Publications-Theses

題名 由地面光達資料自動重建建物模型之研究
Automatic Generation of Building Model from Ground-Based LIDAR Data
作者 詹凱軒
Kai-Hsuan,Chan
貢獻者 何瑁鎧
Maw-Kae,Hor
詹凱軒
Kai-Hsuan,Chan
關鍵詞 雷射掃瞄儀
光達
材質敷貼
表面模型重建
三維立體模型
虛擬實境
霍夫轉換
laser scanner
LIDAR
texture mapping
surface reconstruction
point-based
Virtual Reality
Hough transform
日期 2006
上傳時間 17-Sep-2009 14:02:44 (UTC+8)
摘要 地面光達系統可以快速獲取大量且高精度之點雲資料,這些點雲資料不但記錄了被掃描物體之三維資訊,還包含其色彩訊息。但因光達點雲資料量過於龐大,若要直接於電腦上展示其三維模型,必須配合有效的資料處理技術,才能迅速且即時地將資料顯示於螢幕上。

我們針對地面光達系統獲取之建物點雲,提出一套處理方法,期盼透過少數關鍵點雲,就足以表示整個建物的模型。研究流程主要分為三階段,首先採用三維網格資料結構,從地面光達系統獲取之建物點雲中,萃取出關鍵點雲,並利用三維不規則三角網建模方式,進行模型建構工作,產生建物大略模型。其次再逐點判斷是否將剩餘之點加入此模型中,持續更新模型細微之部分。最後將點雲中的色彩資訊轉成影像,敷貼在模型表面上,讓整個模型更為逼真。

我們以政大綜合大樓進行實驗,成功地減少大量冗餘的點雲資料,只需要約原始點雲的1%,就足以將綜合大樓模型建構完成。為了達到可以從不同視角即時瀏覽建物模型,我們採用虛擬實境語言(VRML)來描述處理後的三維模型,遠端使用者只需透過一般網頁瀏覽器,即可即時顯示處理過的三維建物模型。
Ground-based LIDAR system can be used to detect the surface of the buildings on the earth. In general, it produces large amount of high-precision point cloud data. These data include not only the three-dimensional space information, but also the color information. However, the number of point cloud data is huge and is difficult to be displayed efficiently. It’s necessary to use efficient data processing techniques in order to display these point cloud data in real-time.

In this research, we construct the three-dimensional building model using the key points selected from a given set of point cloud data. The major works of our scheme consists of three parts. In the first part, we extract the key points from the given point cloud data through the help of a three-dimensional grid. These key points are used to construct a primitive model of the building. Then, we checked all the remaining points and decided whether these points are essential to the final building model. Finally, we transformed the color information into images and then used the transformed images to represent generic surface material of the three-dimensional model of the building. The goal of the final step is to make the model more realistic.

In the experiments, we used the twin-tower of our university as our target. We successfully reduced the required data in displaying the building model and only about one percent of the original point cloud data are used in the final model. Hence, one can see the twin-tower from various view points in real-time. In addition, we use VRML to describe our model and the users can browse the results in real-time on internet.
參考文獻 [1] 余徐維、方偉凱、詹進發,”利用地面LIDAR資料建立三維建物模型”,第二十四屆測量學術及應用研討會論文集,pp. 483-490,2005。
[2] 陳良健、郭志奕、饒見有,”整合點雲與輪廓線模塑建物模型之研究”,第二十四屆測量學術及應用研討會論文集,pp. 293-300,2005。
[3] 曾義星、賴志凱,”地面光達掃描定位原理與誤差分析”,測量工程,第四十六卷,第四期,pp. 3-22,2004。
[4] 曾義星、史天元,”三維雷射掃描技術及其在工程測量上之應用”,中國土木水利工程學刊,2004。
[5] 曾義星、史天元,"三維雷射掃描儀─新一代測量利器",科學發展月刊,365期,pp.16-21,2003。
[6] 劉燈烈,”地面光達點雲資料的平差結合與影像敷貼”,國立成功大學測量及空間資訊學系碩士論文,2004。
[7] Azernikov, S. and A. Fischer, “Anisotropic Meshing of Implicit Surfaces”, IEEE International Conference on Shape Modeling and Applications, June 13 - June 17, MIT, Boston, USA (slides) , 2005.
[8] Castro-Díaz, M. J., F. Hecht, and B. Mohammadi, “New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations”, Proceedings of the 4th International Meshing Roundtable, pp. 73-85, 1995.
[9] De Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf, “Computational Geometry: Algorithms and Applications”, Second Edition, Springer, 2000.
[10] Dey, T. K., J. Giesen, and J. Hudson, “Delaunay Based Shape Reconstruction from Large Data”, IEEE Symposium on Parallel and Large Data Visualization, pp. 19-27, 2001.
[11] Fang, T. P. and L. A. Piegl, “Delaunay Triangulation in Three Dimensions”, IEEE Computer Graphics and Applications, volume 15, No. 5, pp. 62-69, 1995.
[12] Gonzalez, R. C. and R. E. Woods, "Digital Image Processing", Second Edition, Prentice Hall, 2002.
[13] Heckbert, Paul, "Survey of Texture Mapping", IEEE Computer Graphics and Applications, volume 6, pp. 56–67, Nov., 1986.
[14] Leica Geosystems, HDS3000 3D Laser Scanner Specifications, 2004: http://www.leica-geosystems.com/hds/en/lgs_6506.htm
[15] Lorensen, W. E. and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm”, ACM Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pp. 163–170, 1987.
[16] Wolf, P. R. and B. A. Dewitt, “Elements of photogrammetry with applications in GIS”, McGraw-Hill, pp.303-305, 2000.
描述 碩士
國立政治大學
資訊科學學系
94753013
95
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0094753013
資料類型 thesis
dc.contributor.advisor 何瑁鎧zh_TW
dc.contributor.advisor Maw-Kae,Horen_US
dc.contributor.author (Authors) 詹凱軒zh_TW
dc.contributor.author (Authors) Kai-Hsuan,Chanen_US
dc.creator (作者) 詹凱軒zh_TW
dc.creator (作者) Kai-Hsuan,Chanen_US
dc.date (日期) 2006en_US
dc.date.accessioned 17-Sep-2009 14:02:44 (UTC+8)-
dc.date.available 17-Sep-2009 14:02:44 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 14:02:44 (UTC+8)-
dc.identifier (Other Identifiers) G0094753013en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32679-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 94753013zh_TW
dc.description (描述) 95zh_TW
dc.description.abstract (摘要) 地面光達系統可以快速獲取大量且高精度之點雲資料,這些點雲資料不但記錄了被掃描物體之三維資訊,還包含其色彩訊息。但因光達點雲資料量過於龐大,若要直接於電腦上展示其三維模型,必須配合有效的資料處理技術,才能迅速且即時地將資料顯示於螢幕上。

我們針對地面光達系統獲取之建物點雲,提出一套處理方法,期盼透過少數關鍵點雲,就足以表示整個建物的模型。研究流程主要分為三階段,首先採用三維網格資料結構,從地面光達系統獲取之建物點雲中,萃取出關鍵點雲,並利用三維不規則三角網建模方式,進行模型建構工作,產生建物大略模型。其次再逐點判斷是否將剩餘之點加入此模型中,持續更新模型細微之部分。最後將點雲中的色彩資訊轉成影像,敷貼在模型表面上,讓整個模型更為逼真。

我們以政大綜合大樓進行實驗,成功地減少大量冗餘的點雲資料,只需要約原始點雲的1%,就足以將綜合大樓模型建構完成。為了達到可以從不同視角即時瀏覽建物模型,我們採用虛擬實境語言(VRML)來描述處理後的三維模型,遠端使用者只需透過一般網頁瀏覽器,即可即時顯示處理過的三維建物模型。
zh_TW
dc.description.abstract (摘要) Ground-based LIDAR system can be used to detect the surface of the buildings on the earth. In general, it produces large amount of high-precision point cloud data. These data include not only the three-dimensional space information, but also the color information. However, the number of point cloud data is huge and is difficult to be displayed efficiently. It’s necessary to use efficient data processing techniques in order to display these point cloud data in real-time.

In this research, we construct the three-dimensional building model using the key points selected from a given set of point cloud data. The major works of our scheme consists of three parts. In the first part, we extract the key points from the given point cloud data through the help of a three-dimensional grid. These key points are used to construct a primitive model of the building. Then, we checked all the remaining points and decided whether these points are essential to the final building model. Finally, we transformed the color information into images and then used the transformed images to represent generic surface material of the three-dimensional model of the building. The goal of the final step is to make the model more realistic.

In the experiments, we used the twin-tower of our university as our target. We successfully reduced the required data in displaying the building model and only about one percent of the original point cloud data are used in the final model. Hence, one can see the twin-tower from various view points in real-time. In addition, we use VRML to describe our model and the users can browse the results in real-time on internet.
en_US
dc.description.tableofcontents 第一章 緒論 1
1.1研究動機與目的 1
1.2問題描述 2
1.3系統架構與流程說明 3
1.3.1地面光達點雲重建三維模型 4
1.3.2處理點雲色彩資訊進行影像敷貼 5
1.4本論文的貢獻 6
1.5論文章節架構 7
第二章 相關研究 8
2.1簡介地面光達系統 9
2.1.1地面光達系統 9
2.1.2地面光達系統掃描原理 10
2.2資料整合重建三維模型 11
2.3影像敷貼 12
第三章 利用地面光達點雲資料重建三維模型 13
3.1三維網格資料結構 14
3.2適應性網格模型 15
3.3建構不規則三角網 17
3.4建構細部三角網 19
第四章 自動化影像敷貼 21
4.1儀器觀測站坐標偵測 22
4.1.1去除雜訊 24
4.1.2邊緣偵測 29
4.1.3霍夫轉換 31
4.1.4儀器觀測站坐標估算 35
4.2影像取樣 36
4.3影像敷貼 38
第五章 實驗結果 40
5.1適應性網格模型 42
5.2建構不規則三角網 44
5.3建構細部三角網 45
5.4儀器觀測站坐標偵測 46
5.4.1去除雜訊結果 47
5.4.2邊緣偵測結果 50
5.4.3儀器觀測站坐標估算 51
5.5影像取樣結果 54
5.6影像敷貼結果 57
第六章 結論 59
6.1結論 59
6.2未來發展 60
參考文獻 62
zh_TW
dc.format.extent 295299 bytes-
dc.format.extent 267696 bytes-
dc.format.extent 270916 bytes-
dc.format.extent 373098 bytes-
dc.format.extent 368274 bytes-
dc.format.extent 421679 bytes-
dc.format.extent 434034 bytes-
dc.format.extent 1062024 bytes-
dc.format.extent 3663204 bytes-
dc.format.extent 304613 bytes-
dc.format.extent 290722 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0094753013en_US
dc.subject (關鍵詞) 雷射掃瞄儀zh_TW
dc.subject (關鍵詞) 光達zh_TW
dc.subject (關鍵詞) 材質敷貼zh_TW
dc.subject (關鍵詞) 表面模型重建zh_TW
dc.subject (關鍵詞) 三維立體模型zh_TW
dc.subject (關鍵詞) 虛擬實境zh_TW
dc.subject (關鍵詞) 霍夫轉換zh_TW
dc.subject (關鍵詞) laser scanneren_US
dc.subject (關鍵詞) LIDARen_US
dc.subject (關鍵詞) texture mappingen_US
dc.subject (關鍵詞) surface reconstructionen_US
dc.subject (關鍵詞) point-baseden_US
dc.subject (關鍵詞) Virtual Realityen_US
dc.subject (關鍵詞) Hough transformen_US
dc.title (題名) 由地面光達資料自動重建建物模型之研究zh_TW
dc.title (題名) Automatic Generation of Building Model from Ground-Based LIDAR Dataen_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] 余徐維、方偉凱、詹進發,”利用地面LIDAR資料建立三維建物模型”,第二十四屆測量學術及應用研討會論文集,pp. 483-490,2005。zh_TW
dc.relation.reference (參考文獻) [2] 陳良健、郭志奕、饒見有,”整合點雲與輪廓線模塑建物模型之研究”,第二十四屆測量學術及應用研討會論文集,pp. 293-300,2005。zh_TW
dc.relation.reference (參考文獻) [3] 曾義星、賴志凱,”地面光達掃描定位原理與誤差分析”,測量工程,第四十六卷,第四期,pp. 3-22,2004。zh_TW
dc.relation.reference (參考文獻) [4] 曾義星、史天元,”三維雷射掃描技術及其在工程測量上之應用”,中國土木水利工程學刊,2004。zh_TW
dc.relation.reference (參考文獻) [5] 曾義星、史天元,"三維雷射掃描儀─新一代測量利器",科學發展月刊,365期,pp.16-21,2003。zh_TW
dc.relation.reference (參考文獻) [6] 劉燈烈,”地面光達點雲資料的平差結合與影像敷貼”,國立成功大學測量及空間資訊學系碩士論文,2004。zh_TW
dc.relation.reference (參考文獻) [7] Azernikov, S. and A. Fischer, “Anisotropic Meshing of Implicit Surfaces”, IEEE International Conference on Shape Modeling and Applications, June 13 - June 17, MIT, Boston, USA (slides) , 2005.zh_TW
dc.relation.reference (參考文獻) [8] Castro-Díaz, M. J., F. Hecht, and B. Mohammadi, “New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations”, Proceedings of the 4th International Meshing Roundtable, pp. 73-85, 1995.zh_TW
dc.relation.reference (參考文獻) [9] De Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf, “Computational Geometry: Algorithms and Applications”, Second Edition, Springer, 2000.zh_TW
dc.relation.reference (參考文獻) [10] Dey, T. K., J. Giesen, and J. Hudson, “Delaunay Based Shape Reconstruction from Large Data”, IEEE Symposium on Parallel and Large Data Visualization, pp. 19-27, 2001.zh_TW
dc.relation.reference (參考文獻) [11] Fang, T. P. and L. A. Piegl, “Delaunay Triangulation in Three Dimensions”, IEEE Computer Graphics and Applications, volume 15, No. 5, pp. 62-69, 1995.zh_TW
dc.relation.reference (參考文獻) [12] Gonzalez, R. C. and R. E. Woods, "Digital Image Processing", Second Edition, Prentice Hall, 2002.zh_TW
dc.relation.reference (參考文獻) [13] Heckbert, Paul, "Survey of Texture Mapping", IEEE Computer Graphics and Applications, volume 6, pp. 56–67, Nov., 1986.zh_TW
dc.relation.reference (參考文獻) [14] Leica Geosystems, HDS3000 3D Laser Scanner Specifications, 2004: http://www.leica-geosystems.com/hds/en/lgs_6506.htmzh_TW
dc.relation.reference (參考文獻) [15] Lorensen, W. E. and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm”, ACM Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pp. 163–170, 1987.zh_TW
dc.relation.reference (參考文獻) [16] Wolf, P. R. and B. A. Dewitt, “Elements of photogrammetry with applications in GIS”, McGraw-Hill, pp.303-305, 2000.zh_TW