學術產出-Theses

Article View/Open

Publication Export

Google ScholarTM

政大圖書館

Citation Infomation

  • No doi shows Citation Infomation
題名 Performance Analysis of IEEE 802.11e EDCA
IEEE 802.11e 進階分散存取之效能分析
作者 吳明儒
Wu,Ming-Ju
貢獻者 蔡子傑
Tsai,Tzu-Chieh
吳明儒
Wu,Ming-Ju
關鍵詞 進階分散存取
802.11e
服務品質
允入控制
媒介存取層
EDCA
802.11e
QoS
CAC
MAC
日期 2004
上傳時間 17-Sep-2009 14:06:22 (UTC+8)
摘要 為了進一步支援無線網路上的服務品質(QoS),IEEE 802.11e通訊協定目前正在制訂中。其提供兩種媒介存取方式,一為基礎的進階分散存取(EDCA),另一種是建構在進階分散存取下的混合控制存取(HCCA)。802.11e中,藉由不同的訊框間隔(IFS)與競爭視窗(CW)相關參數的設定以區隔不同的存取等級(AC)。為了在802.11e網路下進一步的發展有效的服務品質管理機制,我們提出了一個數學模型以分析在進階分散存取網路下所使用的頻寬與媒體存取層所延遲的時間。在這個模型下,每個站台可以支援多個不同等級的資料流(聲音/影音與資料)。透過這個數學模型,允入控制與資源管理可以很容易實現,也可以支援不同應用程式的不同需求。
For supporting Quality of Service (QoS) for wireless networks, the IEEE 802.11 Task Group E currently defines enhancements to the IEEE 802.11 MAC, called 802.11e. The IEEE 802.11e provides two mechanisms for the support of applications with QoS requirements, namely, Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). EDCA mechanism defines four access categories (ACs) that provide support for the delivery of traffic with user priorities. Different AC uses various Inter-Frame Space (IFS) and Contention Window (CW) parameters. In order to further develop efficient QoS management for the IEEE 802.11e networks, we propose an analytical model to evaluate throughput and MAC delay of the basic access method of the IEEE 802.11e - EDCA. Our Markov chains consider the situation of different multimedia (voice/video and data) traffic flows in a mobile station. This is improved from previous work, and closer to real usage scenarios. The correctness of our analysis has been validated via simulation results. Throughout our model, call admission control (CAC) and resource management can be easily applied, and thus QoS for hybrid requirements is supported.
參考文獻 [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999
[2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999
[3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999
[4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003
[5] IEEE, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements”, IEEE Draft 6.0 802.11e, November 2003
[6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000
[7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002
[8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004
[9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002
[10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003
[11] Daqing Gu, Jinyun Zhang, “QoS Enhancement in IEEE802.11”, IEEE Wireless Communications, June 2003
[12] Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein, and Bernhard, “Analysis of IEEE 802.11e for QoS Support in Wireless LANs”, IEEE Wireless Communications, December 2003
[13] Pierre Ansel, Qiang Ni, Thierry Turletti, “FHCF: A Fair Scheduling Scheme for 802.11e WLAN”, INRIA, July 2004
[14] Wayne L. Winston, Indiana University, “Operations Research: Applications and Algorithms” 3rd ed. 1994
描述 碩士
國立政治大學
資訊科學學系
91753007
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0917530071
資料類型 thesis
dc.contributor.advisor 蔡子傑zh_TW
dc.contributor.advisor Tsai,Tzu-Chiehen_US
dc.contributor.author (Authors) 吳明儒zh_TW
dc.contributor.author (Authors) Wu,Ming-Juen_US
dc.creator (作者) 吳明儒zh_TW
dc.creator (作者) Wu,Ming-Juen_US
dc.date (日期) 2004en_US
dc.date.accessioned 17-Sep-2009 14:06:22 (UTC+8)-
dc.date.available 17-Sep-2009 14:06:22 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 14:06:22 (UTC+8)-
dc.identifier (Other Identifiers) G0917530071en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/32708-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 資訊科學學系zh_TW
dc.description (描述) 91753007zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要) 為了進一步支援無線網路上的服務品質(QoS),IEEE 802.11e通訊協定目前正在制訂中。其提供兩種媒介存取方式,一為基礎的進階分散存取(EDCA),另一種是建構在進階分散存取下的混合控制存取(HCCA)。802.11e中,藉由不同的訊框間隔(IFS)與競爭視窗(CW)相關參數的設定以區隔不同的存取等級(AC)。為了在802.11e網路下進一步的發展有效的服務品質管理機制,我們提出了一個數學模型以分析在進階分散存取網路下所使用的頻寬與媒體存取層所延遲的時間。在這個模型下,每個站台可以支援多個不同等級的資料流(聲音/影音與資料)。透過這個數學模型,允入控制與資源管理可以很容易實現,也可以支援不同應用程式的不同需求。zh_TW
dc.description.abstract (摘要) For supporting Quality of Service (QoS) for wireless networks, the IEEE 802.11 Task Group E currently defines enhancements to the IEEE 802.11 MAC, called 802.11e. The IEEE 802.11e provides two mechanisms for the support of applications with QoS requirements, namely, Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). EDCA mechanism defines four access categories (ACs) that provide support for the delivery of traffic with user priorities. Different AC uses various Inter-Frame Space (IFS) and Contention Window (CW) parameters. In order to further develop efficient QoS management for the IEEE 802.11e networks, we propose an analytical model to evaluate throughput and MAC delay of the basic access method of the IEEE 802.11e - EDCA. Our Markov chains consider the situation of different multimedia (voice/video and data) traffic flows in a mobile station. This is improved from previous work, and closer to real usage scenarios. The correctness of our analysis has been validated via simulation results. Throughout our model, call admission control (CAC) and resource management can be easily applied, and thus QoS for hybrid requirements is supported.en_US
dc.description.tableofcontents CHAPTER 1 Introduction 1
1.1. Background 2
1.1.1. The DCF of the IEEE 802.11 MAC Protocol 3
1.1.2. The EDCA of the IEEE 802.11e MAC Protocol 6
1.2. Motivation 11
1.3. Organization 12
CHAPTER 2 Related Work 13
2.1. Performance Studies about DCF 13
2.2. Performance Studies about EDCA 15
CHAPTER 3 EDCA Markov Chain Model 18
3.1. Model Assumption 18
3.2. Model Introduction 19
3.3. Markov Chain State 23
3.4. Transition Probability Matrix 25
3.5. Throughput and Delay Calculation 38
CHAPTER 4 Model Validation 44
4.1. Parameters 44
4.2. Scenario & Result 45
4.2.1. Scenario1 46
4.2.2. Scenario2 48
4.2.3. Scenario3 49
4.2.4. Scenario4 50
CHAPTER 5 Call Admission Control 51
CHAPTER 6 Conclusions and Future Work 53
zh_TW
dc.format.extent 94584 bytes-
dc.format.extent 133352 bytes-
dc.format.extent 79285 bytes-
dc.format.extent 239076 bytes-
dc.format.extent 261555 bytes-
dc.format.extent 235927 bytes-
dc.format.extent 2715579 bytes-
dc.format.extent 2678126 bytes-
dc.format.extent 332394 bytes-
dc.format.extent 113369 bytes-
dc.format.extent 144608 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0917530071en_US
dc.subject (關鍵詞) 進階分散存取zh_TW
dc.subject (關鍵詞) 802.11ezh_TW
dc.subject (關鍵詞) 服務品質zh_TW
dc.subject (關鍵詞) 允入控制zh_TW
dc.subject (關鍵詞) 媒介存取層zh_TW
dc.subject (關鍵詞) EDCAen_US
dc.subject (關鍵詞) 802.11een_US
dc.subject (關鍵詞) QoSen_US
dc.subject (關鍵詞) CACen_US
dc.subject (關鍵詞) MACen_US
dc.title (題名) Performance Analysis of IEEE 802.11e EDCAzh_TW
dc.title (題名) IEEE 802.11e 進階分散存取之效能分析en_US
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999zh_TW
dc.relation.reference (參考文獻) [2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999zh_TW
dc.relation.reference (參考文獻) [3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999zh_TW
dc.relation.reference (參考文獻) [4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003zh_TW
dc.relation.reference (參考文獻) [5] IEEE, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements”, IEEE Draft 6.0 802.11e, November 2003zh_TW
dc.relation.reference (參考文獻) [6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000zh_TW
dc.relation.reference (參考文獻) [7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002zh_TW
dc.relation.reference (參考文獻) [8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004zh_TW
dc.relation.reference (參考文獻) [9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002zh_TW
dc.relation.reference (參考文獻) [10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003zh_TW
dc.relation.reference (參考文獻) [11] Daqing Gu, Jinyun Zhang, “QoS Enhancement in IEEE802.11”, IEEE Wireless Communications, June 2003zh_TW
dc.relation.reference (參考文獻) [12] Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein, and Bernhard, “Analysis of IEEE 802.11e for QoS Support in Wireless LANs”, IEEE Wireless Communications, December 2003zh_TW
dc.relation.reference (參考文獻) [13] Pierre Ansel, Qiang Ni, Thierry Turletti, “FHCF: A Fair Scheduling Scheme for 802.11e WLAN”, INRIA, July 2004zh_TW
dc.relation.reference (參考文獻) [14] Wayne L. Winston, Indiana University, “Operations Research: Applications and Algorithms” 3rd ed. 1994zh_TW