Publications-Theses
Article View/Open
Publication Export
Google ScholarTM
NCCU Library
Citation Infomation
Related Publications in TAIR
Title | Performance Analysis of IEEE 802.11e EDCA IEEE 802.11e 進階分散存取之效能分析 |
Creator | 吳明儒 Wu,Ming-Ju |
Contributor | 蔡子傑 Tsai,Tzu-Chieh 吳明儒 Wu,Ming-Ju |
Key Words | 進階分散存取 802.11e 服務品質 允入控制 媒介存取層 EDCA 802.11e QoS CAC MAC |
Date | 2004 |
Date Issued | 17-Sep-2009 14:06:22 (UTC+8) |
Summary | 為了進一步支援無線網路上的服務品質(QoS),IEEE 802.11e通訊協定目前正在制訂中。其提供兩種媒介存取方式,一為基礎的進階分散存取(EDCA),另一種是建構在進階分散存取下的混合控制存取(HCCA)。802.11e中,藉由不同的訊框間隔(IFS)與競爭視窗(CW)相關參數的設定以區隔不同的存取等級(AC)。為了在802.11e網路下進一步的發展有效的服務品質管理機制,我們提出了一個數學模型以分析在進階分散存取網路下所使用的頻寬與媒體存取層所延遲的時間。在這個模型下,每個站台可以支援多個不同等級的資料流(聲音/影音與資料)。透過這個數學模型,允入控制與資源管理可以很容易實現,也可以支援不同應用程式的不同需求。 For supporting Quality of Service (QoS) for wireless networks, the IEEE 802.11 Task Group E currently defines enhancements to the IEEE 802.11 MAC, called 802.11e. The IEEE 802.11e provides two mechanisms for the support of applications with QoS requirements, namely, Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). EDCA mechanism defines four access categories (ACs) that provide support for the delivery of traffic with user priorities. Different AC uses various Inter-Frame Space (IFS) and Contention Window (CW) parameters. In order to further develop efficient QoS management for the IEEE 802.11e networks, we propose an analytical model to evaluate throughput and MAC delay of the basic access method of the IEEE 802.11e - EDCA. Our Markov chains consider the situation of different multimedia (voice/video and data) traffic flows in a mobile station. This is improved from previous work, and closer to real usage scenarios. The correctness of our analysis has been validated via simulation results. Throughout our model, call admission control (CAC) and resource management can be easily applied, and thus QoS for hybrid requirements is supported. |
參考文獻 | [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999 [2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999 [3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999 [4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003 [5] IEEE, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements”, IEEE Draft 6.0 802.11e, November 2003 [6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000 [7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002 [8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004 [9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002 [10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003 [11] Daqing Gu, Jinyun Zhang, “QoS Enhancement in IEEE802.11”, IEEE Wireless Communications, June 2003 [12] Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein, and Bernhard, “Analysis of IEEE 802.11e for QoS Support in Wireless LANs”, IEEE Wireless Communications, December 2003 [13] Pierre Ansel, Qiang Ni, Thierry Turletti, “FHCF: A Fair Scheduling Scheme for 802.11e WLAN”, INRIA, July 2004 [14] Wayne L. Winston, Indiana University, “Operations Research: Applications and Algorithms” 3rd ed. 1994 |
Description | 碩士 國立政治大學 資訊科學學系 91753007 93 |
資料來源 | http://thesis.lib.nccu.edu.tw/record/#G0917530071 |
Type | thesis |
dc.contributor.advisor | 蔡子傑 | zh_TW |
dc.contributor.advisor | Tsai,Tzu-Chieh | en_US |
dc.contributor.author (Authors) | 吳明儒 | zh_TW |
dc.contributor.author (Authors) | Wu,Ming-Ju | en_US |
dc.creator (作者) | 吳明儒 | zh_TW |
dc.creator (作者) | Wu,Ming-Ju | en_US |
dc.date (日期) | 2004 | en_US |
dc.date.accessioned | 17-Sep-2009 14:06:22 (UTC+8) | - |
dc.date.available | 17-Sep-2009 14:06:22 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 14:06:22 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0917530071 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32708 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 91753007 | zh_TW |
dc.description (描述) | 93 | zh_TW |
dc.description.abstract (摘要) | 為了進一步支援無線網路上的服務品質(QoS),IEEE 802.11e通訊協定目前正在制訂中。其提供兩種媒介存取方式,一為基礎的進階分散存取(EDCA),另一種是建構在進階分散存取下的混合控制存取(HCCA)。802.11e中,藉由不同的訊框間隔(IFS)與競爭視窗(CW)相關參數的設定以區隔不同的存取等級(AC)。為了在802.11e網路下進一步的發展有效的服務品質管理機制,我們提出了一個數學模型以分析在進階分散存取網路下所使用的頻寬與媒體存取層所延遲的時間。在這個模型下,每個站台可以支援多個不同等級的資料流(聲音/影音與資料)。透過這個數學模型,允入控制與資源管理可以很容易實現,也可以支援不同應用程式的不同需求。 | zh_TW |
dc.description.abstract (摘要) | For supporting Quality of Service (QoS) for wireless networks, the IEEE 802.11 Task Group E currently defines enhancements to the IEEE 802.11 MAC, called 802.11e. The IEEE 802.11e provides two mechanisms for the support of applications with QoS requirements, namely, Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). EDCA mechanism defines four access categories (ACs) that provide support for the delivery of traffic with user priorities. Different AC uses various Inter-Frame Space (IFS) and Contention Window (CW) parameters. In order to further develop efficient QoS management for the IEEE 802.11e networks, we propose an analytical model to evaluate throughput and MAC delay of the basic access method of the IEEE 802.11e - EDCA. Our Markov chains consider the situation of different multimedia (voice/video and data) traffic flows in a mobile station. This is improved from previous work, and closer to real usage scenarios. The correctness of our analysis has been validated via simulation results. Throughout our model, call admission control (CAC) and resource management can be easily applied, and thus QoS for hybrid requirements is supported. | en_US |
dc.description.tableofcontents | CHAPTER 1 Introduction 1 1.1. Background 2 1.1.1. The DCF of the IEEE 802.11 MAC Protocol 3 1.1.2. The EDCA of the IEEE 802.11e MAC Protocol 6 1.2. Motivation 11 1.3. Organization 12 CHAPTER 2 Related Work 13 2.1. Performance Studies about DCF 13 2.2. Performance Studies about EDCA 15 CHAPTER 3 EDCA Markov Chain Model 18 3.1. Model Assumption 18 3.2. Model Introduction 19 3.3. Markov Chain State 23 3.4. Transition Probability Matrix 25 3.5. Throughput and Delay Calculation 38 CHAPTER 4 Model Validation 44 4.1. Parameters 44 4.2. Scenario & Result 45 4.2.1. Scenario1 46 4.2.2. Scenario2 48 4.2.3. Scenario3 49 4.2.4. Scenario4 50 CHAPTER 5 Call Admission Control 51 CHAPTER 6 Conclusions and Future Work 53 | zh_TW |
dc.format.extent | 94584 bytes | - |
dc.format.extent | 133352 bytes | - |
dc.format.extent | 79285 bytes | - |
dc.format.extent | 239076 bytes | - |
dc.format.extent | 261555 bytes | - |
dc.format.extent | 235927 bytes | - |
dc.format.extent | 2715579 bytes | - |
dc.format.extent | 2678126 bytes | - |
dc.format.extent | 332394 bytes | - |
dc.format.extent | 113369 bytes | - |
dc.format.extent | 144608 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0917530071 | en_US |
dc.subject (關鍵詞) | 進階分散存取 | zh_TW |
dc.subject (關鍵詞) | 802.11e | zh_TW |
dc.subject (關鍵詞) | 服務品質 | zh_TW |
dc.subject (關鍵詞) | 允入控制 | zh_TW |
dc.subject (關鍵詞) | 媒介存取層 | zh_TW |
dc.subject (關鍵詞) | EDCA | en_US |
dc.subject (關鍵詞) | 802.11e | en_US |
dc.subject (關鍵詞) | QoS | en_US |
dc.subject (關鍵詞) | CAC | en_US |
dc.subject (關鍵詞) | MAC | en_US |
dc.title (題名) | Performance Analysis of IEEE 802.11e EDCA | zh_TW |
dc.title (題名) | IEEE 802.11e 進階分散存取之效能分析 | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification”, IEEE Standard 802.11, June 1999 | zh_TW |
dc.relation.reference (參考文獻) | [2] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specification: High speed Physical Layer (PHY) extension in the 2.4 GHz band”, IEEE Standard 802.11b, September 1999 | zh_TW |
dc.relation.reference (參考文獻) | [3] IEEE, “Wireless LAN medium access control (MAC) and physical layer (PHY) specification: High-speed Physical Layer extension in the 5 GHz band”, IEEE Standard 802.11a, September 1999 | zh_TW |
dc.relation.reference (參考文獻) | [4] IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band”, IEEE Standard 802.11g, January 2003 | zh_TW |
dc.relation.reference (參考文獻) | [5] IEEE, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements”, IEEE Draft 6.0 802.11e, November 2003 | zh_TW |
dc.relation.reference (參考文獻) | [6] Giuseppe Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function” IEEE Journal on Selected Area in Communication, V18, N3, March 2000 | zh_TW |
dc.relation.reference (參考文獻) | [7] HaitaoWu, Yong Peng, Keping Long, Shiduan Cheng, Jian Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, IEEE Infocom’02, New York, June 2002 | zh_TW |
dc.relation.reference (參考文獻) | [8] Bo Li, Roberto Battiti, “Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol”, Wireless On-Demand Network Systems 2004, LNCS 2928, pp. 285-300, January 2004 | zh_TW |
dc.relation.reference (參考文獻) | [9] Jun Zhao, Zihua Guo, Qian Zhang, Wenwu Zhu, “Performance Study of MAC for Service Differentiation in IEEE 802.11” IEEE Globecom’02, November 2002 | zh_TW |
dc.relation.reference (參考文獻) | [10] Hua Zhu, Imrich Chlamtac, “An Analytical Model for IEEE 802.11e EDCF Differential Services”, ICCCN’03, October 2003 | zh_TW |
dc.relation.reference (參考文獻) | [11] Daqing Gu, Jinyun Zhang, “QoS Enhancement in IEEE802.11”, IEEE Wireless Communications, June 2003 | zh_TW |
dc.relation.reference (參考文獻) | [12] Stefan Mangold, Sunghyun Choi, Guido R. Hiertz, Ole Klein, and Bernhard, “Analysis of IEEE 802.11e for QoS Support in Wireless LANs”, IEEE Wireless Communications, December 2003 | zh_TW |
dc.relation.reference (參考文獻) | [13] Pierre Ansel, Qiang Ni, Thierry Turletti, “FHCF: A Fair Scheduling Scheme for 802.11e WLAN”, INRIA, July 2004 | zh_TW |
dc.relation.reference (參考文獻) | [14] Wayne L. Winston, Indiana University, “Operations Research: Applications and Algorithms” 3rd ed. 1994 | zh_TW |