dc.contributor.advisor | 蔡子傑 | zh_TW |
dc.contributor.advisor | Tsai, Tzu-Chieh | en_US |
dc.contributor.author (Authors) | 張志華 | zh_TW |
dc.contributor.author (Authors) | Chang, Chih-Hua | en_US |
dc.creator (作者) | 張志華 | zh_TW |
dc.creator (作者) | Chang, Chih-Hua | en_US |
dc.date (日期) | 2007 | en_US |
dc.date.accessioned | 17-Sep-2009 14:02:23 (UTC+8) | - |
dc.date.available | 17-Sep-2009 14:02:23 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 14:02:23 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0094753009 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32677 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 94753009 | zh_TW |
dc.description (描述) | 96 | zh_TW |
dc.description.abstract (摘要) | 802.16與802.11e均有提供服務品質(QoS),但是其MAC並不相同,為了達到QoS的保證,我們使用馬可夫鍊(Markov Chain)模型分析在不同連線數量時802.11e EDCA的延遲時間(delay time)。然後,我們可以再利用允入控制(CAC)機制限制連線的數量以保證延遲時間的需求,並使用令牌桶(Token Bucket)機制,在滿足延遲及頻寬的需求下控制輸出流量,在我們的令牌桶機制中可以依照頻寬需求的變化自動調整令牌(Token)產生速率,最後使用封包丟棄機制提升吞吐量(throughput)。 在提出我們的方法後,我們使用Qualnet模擬器驗證延遲時間、封包丟棄率及吞吐量,結果表示我們所提出的方法在三方面都有明顯的改進。 | zh_TW |
dc.description.abstract (摘要) | IEEE 802.16 and 802.11e both provide Quality of Service (QoS), but the MAC of betweens is different. Ensuring the QoS guarantee, we use a Markov Chain model to analyze the 802.11e EDCA delay time under variance number of connections. Therefore, we can employ a CAC mechanism constraining the number of connections to guarantee the delay requirement. Further, considering the delay requirement and the bandwidth, we use a Token Bucket mechanism to throttle the traffic output that ensures the delay and bandwidth to be satisfied. And our Token Bucket mechanism can tune the token rate automatically by bandwidth requirement. Finally, we use the Packet Drop mechanism to improve throughput. After my methodology, we validate the delay, packet drop rate and throughput by simulator Qualnet. We have significant improvement in delay, drop rate, and throughput. | en_US |
dc.description.tableofcontents | CHAPTER 1 Introduction 11.1. Background 31.1.1. Token Bucket Mechanism 31.1.2. The IEEE 802.11 Standard 41.1.3. The IEEE 802.11e Standard 51.1.4. The IEEE 802.16 Standard 91.2. Motivation 131.3. Organization 14CHAPTER 2 Related Work 152.1. Markov Chain Studies about 802.11e 152.2. Token Bucket and Call Admission Control about 802.16 18CHAPTER 3 IEEE 802.11e EDCA Markov Chain Model 223.1. Model Assumption 233.2. Model Introduction 233.3. Markov Chain State 263.4. Transition Probability Matrix 273.5. Delay, Throughput and Packet Drop rate Calculation 333.6. Model Validation 343.6.1. 802.11e MAC Delay 363.6.2. 802.11e Packet Drop rate & Throughput 38CHAPTER 4 Improvement Mechanism 404.1. Call Admission Control (CAC) 404.1.1. Delay requirement 404.1.2. Bandwidth requirement 414.2. Token Bucket Mechanism 424.2.1. Token Bucket Parameters 424.2.2. Token Rate and Bucket Size Initialize 444.2.3. Token Rate and Bucket Size Tuning 444.3. Packet Drop Mechanism 47CHAPTER 5 Simulation 485.1. Delay 495.2. Packet Drop rate 515.3. Throughput 53CHAPTER 6 Conclusions and Future Work 55References 56 | zh_TW |
dc.format.extent | 83878 bytes | - |
dc.format.extent | 93923 bytes | - |
dc.format.extent | 20958 bytes | - |
dc.format.extent | 38175 bytes | - |
dc.format.extent | 237274 bytes | - |
dc.format.extent | 222176 bytes | - |
dc.format.extent | 187805 bytes | - |
dc.format.extent | 80332 bytes | - |
dc.format.extent | 72867 bytes | - |
dc.format.extent | 23764 bytes | - |
dc.format.extent | 34346 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0094753009 | en_US |
dc.subject (關鍵詞) | 服務品質 | zh_TW |
dc.subject (關鍵詞) | 馬可夫鍊 | zh_TW |
dc.subject (關鍵詞) | 令牌桶 | zh_TW |
dc.subject (關鍵詞) | QoS | en_US |
dc.subject (關鍵詞) | Markov Chain | en_US |
dc.subject (關鍵詞) | Token Bucket | en_US |
dc.title (題名) | IEEE 802.16與802.11e整合環境的服務品質保證 | zh_TW |
dc.title (題名) | QoS Guarantee for IEEE 802.16 Integrating with 802.11e | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999 | zh_TW |
dc.relation.reference (參考文獻) | [2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999 | zh_TW |
dc.relation.reference (參考文獻) | [3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999 | zh_TW |
dc.relation.reference (參考文獻) | [4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003 | zh_TW |
dc.relation.reference (參考文獻) | [5] Kitti Wongthavarawat, and Aura Ganz, “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems”, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96 | zh_TW |
dc.relation.reference (參考文獻) | [6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000 | zh_TW |
dc.relation.reference (參考文獻) | [7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002 | zh_TW |
dc.relation.reference (參考文獻) | [8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004 | zh_TW |
dc.relation.reference (參考文獻) | [9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002 | zh_TW |
dc.relation.reference (參考文獻) | [10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003 | zh_TW |
dc.relation.reference (參考文獻) | [11] Tzu-Chieh Tsai, and Ming-Ju Wu, "An Analytical Model for IEEE 802.11e EDCA", in IEEE 2005 International Conference on Communications (ICC 2005 Wireless Networking), 16-20 May, 2005, Seoul, Korea. pp. 3474 - 3478.(ISSN: 0536-1486, EI) | zh_TW |
dc.relation.reference (參考文獻) | [12] Chi-Hong Jiang, and Tzu-Chieh Tsai, "Token Bucket Based CAC and Packet Scheduling for IEEE 802.16 Broadband Wireless Access Networks", CCNC2006, Special Session on Multimedia and QoS in Wireless Networks, MP1-02-3, Jan 8-10, 2006, Las Vegas, USA.(EI) | zh_TW |
dc.relation.reference (參考文獻) | [13] Tzu-Chieh Tsai and Chuan-Yin Wang, "Routing and Admission Control in IEEE 802.16 Distributed Mesh Networks", in IEEE Fourth International Conference on Wireless and Optical Communications Networks" (WOCN 2007), July 2, 3 and 4, 2007, Singapore. (IEEE Catalog Number: 07EX1696, ISBN: 1-4244-1005-3, Library of Congress: 2007920880), (Engineering Index (EI) and EI Compendex). | zh_TW |