dc.contributor.advisor | 何瑁鎧 | zh_TW |
dc.contributor.advisor | Maw-Kae,Hor | en_US |
dc.contributor.author (作者) | 詹凱軒 | zh_TW |
dc.contributor.author (作者) | Kai-Hsuan,Chan | en_US |
dc.creator (作者) | 詹凱軒 | zh_TW |
dc.creator (作者) | Kai-Hsuan,Chan | en_US |
dc.date (日期) | 2006 | en_US |
dc.date.accessioned | 17-九月-2009 14:02:44 (UTC+8) | - |
dc.date.available | 17-九月-2009 14:02:44 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-九月-2009 14:02:44 (UTC+8) | - |
dc.identifier (其他 識別碼) | G0094753013 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32679 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 94753013 | zh_TW |
dc.description (描述) | 95 | zh_TW |
dc.description.abstract (摘要) | 地面光達系統可以快速獲取大量且高精度之點雲資料,這些點雲資料不但記錄了被掃描物體之三維資訊,還包含其色彩訊息。但因光達點雲資料量過於龐大,若要直接於電腦上展示其三維模型,必須配合有效的資料處理技術,才能迅速且即時地將資料顯示於螢幕上。我們針對地面光達系統獲取之建物點雲,提出一套處理方法,期盼透過少數關鍵點雲,就足以表示整個建物的模型。研究流程主要分為三階段,首先採用三維網格資料結構,從地面光達系統獲取之建物點雲中,萃取出關鍵點雲,並利用三維不規則三角網建模方式,進行模型建構工作,產生建物大略模型。其次再逐點判斷是否將剩餘之點加入此模型中,持續更新模型細微之部分。最後將點雲中的色彩資訊轉成影像,敷貼在模型表面上,讓整個模型更為逼真。我們以政大綜合大樓進行實驗,成功地減少大量冗餘的點雲資料,只需要約原始點雲的1%,就足以將綜合大樓模型建構完成。為了達到可以從不同視角即時瀏覽建物模型,我們採用虛擬實境語言(VRML)來描述處理後的三維模型,遠端使用者只需透過一般網頁瀏覽器,即可即時顯示處理過的三維建物模型。 | zh_TW |
dc.description.abstract (摘要) | Ground-based LIDAR system can be used to detect the surface of the buildings on the earth. In general, it produces large amount of high-precision point cloud data. These data include not only the three-dimensional space information, but also the color information. However, the number of point cloud data is huge and is difficult to be displayed efficiently. It’s necessary to use efficient data processing techniques in order to display these point cloud data in real-time.In this research, we construct the three-dimensional building model using the key points selected from a given set of point cloud data. The major works of our scheme consists of three parts. In the first part, we extract the key points from the given point cloud data through the help of a three-dimensional grid. These key points are used to construct a primitive model of the building. Then, we checked all the remaining points and decided whether these points are essential to the final building model. Finally, we transformed the color information into images and then used the transformed images to represent generic surface material of the three-dimensional model of the building. The goal of the final step is to make the model more realistic.In the experiments, we used the twin-tower of our university as our target. We successfully reduced the required data in displaying the building model and only about one percent of the original point cloud data are used in the final model. Hence, one can see the twin-tower from various view points in real-time. In addition, we use VRML to describe our model and the users can browse the results in real-time on internet. | en_US |
dc.description.tableofcontents | 第一章 緒論 11.1研究動機與目的 11.2問題描述 21.3系統架構與流程說明 31.3.1地面光達點雲重建三維模型 41.3.2處理點雲色彩資訊進行影像敷貼 51.4本論文的貢獻 61.5論文章節架構 7第二章 相關研究 82.1簡介地面光達系統 92.1.1地面光達系統 92.1.2地面光達系統掃描原理 102.2資料整合重建三維模型 112.3影像敷貼 12第三章 利用地面光達點雲資料重建三維模型 133.1三維網格資料結構 143.2適應性網格模型 153.3建構不規則三角網 173.4建構細部三角網 19第四章 自動化影像敷貼 214.1儀器觀測站坐標偵測 224.1.1去除雜訊 244.1.2邊緣偵測 294.1.3霍夫轉換 314.1.4儀器觀測站坐標估算 354.2影像取樣 364.3影像敷貼 38第五章 實驗結果 405.1適應性網格模型 425.2建構不規則三角網 445.3建構細部三角網 455.4儀器觀測站坐標偵測 465.4.1去除雜訊結果 475.4.2邊緣偵測結果 505.4.3儀器觀測站坐標估算 515.5影像取樣結果 545.6影像敷貼結果 57第六章 結論 596.1結論 596.2未來發展 60參考文獻 62 | zh_TW |
dc.format.extent | 295299 bytes | - |
dc.format.extent | 267696 bytes | - |
dc.format.extent | 270916 bytes | - |
dc.format.extent | 373098 bytes | - |
dc.format.extent | 368274 bytes | - |
dc.format.extent | 421679 bytes | - |
dc.format.extent | 434034 bytes | - |
dc.format.extent | 1062024 bytes | - |
dc.format.extent | 3663204 bytes | - |
dc.format.extent | 304613 bytes | - |
dc.format.extent | 290722 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0094753013 | en_US |
dc.subject (關鍵詞) | 雷射掃瞄儀 | zh_TW |
dc.subject (關鍵詞) | 光達 | zh_TW |
dc.subject (關鍵詞) | 材質敷貼 | zh_TW |
dc.subject (關鍵詞) | 表面模型重建 | zh_TW |
dc.subject (關鍵詞) | 三維立體模型 | zh_TW |
dc.subject (關鍵詞) | 虛擬實境 | zh_TW |
dc.subject (關鍵詞) | 霍夫轉換 | zh_TW |
dc.subject (關鍵詞) | laser scanner | en_US |
dc.subject (關鍵詞) | LIDAR | en_US |
dc.subject (關鍵詞) | texture mapping | en_US |
dc.subject (關鍵詞) | surface reconstruction | en_US |
dc.subject (關鍵詞) | point-based | en_US |
dc.subject (關鍵詞) | Virtual Reality | en_US |
dc.subject (關鍵詞) | Hough transform | en_US |
dc.title (題名) | 由地面光達資料自動重建建物模型之研究 | zh_TW |
dc.title (題名) | Automatic Generation of Building Model from Ground-Based LIDAR Data | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] 余徐維、方偉凱、詹進發,”利用地面LIDAR資料建立三維建物模型”,第二十四屆測量學術及應用研討會論文集,pp. 483-490,2005。 | zh_TW |
dc.relation.reference (參考文獻) | [2] 陳良健、郭志奕、饒見有,”整合點雲與輪廓線模塑建物模型之研究”,第二十四屆測量學術及應用研討會論文集,pp. 293-300,2005。 | zh_TW |
dc.relation.reference (參考文獻) | [3] 曾義星、賴志凱,”地面光達掃描定位原理與誤差分析”,測量工程,第四十六卷,第四期,pp. 3-22,2004。 | zh_TW |
dc.relation.reference (參考文獻) | [4] 曾義星、史天元,”三維雷射掃描技術及其在工程測量上之應用”,中國土木水利工程學刊,2004。 | zh_TW |
dc.relation.reference (參考文獻) | [5] 曾義星、史天元,"三維雷射掃描儀─新一代測量利器",科學發展月刊,365期,pp.16-21,2003。 | zh_TW |
dc.relation.reference (參考文獻) | [6] 劉燈烈,”地面光達點雲資料的平差結合與影像敷貼”,國立成功大學測量及空間資訊學系碩士論文,2004。 | zh_TW |
dc.relation.reference (參考文獻) | [7] Azernikov, S. and A. Fischer, “Anisotropic Meshing of Implicit Surfaces”, IEEE International Conference on Shape Modeling and Applications, June 13 - June 17, MIT, Boston, USA (slides) , 2005. | zh_TW |
dc.relation.reference (參考文獻) | [8] Castro-Díaz, M. J., F. Hecht, and B. Mohammadi, “New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations”, Proceedings of the 4th International Meshing Roundtable, pp. 73-85, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [9] De Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf, “Computational Geometry: Algorithms and Applications”, Second Edition, Springer, 2000. | zh_TW |
dc.relation.reference (參考文獻) | [10] Dey, T. K., J. Giesen, and J. Hudson, “Delaunay Based Shape Reconstruction from Large Data”, IEEE Symposium on Parallel and Large Data Visualization, pp. 19-27, 2001. | zh_TW |
dc.relation.reference (參考文獻) | [11] Fang, T. P. and L. A. Piegl, “Delaunay Triangulation in Three Dimensions”, IEEE Computer Graphics and Applications, volume 15, No. 5, pp. 62-69, 1995. | zh_TW |
dc.relation.reference (參考文獻) | [12] Gonzalez, R. C. and R. E. Woods, "Digital Image Processing", Second Edition, Prentice Hall, 2002. | zh_TW |
dc.relation.reference (參考文獻) | [13] Heckbert, Paul, "Survey of Texture Mapping", IEEE Computer Graphics and Applications, volume 6, pp. 56–67, Nov., 1986. | zh_TW |
dc.relation.reference (參考文獻) | [14] Leica Geosystems, HDS3000 3D Laser Scanner Specifications, 2004: http://www.leica-geosystems.com/hds/en/lgs_6506.htm | zh_TW |
dc.relation.reference (參考文獻) | [15] Lorensen, W. E. and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm”, ACM Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21, pp. 163–170, 1987. | zh_TW |
dc.relation.reference (參考文獻) | [16] Wolf, P. R. and B. A. Dewitt, “Elements of photogrammetry with applications in GIS”, McGraw-Hill, pp.303-305, 2000. | zh_TW |