dc.contributor.advisor | 廖文宏 | zh_TW |
dc.contributor.advisor | Wen-Hung Liao | en_US |
dc.contributor.author (Authors) | 張繼志 | zh_TW |
dc.contributor.author (Authors) | Chi-Chih Chang | en_US |
dc.creator (作者) | 張繼志 | zh_TW |
dc.creator (作者) | Chi-Chih Chang | en_US |
dc.date (日期) | 2004 | en_US |
dc.date.accessioned | 17-Sep-2009 14:06:36 (UTC+8) | - |
dc.date.available | 17-Sep-2009 14:06:36 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 14:06:36 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0917530141 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/32710 | - |
dc.description (描述) | 碩士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 資訊科學學系 | zh_TW |
dc.description (描述) | 91753014 | zh_TW |
dc.description (描述) | 93 | zh_TW |
dc.description.abstract (摘要) | 隨著科技的進步與資訊科學的發展,大量的資訊處理自動化逐漸取代傳統人工技術,然而不恰當地使用自動化技術,卻可能危害人類的權益與空間。為避免過度濫用機器自動化對人類所造成的災害,本研究根據不同的適用情境,分別提出以靜態及動態圖型為基礎的人機區分方法,透過簡單的影像處理技術,產生機器難以分析但人類能夠易於判別的人機辨識影像。並且由認知的角度,設計實驗進一步探討人類視覺優勢以及接受度,作為影像產生時的標準。最後,提出人機區分技術與應用情境整合實作的方法,以觀實效。 | zh_TW |
dc.description.abstract (摘要) | The idea of using a computer program to distinguish humans from machines, sometimes referred to as the “Reverse Turing Test”, has emerged only quite recently. The term CAPTCHA, which stands for “Completely Automated Public Turing Test to Tell Computers and Humans Apart", is defined as:“a program that can generate and grade tests that:□ Most human can passbut□ Current computer program can’t pass! “In this thesis, a texture-image based approach is developed to encode text information in such a way that machine vision algorithms will experience significant difficulties while human can extract the embedded text effortlessly. Both static images and dynamic sequences will be explored. It is anticipated that the cost of storing, and subsequently decoding information from such visual patterns will be prohibitedly high, both in terms of time and space complexity. To validate the postulation, fundamental principles of the human cognitive process will be examined. Experiments will also be carried out to gather user feedback and investigate the limitations of human visual systems. Finally, several application scenarios that call for the integration of a CAPTCHA will be identified and discussed. | en_US |
dc.description.tableofcontents | 第一章 緒論.........................................................................................................11.1 研究背景與目的..................................................................................11.2 CAPTCHA...........................................................................................21.3 人類視覺優勢......................................................................................9第二章 靜態單一影像.......................................................................................132.1 原理....................................................................................................132.2 過程....................................................................................................142.3 結果....................................................................................................14第三章 動態隨機點材質影像...........................................................................213.1 原理....................................................................................................213.2 過程....................................................................................................213.3 結果....................................................................................................23第四章 人類視覺系統接受度...........................................................................274.1 實驗一................................................................................................284.1.1 實驗目的...................................................................................284.1.2 實驗方法...................................................................................284.1.3 實驗結果與討論.......................................................................314.2 實驗二................................................................................................474.2.1 實驗目的...................................................................................474.2.2 實驗方法...................................................................................474.2.3 實驗結果與討論.......................................................................484.3 實驗三................................................................................................634.3.1 實驗目的...................................................................................634.3.2 實驗方法...................................................................................634.3.3 實驗結果與討論.......................................................................664.4 總體實驗結果與討論........................................................................83第五章 導入實際應用............................................................................855.1 靜態單一影像....................................................................................855.1.1 大學選課系統...........................................................................855.1.2 網路售票系統...........................................................................855.1.3 投票系統...................................................................................855.1.4 網路投標、兢標系統.................................................................865.2 動態隨機點材質影像........................................................................875.2.1 線上遊戲...................................................................................87第六章 結論.......................................................................................................89參考文獻.............................................................................................................91附錄.....................................................................................................................94 | zh_TW |
dc.format.extent | 40386 bytes | - |
dc.format.extent | 90101 bytes | - |
dc.format.extent | 43452 bytes | - |
dc.format.extent | 128070 bytes | - |
dc.format.extent | 1144475 bytes | - |
dc.format.extent | 1213089 bytes | - |
dc.format.extent | 194547 bytes | - |
dc.format.extent | 486857 bytes | - |
dc.format.extent | 1157234 bytes | - |
dc.format.extent | 44348 bytes | - |
dc.format.extent | 49052 bytes | - |
dc.format.extent | 52387 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0917530141 | en_US |
dc.subject (關鍵詞) | 人機辨識 | zh_TW |
dc.subject (關鍵詞) | 質感圖樣 | zh_TW |
dc.subject (關鍵詞) | CAPTCHA | en_US |
dc.subject (關鍵詞) | Turning Test | en_US |
dc.subject (關鍵詞) | Texture | en_US |
dc.subject (關鍵詞) | Visual Pattern | en_US |
dc.title (題名) | 植基於質感圖樣之自動化人機區分機制 | zh_TW |
dc.title (題名) | A CAPTCHA Mechanism Based on Textured Patterns | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | 【1】Berners-Lee, T., Hendler, J. and Lassila, O. (2001). The Semantic Web. Scientific American. | zh_TW |
dc.relation.reference (參考文獻) | 【2】Turing, A. (1950). Computing machinery and intelligence, artificial intelligence. | zh_TW |
dc.relation.reference (參考文獻) | 【3】Ahn, L von., Blum, M., Hopper, N. J., and Langford, J. (2003). CAPTCHA: Telling Humans and Computers Apart (Automatically). Advances in Cryptology, Eurocrypt `03, volume 2656 of Lecture Notes in Computer Science, 294–311. | zh_TW |
dc.relation.reference (參考文獻) | 【4】Mori, G. and Malik, J. (2003). Recognizing objects in adversarial clutter: Breaking a visual CAPTCHA. In Proceedings of the Conference on Computer Vision and Pattern Recognition,. Vol. I, pp.134-141, Madison, USA. | zh_TW |
dc.relation.reference (參考文獻) | 【5】Kochanski, G., Lopresti, D., and Shih, C. (2002). A Reverse Turing Test Using Speech. Seventh International Conference on Spoken Language Processing, 16-20. | zh_TW |
dc.relation.reference (參考文獻) | 【6】Julesz, B. and Miller, J.E. (1962). Automatic stereoscopic presentation of functions of two variables. Bell System Technical Journal, 41: 663-676. | zh_TW |
dc.relation.reference (參考文獻) | 【7】Goldstein, E. B. (1999). Sensation and Perception, Fifth Edition, Brooks/Cole Publishing Company. | zh_TW |
dc.relation.reference (參考文獻) | 【8】Kanizsa, G.. (1955). Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di psicologia, 49, 7-30. | zh_TW |
dc.relation.reference (參考文獻) | 【9】Bradley, D. R., and Petry, H. M. (1977). Organizational determinants of subjective contour: The subjective Necker cube. American Journal of Psychology, 90, 253-262. | zh_TW |
dc.relation.reference (參考文獻) | 【10】Williams, L. R. and Jacobs, D. W. (1997). Stochastic Completion Fields: A Neural odel of Illusory Contour Shape and Salience, Neural Computation, Vol. 9, No. 4, pp. 837-858. | zh_TW |
dc.relation.reference (參考文獻) | 【11】Julesz, B. (1962). Visual pattern discrimination. IRE Trans Inf Theory, IT-8:84-92. | zh_TW |
dc.relation.reference (參考文獻) | 【12】Julesz, B. (1975). Experiments on the visual perception of texture. Scientific American, 232, 34-43. | zh_TW |
dc.relation.reference (參考文獻) | 【13】Julesz, B. Textons. (1981). the elements of texture perception and their interactions. Nature, London, 290, 91-97. | zh_TW |
dc.relation.reference (參考文獻) | 【14】Regan, D. (1986). Luminance contrast: Vernier discrimination. Spatial Vision, 1, 305-318. | zh_TW |
dc.relation.reference (參考文獻) | 【15】Newsome, W. T., Britten, K. H., and Movshon, J. A. (1989). Neuronal correlates of a perceptual decision. Nature, 341, 52-54. | zh_TW |
dc.relation.reference (參考文獻) | 【16】Gonzalez, R. C. and Woods, R. E. (2001). Digital Image Processing Second Edition. Prentice-Hall, Inc. | zh_TW |
dc.relation.reference (參考文獻) | 【17】Forsyth, D. A.,and Ponce, J. (2003). Computer Vision: A Modern Approach. Prentice-Hall, Inc. | zh_TW |
dc.relation.reference (參考文獻) | 【18】Myers, A. and Hansen, C. (1997). Experimental Psychology. Brooks/Cole Publishing Company. | zh_TW |
dc.relation.reference (參考文獻) | 【19】Duda, R. O., Hart, P. E., and Stork, D. G... (2001). Pattern Classification, Second Edition. John Wiley & Sons, Inc. | zh_TW |
dc.relation.reference (參考文獻) | 【20】Liao, W. H., Chang, C.C. (2004). Embedding Information within Dynamic Visual Patterns. The 2004 IEEE International Conference On Multimedia And Expo. | zh_TW |
dc.relation.reference (參考文獻) | 【21】王文中,(1999),「統計學與Excel資料分析之實習應用」,博碩文化。 | zh_TW |
dc.relation.reference (參考文獻) | 【22】李江山、孫慶文、陳一平、陳建中、黃淑麗、黃榮村、葉素玲、襲充文、櫻井正二郎,(2002),「視覺與認知–視覺知覺與視覺運動系統」,遠流。 | zh_TW |
dc.relation.reference (參考文獻) | 【23】洪蘭、曾志朗譯,(1997),「心理學實驗研究法」,遠流。 | zh_TW |