambling. It reaches 89.3% in accuracy. The classifier can also categorize cases based on what criminal articles are violated. In the experiment of classifying gambling cases into four combinations of three articles, it reaches 81.9% in accuracy. In the experiment of retrieving prior cases which are similar to the new case, it only reaches 42% in accuracy judged by a practicing judge, so there is a lot of work to do to improve the classifier.
en_US
dc.description.tableofcontents 第一章 序論 1
1.1 簡介 1
1.2 研究動機 2
1.3 研究成果 4
1.4 本論文的章節架構 5
第二章 相關文獻回顧 6
2.1 法學資訊與文件分類相關研究 6
2.2 中文詞彙自動擷取相關研究 10
第三章 背景知識 14
3.1 刑事案件判決書簡介 14
3.2 資料來源 17
第四章 中文詞彙自動擷取方法 20
4.1 中文詞彙擷取演算法TermSpotter 21
4.2 TermSpotter與其它演算法之比較 25
第五章 搜尋類似案例之方法 26
5.1 中文斷句與斷詞方法 26
5.2 同義詞的定義與詞性標記 27
5.3 詞組的定義 28
5.4 找出重要的詞組的方法 29
5.5 利用詞組搜尋類似案件的方法 31
5.6 相似案例搜尋的其他應用:案件分類器 34
5.6.1 案件分類器演算法 34
5.6.2 提升新案件分類效果:計算詞組權重 36
5.6.3 動名詞的限制 39
第六章 縮減判例資料庫 40
第七章 實驗結果 45
7.1 中文詞彙擷取演算法結果 46
7.1.1 TermSpotter中文詞彙自動擷取結果 46
7.1.2 PAT-Tree-based中文詞彙自動擷取結果 48
7.2 案件分類器分類結果 50
7.2.1 案由分類結果 50
7.2.2 法條分類結果 58
7.2.3 與其他案件分類方法之比較 66
7.2.4 與只使用HowNet的分類效果比較 68
7.3 相似判例搜尋結果 72
7.4 縮減判例資料庫實驗結果 75
第八章 結論與未來展望 77
8.1 結論 77
8.2 未來展望 79
參考文獻 81
附錄A TermSpotter詞彙列表以及同義詞詞典 84
A.1 TermSpotter詞彙列表 84
A.2 同義詞詞典 92
A.3 案由分類使用TermSpotter&PAT和自訂同義詞與詞性所找出的詞組與權重列表 97
A.4 使用HowNet所找出的詞組與權重列表 105
A.5 本文 7.2.4 節中 P2 的詞彙列表 116
zh_TW
dc.format.extent 58998 bytes-
dc.format.extent 150565 bytes-
dc.format.extent 164802 bytes-
dc.format.extent 152762 bytes-
dc.format.extent 330062 bytes-
dc.format.extent 375048 bytes-
dc.format.extent 369129 bytes-
dc.format.extent 291193 bytes-
dc.format.extent 393871 bytes-
dc.format.extent 282494 bytes-
dc.format.extent 541513 bytes-
dc.format.extent 283807 bytes-
dc.format.extent 87725 bytes-
dc.format.extent 1860588 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0092753008en_US
dc.subject (關鍵詞) 法學資訊zh_TW
dc.subject (關鍵詞) 自然語言處理zh_TW
dc.subject (關鍵詞) Machine Learningen_US
dc.title (題名) 利用詞組檢索中文訴訟文書之研究zh_TW
dc.title (題名) An Exploration of Indexing Chinese Judicial Documents with Term Pairsen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 1. K. Al-Kofahi, A. Tyrrell, A. Vachher, T. Travers, P. Jackson, Combining multiple classifiers for text categorization, Proceedings of the Tenth International Conference on Information and Knowledge Management, 2001.zh_TW
dc.relation.reference (參考文獻) 2. K. D. Ashley and E. L. Rissland, But, see, accord: Generating blue book citations in HYPO, Proceedings of the First International Conference on Artificial Intelligence and Law, pp.67-74, 1987.zh_TW
dc.relation.reference (參考文獻) 3. S. Bruninghaus, K. D. Ashley, Toward adding knowledge to learning algorithms for indexing legal cases, Proceedings of the Seventh International Conference on Artificial Intelligence and Law, pp.9-17, 1999.zh_TW
dc.relation.reference (參考文獻) 4. L.-F. Chien, Fast and quasi-natural language search for gigabytes of Chinese texts, Proceedings of the Eighteenth Special Interest Group on Information Retrieval, pp.112–120, 1995.zh_TW
dc.relation.reference (參考文獻) 5. L.-F. Chien, PAT-tree-based keyword extraction for Chinese information retrieval, Proceedings of the Twentieth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.50-58, 1997.zh_TW
dc.relation.reference (參考文獻) 6. J. L. Fagan, Automatic phrase indexing for document retrieval: An examination of syntactic and non-syntactic methods, Proceedings of the Tenth Annual ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.91-101, 1987.zh_TW
dc.relation.reference (參考文獻) 7. D. Jurafsky, J. H. Martin, Speech and Language Processing, Prentice Hall, 1999.zh_TW
dc.relation.reference (參考文獻) 8. K. L. Kwok, Comparing representations in Chinese information retrieval, Proceedings of the Twentieth Special Interest Group on Information Retrieval, pp.34–41, 1997.zh_TW
dc.relation.reference (參考文獻) 9. O.-Y. Kwong, B.-K. Tsou, Automatic corpus-based extraction of Chinese legal terms, Proceedings of the Sixth Natural Language Processing Pacific Rim Symposium, 2001.zh_TW
dc.relation.reference (參考文獻) 10. L. S. Larkey, W. B. Croft, Combining classifiers in text categorization, Proceedings of the Nineteenth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.289-297, 1996.zh_TW
dc.relation.reference (參考文獻) 11. C.-L. Liu, C.-T. Chang and J.-H. Ho, Case instance generation and refinement for case-based criminal summary judgments in Chinese, Journal of Information Science and Engineering, Vol.20, no.4, pp.783-800, 2004.zh_TW
dc.relation.reference (參考文獻) 12. C. D. Manning, H. Schütze, Foundations of Statistical Natural Language Processing, The MIT Press, 1999.zh_TW
dc.relation.reference (參考文獻) 13. E. Montañés, I. Díaz, J. Ranilla, E. F. Combarro, and J. Fernández, Scoring and selecting terms for text categorization, IEEE Intelligent Systems, Vol.20, no.3, pp.40-47, 2005.zh_TW
dc.relation.reference (參考文獻) 14. I. Moulinier, H. Molina-Salgado, and P. Jackson, Thomson Legal and Regulatory at NTCIR-3: Japanese, Chinese and English retrieval experiments, Proceedings of the Third NTCIR Workshop on Research in Information Retrieval, Automatic Text Summarization and Question Answering, 2002.zh_TW
dc.relation.reference (參考文獻) 15. J.-Y. Nie, J.-P. Chevallet, and M.-F. Bruandet, Between terms and words for European language IR and between words and bi-grams for Chinese IR, Proceedings of the Sixth Text Retrieval Conference, pp.697–710, 1997.zh_TW
dc.relation.reference (參考文獻) 16. R. Sproat, C. Shih, A statistical method for finding word boundaries in Chinese text, Computer Processing of Chinese and Oriental Languages, Vol.4, pp.336-351, 1990.zh_TW
dc.relation.reference (參考文獻) 17. P. Thompson, Automatic categorization of case law, Proceedings of the Eighth International Conference on Artificial Intelligence and Law, pp.70-77, 2001.zh_TW
dc.relation.reference (參考文獻) 18. J.-J. Tsay, J.-D. Wang, A scalable approach for Chinese term extraction, International Computer Symposium, 2000.zh_TW
dc.relation.reference (參考文獻) 19. I. H. Witten, E. Frank, Data Mining : Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmann, 1999.zh_TW
dc.relation.reference (參考文獻) 20. W. Yang, X. Li, Poster session: Chinese keyword extraction based on max-duplicated strings of the documents, Proceedings of the Twenty-fifth Annual International ACM Special Interest Group on Information Retrieval Conference on Research and Development in Information Retrieval, pp.439-440, 2002.zh_TW
dc.relation.reference (參考文獻) 21. 廖鼎銘, 觸犯多款法條之賭博與竊盜案件的法院文書的分類與分析, 碩士論文, 國立政治大學, 台北, 台灣, 2004.zh_TW
dc.relation.reference (參考文獻) 22. HowNet電子詞典http://www.keenage.com/zh_TW
dc.relation.reference (參考文獻) 23. 台灣司法院法學資料查詢系統http://nwjirs.judicial.gov.tw/FJUD/index.htmzh_TW
dc.relation.reference (參考文獻) 24. 大陸法律法規庫http://search.law.com.cn:8080/zh_TW
dc.relation.reference (參考文獻) 日本裁判所 http://www.courts.go.jp/index.htmzh_TW
dc.relation.reference (參考文獻) 美國最高法院判例等法律文件查詢 http://www.law.cornell.edu/index.htmlzh_TW