dc.contributor.advisor | 張源俊 | zh_TW |
dc.contributor.advisor | Chang, Yuan-Chin | en_US |
dc.contributor.author (Authors) | 盧宏益 | zh_TW |
dc.contributor.author (Authors) | Lu, Hung-Yi | en_US |
dc.creator (作者) | 盧宏益 | zh_TW |
dc.creator (作者) | Lu, Hung-Yi | en_US |
dc.date (日期) | 2005 | en_US |
dc.date.accessioned | 17-Sep-2009 18:47:44 (UTC+8) | - |
dc.date.available | 17-Sep-2009 18:47:44 (UTC+8) | - |
dc.date.issued (上傳時間) | 17-Sep-2009 18:47:44 (UTC+8) | - |
dc.identifier (Other Identifiers) | G0903545011 | en_US |
dc.identifier.uri (URI) | https://nccur.lib.nccu.edu.tw/handle/140.119/33913 | - |
dc.description (描述) | 博士 | zh_TW |
dc.description (描述) | 國立政治大學 | zh_TW |
dc.description (描述) | 統計研究所 | zh_TW |
dc.description (描述) | 90354501 | zh_TW |
dc.description (描述) | 94 | zh_TW |
dc.description.abstract (摘要) | 本論文探討當自變數存在測量誤差時,羅吉斯迴歸模型的估計問題,並將此結果應用在電腦化適性測驗中的線上校準問題。在變動長度電腦化測驗的假設下,我們證明了估計量的強收斂性。試題反應理論被廣泛地使用在電腦化適性測驗上,其假設受試者在試題的表現情形與本身的能力,可以透過試題特徵曲線加以詮釋,羅吉斯迴歸模式是最常見的試題反應模式。藉由適性測驗的施行,考題的選取可以依據不同受試者,選擇最適合的題目。因此,相較於傳統測驗而言,在適性測驗中,題目的消耗量更為快速。在題庫的維護與管理上,新試題的補充與試題校準便為非常重要的工作。線上試題校準意指在線上測驗進行中,同時進行試題校準。因此,受試者的能力估計會存在測量誤差。從統計的觀點,線上校準面臨的困難,可以解釋為在非線性模型下,當自變數有測量誤差時的實驗設計問題。我們利用序貫設計降低測量誤差,得到更精確的估計,相較於傳統的試題校準,可以節省更多的時間及成本。我們利用處理測量誤差的技巧,進一步應用序貫設計的方法,處理在線上校準中,受試者能力存在測量誤差的問題。 | zh_TW |
dc.description.abstract (摘要) | In this dissertation, we focus on the estimate in logisticregression models when the independent variables are subject to some measurement errors. The problem of this dissertation is motivated by online calibration in Computerized Adaptive Testing (CAT). We apply the measurement error model techniques and adaptive sequential design methodology to the online calibration problem of CAT. We prove that the estimates of item parameters are strongly consistent under the variable length CAT setup. In an adaptive testing scheme, examinees are presented with different sets of items chosen from apre-calibrated item pool. Thus the speed of attrition in items will be very fast, and replenishing of item pool is essential for CAT. The online calibration scheme in CAT refers to estimating the item parameters of new, un-calibrated items by presenting them to examinees during the course of their ability testing together with previously calibrated items. Therefore, the estimated latent trait levels of examinees are used as the design points for estimating the parameter of the new items, and naturally these designs, the estimated latent trait levels, are subject to some estimating errors. Thus the problem of the online calibration under CAT setup can be formulated as a sequential estimation problem with measurement errors in the independent variables, which are also chosen sequentially. Item Response Theory (IRT) is the most commonly used psychometric model in CAT, and the logistic type models are the most popular models used in IRT based tests. That`s why the nonlinear design problem and the nonlinear measurement error models are involved. Sequential design procedures proposed here can provide more accurate estimates of parameters, and are more efficient in terms of sample size (number of examinees used in calibration). In traditional calibration process in paper-and-pencil tests, we usually have to pay for the examineesjoining the pre-test calibration process. In online calibration,there will be less cost, since we are able to assign new items to the examinees during the operational test. Therefore, the proposed procedures will be cost-effective as well as time-effective. | en_US |
dc.description.tableofcontents | 1 Introduction 12 Experimental Design in Regression Models 62.1 Designs in linear regression models 62.2 Designs in logistic models 72.2.1 Multiple-stage designs 72.2.2 Sequential sample size for logistic models 83 Optimal Designs for Item Calibration in Computerized Adaptive Testing 93.1 Designs for online calibration 113.2 Sequential sample size for two parameter logistic models124 Estimation of Logistic Regression Model with Measurement Error 154.1 Online calibration in two parameter logistic model 164.2 Estimate of logistic regression with measurement error in designs 185 Empirical Study 255.1 D-optimal designs in two parameter logistic models 255.2 Synthesized data 265.2.1 Initial stage 265.2.2 Design stage 275.3 Empirical studies based on The Basic Competence Test for Junior High School Students416 Discussion and Further Research 506.1 Future work 51A Designs in Two Parameter Logistic Models 55A.1 Design 1 : Kalish and Rosenberger`s design 55A.2 Design 2 : Abdelbasit and Plackett`s design 55A.3 Design 3 : Multiple stage design 56A.4 Design 4 : Minkin`s design 56A.5 Design 5 : Sitter and Forbes`s design 56B Estimates of Latent Trait Levels in CAT 60C Estimates of Other Exams 62 | zh_TW |
dc.format.extent | 49098 bytes | - |
dc.format.extent | 77380 bytes | - |
dc.format.extent | 65647 bytes | - |
dc.format.extent | 22913 bytes | - |
dc.format.extent | 46873 bytes | - |
dc.format.extent | 38963 bytes | - |
dc.format.extent | 64042 bytes | - |
dc.format.extent | 100682 bytes | - |
dc.format.extent | 108593 bytes | - |
dc.format.extent | 183125 bytes | - |
dc.format.extent | 43579 bytes | - |
dc.format.extent | 47107 bytes | - |
dc.format.extent | 111548 bytes | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | en_US | - |
dc.source.uri (資料來源) | http://thesis.lib.nccu.edu.tw/record/#G0903545011 | en_US |
dc.subject (關鍵詞) | 電腦化適性測驗 | zh_TW |
dc.subject (關鍵詞) | 線上校準 | zh_TW |
dc.subject (關鍵詞) | 測量誤差 | zh_TW |
dc.subject (關鍵詞) | 序貫設計 | zh_TW |
dc.subject (關鍵詞) | 變動長度 | zh_TW |
dc.subject (關鍵詞) | 試題反應理論 | zh_TW |
dc.subject (關鍵詞) | 試題校準 | zh_TW |
dc.subject (關鍵詞) | Item Response Theory | en_US |
dc.subject (關鍵詞) | Computerized Adaptive Testing | en_US |
dc.subject (關鍵詞) | online calibration | en_US |
dc.subject (關鍵詞) | measurement error | en_US |
dc.subject (關鍵詞) | sequential design | en_US |
dc.subject (關鍵詞) | sequential estimation | en_US |
dc.subject (關鍵詞) | stopping time | en_US |
dc.subject (關鍵詞) | variable length | en_US |
dc.subject (關鍵詞) | item calibration | en_US |
dc.title (題名) | 自變數有測量誤差的羅吉斯迴歸模型之序貫設計探討及其在教育測驗上的應用 | zh_TW |
dc.title (題名) | Sequential Designs with Measurement Errors in Logistic Models with Applications to Educational Testing | en_US |
dc.type (資料類型) | thesis | en |
dc.relation.reference (參考文獻) | [1] Abdelbasit, K. M. and Plackett, R. L. (1983). Experimental Design for Binary | zh_TW |
dc.relation.reference (參考文獻) | Data. Journal of the American Statistical Association, 78, 90-98. | zh_TW |
dc.relation.reference (參考文獻) | [2] Berger, M. P. F. (1991). On the e_ciency of IRT models when applied to di_erent | zh_TW |
dc.relation.reference (參考文獻) | sampling designs. Applied Psychological Measurement, 15, 293-306. | zh_TW |
dc.relation.reference (參考文獻) | [3] Berger, M. P. F. (1992). Sequential Sampling Designs for the Two-parameter | zh_TW |
dc.relation.reference (參考文獻) | Item Response Theory Model. Psychometrika, 57, 521-538. | zh_TW |
dc.relation.reference (參考文獻) | [4] Berger, M. P. F. (1994). D-optimal Sequential Sampling Designs for Item Response | zh_TW |
dc.relation.reference (參考文獻) | Theory Models. Journal of Educational Statistics, 19, 43-56. | zh_TW |
dc.relation.reference (參考文獻) | [5] Buyske, S. G. (1998). Optimal Design for Item Calibration in Computerized | zh_TW |
dc.relation.reference (參考文獻) | Adaptive Testing, unpublished Ph.D. dissertation. | zh_TW |
dc.relation.reference (參考文獻) | [6] Chang, H. H. and Ying, Z. (1996). A Global Information Approach to Computerized | zh_TW |
dc.relation.reference (參考文獻) | Adaptive Testing. Applied Psychological Measurement, 20, 213-229. | zh_TW |
dc.relation.reference (參考文獻) | [7] Chang, H. H. and Ying, Z. (1999). _-strati_ed Multistage Computerized Adaptive | zh_TW |
dc.relation.reference (參考文獻) | Testing. Applied Psychological Measurement, 23, 211-222. | zh_TW |
dc.relation.reference (參考文獻) | [8] Chang, Y.-c. I. and Martinsek, A. (1992). Fixed Size Con_dence Regions for | zh_TW |
dc.relation.reference (參考文獻) | Parameters of a Logistic Regression Model. The Annals of Statistics, 20(4), 1953- | zh_TW |
dc.relation.reference (參考文獻) | 1969. | zh_TW |
dc.relation.reference (參考文獻) | [9] Chang, Y.-c. I. (1999). Strong Consistency of maximum Quasi-likelihood Estimate | zh_TW |
dc.relation.reference (參考文獻) | in Generalized Linear Models Via a Last Time. Statistics and Probability | zh_TW |
dc.relation.reference (參考文獻) | Letters, 45, 237-246. | zh_TW |
dc.relation.reference (參考文獻) | [10] Chang, Y.-c. I. (2001). Sequential Con_dence Regions of Generalized Linear | zh_TW |
dc.relation.reference (參考文獻) | Models with Adaptive Designs. Journal of Statistical Planning and Inference, | zh_TW |
dc.relation.reference (參考文獻) | 93, 277-293. | zh_TW |
dc.relation.reference (參考文獻) | [11] Chang, Y.-c. I. and Ying, Z. (2004). Sequential Estimate in Variable Length | zh_TW |
dc.relation.reference (參考文獻) | Computerized Adaptive Testing. Journal of Statistical Planning and Inference, | zh_TW |
dc.relation.reference (參考文獻) | 121, 249-264. | zh_TW |
dc.relation.reference (參考文獻) | [12] Chang, Y.-c. I. (2006). Maximum Quasi-likelihood Estimate in Generalized Linear | zh_TW |
dc.relation.reference (參考文獻) | Models with Measurement Errors in Fixed and Adaptive Designs. Technical | zh_TW |
dc.relation.reference (參考文獻) | Report C-2006-01, Institute of Statistical Science, Academia Sinica. | zh_TW |
dc.relation.reference (參考文獻) | [13] Chiang, J. (1990). Sequential Designs for the Linear Logistic Model, unpublished | zh_TW |
dc.relation.reference (參考文獻) | Ph.D. dissertation. The Pennsylvania State University, Department of Statistics. | zh_TW |
dc.relation.reference (參考文獻) | [14] Chow, Y. S. and H. Teicher (1998). Probability Theory (2nd ed.). New York, | zh_TW |
dc.relation.reference (參考文獻) | USA:Springer. | zh_TW |
dc.relation.reference (參考文獻) | [15] Hambleton, R. K. and Swaminathan, H. (1985). Item Response Theory : Prin- | zh_TW |
dc.relation.reference (參考文獻) | ciples and Applications. Kluwer. | zh_TW |
dc.relation.reference (參考文獻) | [16] Jones, D. H. and Jin, Z. (1994). Optimal Sequential Designs for On-line Item | zh_TW |
dc.relation.reference (參考文獻) | Estimation. Psychometrika, 59, 59-75. | zh_TW |
dc.relation.reference (參考文獻) | [17] Jones, D. H., Chiang, J. and Jin, Z. (1997). Optimal Designs for Simultaneous | zh_TW |
dc.relation.reference (參考文獻) | Item Estimation. Nonlinear Analysis, Theory, Methods and Applications, 30, | zh_TW |
dc.relation.reference (參考文獻) | 4051-4058. | zh_TW |
dc.relation.reference (參考文獻) | [18] Jones, D. H., Nediak, M. andWang, X. B. (1999). Sequential Optimal Designs for | zh_TW |
dc.relation.reference (參考文獻) | On-line Item Calibration. Technical Report. Rutgers University. Rutcor Research | zh_TW |
dc.relation.reference (參考文獻) | Report 2-99. | zh_TW |
dc.relation.reference (參考文獻) | [19] Kalish, L. A. and Rosenberger, J. L. (1978). Optimal Designs for the Estimation | zh_TW |
dc.relation.reference (參考文獻) | of the Logistic Function. Technical Report 33. The Pennsylvania State University, | zh_TW |
dc.relation.reference (參考文獻) | Department of Statistics. | zh_TW |
dc.relation.reference (參考文獻) | [20] Minkin, S. (1987). Optimal Designs for Binary Data. Journal of the American | zh_TW |
dc.relation.reference (參考文獻) | Statistical Association, 82, 1098-1103. | zh_TW |
dc.relation.reference (參考文獻) | [21] Ortega, J. A. and W. C. Rheinboldt (1970). Iterative solution of nonlinear equa- | zh_TW |
dc.relation.reference (參考文獻) | tions in several variables. San Diago, CA: Academia Press, Inc. | zh_TW |
dc.relation.reference (參考文獻) | [22] Silvey, S. D. (1980). Optimal Design. London: Chapman and Hall. | zh_TW |
dc.relation.reference (參考文獻) | [23] Sitter, R. R. and Forbes, B. E. (1997). Optimal Two-Stage Designs for Binary | zh_TW |
dc.relation.reference (參考文獻) | Response Experiments. Statistica Sinica, 7, 941-955. | zh_TW |
dc.relation.reference (參考文獻) | [24] Stefanski, L. A. and Carroll, R. J. (1985). Covariate measurement error in logistic | zh_TW |
dc.relation.reference (參考文獻) | regression. The Annals of Statistics, 13(4), 1335-1351. | zh_TW |
dc.relation.reference (參考文獻) | [25] van der Linden and W. J. (2000). Capitalization on item calibration error in | zh_TW |
dc.relation.reference (參考文獻) | adaptive testing. Applied Measurement in Education, 13(1), 35-53. | zh_TW |
dc.relation.reference (參考文獻) | [26] Wu, C. F. J. (1985). E_cient sequential designs with binary data. Journal of | zh_TW |
dc.relation.reference (參考文獻) | American Statistical Association, 80, 974-984. | zh_TW |