Publications-Theses

題名 適用於異質性無線網路之錯誤可調性TCP
Error-Adaptive TCP for Heterogeneous Wireless Networks
作者 張碩瀚
Chang,Sol-Han
貢獻者 蔡子傑
Tsai,Tzu-Chieh
張碩瀚
Chang,Sol-Han
關鍵詞 異質性無線網路
多媒體服務
TCP
Heterogeneous wireless networks
Congestion Avoidance Algorithm
Streaming service
日期 2006
上傳時間 17-Sep-2009 13:58:17 (UTC+8)
摘要 現今我們所住的世界不再只是一個單純的有線網路,隨著WLAN的無線區域網路的存取點越來越普遍,每個家庭使用有線網路做為後端網路然後使用無線區域網路的存取點作為最後一哩的情況也隨著變的常見了,所以現在的網路世界不再只是一個單純的有線網路而是一個有線跨無線的異質性無線網路了,TCP一個我們所常用的傳輸層的協定當遇到異質性無線網路時已經被證實會對封包遺失的原因有誤判,在無線傳輸時封包遺失的理由包括訊號品質不好以及用戶端之間在無線介質中的競爭,因此我們設計了一個具有跨層考量的EATCP-Assisted模組來幫助傳送端收集媒體存取控制層的資訊並使的傳送端在調整競爭視窗上面更有效率,在EATCP中有兩大部分:第一部份是估算階段,第二階段就是EATCP的擁塞控制機制,藉由EATCP-Assisted模組所收集到的wirelessRTT以及utilization我們可以有效的估算出wiredBW以及wirelessBW,並藉由這兩個參數我們可以準確的將封包遺失的原因從頻道衰減以及用戶端之間的競爭中分別出來,因此一個適當的競爭視窗就可以藉由這些資訊來調整出來。
Recently, with the growth of WLAN, the world we live today is no longer a pure wired network, it’s a heterogeneous wireless network. The TCP that we commonly used has been proven to have misjudgements of packet loss in heterogeneous wireless networks. We design a cross-layer architecture called EATCP-Assisted module to help the sender collect MAC layer information, and adjust the congestion window more efficiently. In EATCP, there are two important parts: the first is estimation phase; the second is congestion control algorithm. By collecting the wirelessRTT, and utilization we can estimate the wiredBW and wirelessBW. The EATCP will distinguish the causes of packet loss from network congestion, channel fading, or contention between wireless clients. Thus, appropriate congestion window adjustment can be done accordingly. The simulation results show that our EATCP outperforms other versions of TCP.
描述 碩士
國立政治大學
資訊科學學系
93753018
95
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0093753018
資料類型 thesis
dc.contributor.advisor 蔡子傑zh_TW
dc.contributor.advisor Tsai,Tzu-Chiehen_US
dc.contributor.author (Authors) 張碩瀚zh_TW
dc.contributor.author (Authors) Chang,Sol-Hanen_US
dc.creator (作者) 張碩瀚zh_TW
dc.creator (作者) Chang,Sol-Hanen_US
dc.date (日期) 2006en_US
dc.date.accessioned 17-Sep-2009 13:58:17 (UTC+8)-
dc.date.available 17-Sep-2009 13:58:17 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 13:58:17 (UTC+8)-
dc.identifier (Other Identifiers) G0093753018en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32657-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 93753018zh_TW
dc.description (描述) 95zh_TW
dc.description.abstract (摘要) 現今我們所住的世界不再只是一個單純的有線網路,隨著WLAN的無線區域網路的存取點越來越普遍,每個家庭使用有線網路做為後端網路然後使用無線區域網路的存取點作為最後一哩的情況也隨著變的常見了,所以現在的網路世界不再只是一個單純的有線網路而是一個有線跨無線的異質性無線網路了,TCP一個我們所常用的傳輸層的協定當遇到異質性無線網路時已經被證實會對封包遺失的原因有誤判,在無線傳輸時封包遺失的理由包括訊號品質不好以及用戶端之間在無線介質中的競爭,因此我們設計了一個具有跨層考量的EATCP-Assisted模組來幫助傳送端收集媒體存取控制層的資訊並使的傳送端在調整競爭視窗上面更有效率,在EATCP中有兩大部分:第一部份是估算階段,第二階段就是EATCP的擁塞控制機制,藉由EATCP-Assisted模組所收集到的wirelessRTT以及utilization我們可以有效的估算出wiredBW以及wirelessBW,並藉由這兩個參數我們可以準確的將封包遺失的原因從頻道衰減以及用戶端之間的競爭中分別出來,因此一個適當的競爭視窗就可以藉由這些資訊來調整出來。zh_TW
dc.description.abstract (摘要) Recently, with the growth of WLAN, the world we live today is no longer a pure wired network, it’s a heterogeneous wireless network. The TCP that we commonly used has been proven to have misjudgements of packet loss in heterogeneous wireless networks. We design a cross-layer architecture called EATCP-Assisted module to help the sender collect MAC layer information, and adjust the congestion window more efficiently. In EATCP, there are two important parts: the first is estimation phase; the second is congestion control algorithm. By collecting the wirelessRTT, and utilization we can estimate the wiredBW and wirelessBW. The EATCP will distinguish the causes of packet loss from network congestion, channel fading, or contention between wireless clients. Thus, appropriate congestion window adjustment can be done accordingly. The simulation results show that our EATCP outperforms other versions of TCP.en_US
dc.description.tableofcontents TABLE OF CONTENTS
CHAPTER 1 Introduction 1
1.1 Background 2
1.1.1 TCP 3
1.1.2 802.11 6
1.1.3 Streaming 11
1.2 Motivation 14
1.3 Organization 15
CHAPTER 2 Related Work 16
2.1 TCP-Vegas: 16
2.2 JTCP: Jitter-Based TCP for Heterogeneous Wireless Networks 19
2.3 The macroscopic behavior of the TCP congestion Avoidance algorithm 22
CHAPTER 3 Error Adaptive TCP 27
3.1 Architecture 27
3.2 Estimate phase︰ 28
3.2.1 Estimate wirelessBW︰ 29
3.2.2 Estimate wiredBW︰ 32
3.3 Error-Adaptive TCP 33
CHAPTER 4 Simulation 37
4.1 The contrast of EATCP 37
4.2 Performance Matrices 37
4.3 Simulation Results 38
4.3.1 Verification of Estimation Phase: 39
4.3.2 Scenario 1: 41
4.3.3 Scenario 2: 47
4.3.4 Streaming Service Scenario: 50
CHAPTER 5 Conclusions and Future Work 54
CHAPTER 6 Reference 55


LIST OF TABLES
Table 1:Parameter of the Scenario 42
Table 2:Parameters of the Application 43
Table 3:Parameter of Scenario 2 48

LIST OF FIGURES
Figure 1.1:Environment of Heterogeneous wireless networks. 2
Figure 1.2:How the congestion window change. 5
Figure 1.3:The Ad-hoc Mode 6
Figure 1.4:The Infrastructure mode 7
Figure 1.5:The Basic Access Mechanism of DCF 9
Figure 1.6:The Backoff Procedure. 10
Figure 1.7:The Updating of CW 11
Figure 1.8:Environment of streaming service 12
Figure 2.1:Window control of TCP Vegas 18
Figure 2.2:Diagram of JTCP after receiving TDACKs. 20
Figure 2.3:Pseudo code of JTCP after receiving TDACKs. 21
Figure 2.4:Pseudo code of JTCP after the timer expires 22
Figure 2.5:TCP window evolution under periodic loss. 23
Figure 3.1:Architecture of Error-Adaptive TCP 28
Figure 3.2:Probing mechanism of EATCP-Assisted Module 30
Figure 3.3:Pseudo code of is_idle() function 31
Figure 3.4:Congestion control algorithm of EATCP 34
Figure 4.1︰verification topology of Estimation phase 39
Figure 4.2 : Queue Throughput v.s estimate wired bandwidth 40
Figure 4.3: Throughput of wireless medium v.s. estimate wireless bandwidth 41
Figure 4.4:The Topology of Scenario 1 41
Figure 4.5:Throughput of Flow 0 43
Figure 4.6:Delay of Flow 0 44
Figure 4.7:Throughput of Flow 1 44
Figure 4.8:Delay of Flow 1 45
Figure 4.9:Throughput of Flow 2 45
Figure 4.10:Delay of Flow 2 46
Figure 4.11:Summary throughput of Flow 0, Flow 1, and Flow 2 47
Figure 4.12:Fairness between Flow 0, Flow 1, and Flow 2 47
Figure 4.13:Topology of Scenario 2 48
Figure 4.14︰Loss rate variation of Scenario 2 49
Figure 4.15︰Total throughput of Scenario 2 49
Figure 4.16︰Average Delay of Scenario 2 50
Figure 4.17︰Fairness of Scenario 2 50
Figure 4.18︰Diagram of streaming service Scenario 51
Figure 4.19︰Average PSNR 51
Figure 4.20:Average PSNR of background UDP traffic. 52
Figure 4.21:Average PSNR of background TCP traffic. 53
zh_TW
dc.format.extent 45634 bytes-
dc.format.extent 36176 bytes-
dc.format.extent 66716 bytes-
dc.format.extent 12575 bytes-
dc.format.extent 339131 bytes-
dc.format.extent 223315 bytes-
dc.format.extent 138389 bytes-
dc.format.extent 402703 bytes-
dc.format.extent 13372 bytes-
dc.format.extent 22828 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0093753018en_US
dc.subject (關鍵詞) 異質性無線網路zh_TW
dc.subject (關鍵詞) 多媒體服務zh_TW
dc.subject (關鍵詞) TCPen_US
dc.subject (關鍵詞) Heterogeneous wireless networksen_US
dc.subject (關鍵詞) Congestion Avoidance Algorithmen_US
dc.subject (關鍵詞) Streaming serviceen_US
dc.title (題名) 適用於異質性無線網路之錯誤可調性TCPzh_TW
dc.title (題名) Error-Adaptive TCP for Heterogeneous Wireless Networksen_US
dc.type (資料類型) thesisen