Publications-Theses

題名 信用風險尾巴機率之研究
作者 楊立民
貢獻者 劉惠美
楊立民
關鍵詞 信用風險損失分配
同質估計法
蒙地卡羅法
日期 2004
上傳時間 17-Sep-2009 18:48:48 (UTC+8)
摘要   由於整體金融環境的改變,資金的放款與融貸業務日益蓬勃,信用風險造成的呆帳問題成為銀行所承擔最大的風險來源之一,巴塞爾資本適足協定要求各銀行對其債權訂定風險權數,本文提出的同質性估計法即為內建評等法的應用。
  為探討投資組合在發生極大損失的尾端機率,我們從估計損失分配的尾巴衰退率著手,先以Glasserman於2004提出的同質法估計為基礎,並將獨特風險改變為t分配的假設下進行估計。此外,考慮到經濟現象的損失大多偏向厚尾分配,故導入Fréchet分配於獨特風險中,並藉以調整同質法進行估計。進一步我們使用蒙地卡羅模擬法來做為配適好壞比較的依據,模擬次數為100000次,以瞭解在常態分配、t分配及Fréchet分配的假設下尾端機率估計的優劣。
  結果發現,不同的獨特風險分配假設下,並沒有一致最佳的估計方法,在各群體同質性很高的投資組合中,t分配的估計是較為準確的,而且對於假設獨特風險在Fréchet分配時,不管何種投資組合,t分配同質法都能表現得不錯,相形之下,常態分配同質法的估計往往過於高估損失機率。另外,在損失設定在很小的水準時,不管何種同質估計法對損失機率都不太能估計得很準確。
參考文獻 中文部份
1. 元大京華證券,2005,風險管理e學苑,http://riskmgmt.yuanta.com.tw/。
2. 阮建豐,2002,「利用混合模型估計風險值的探討」,國立政治大學統計研究所碩士論文。
3. 黃向義,2001,「極值理論應用於風險值估計」,國立臺北大學統計研究所碩士論文。
4. 賴柏志,2003,「關聯結構在信用風險管理之運用」,金融聯合徵信中心,http://www.jcic.org.tw/。
英文部份
[1] Bassi, F., P. Embrechts, and M. Kafetzaki. (1998). Risk management and quantile estimation. in Adler, R. J. Feldman, R. E. Taqqu, M. S. (Eds.). A Practical Guide to Heavy Tails, 111-130. Birkhäuser, Boston.
[2] Bluhm, C., L. Overbeck, and C. Wagner. (2002). An Introduction to Credit Risk Modeling. Chapmen & Hall/CRC, London.
[3] Dembo, A., and O. Zeitouni. (1998). Large Deviations Techniques and Applications, 2nd ed. Springer-Verlag, New York.
[4] Fisher, R. A., and L. H. C. Tippett. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings Cambridge Philosophical Society, 24:180-190.
[5] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer, New York.
[6] Glasserman, P. (2004). “Tail approximations for portfolio credit risk”, The Journal of Derivatives, 4:24-43.
[7] Heffernan, J., and J. Tawn. (2003). Extreme Value Theory. Powerpoint. Lancaster University.
[8] Jorion, P. (2000). Value at Risk, 2nd ed. McGrall-Hill, New York.
[9] Kalkbrenner, M., H. Lotter, and L. Overbeck. (2004). “Sensible and efficient capital allocation for credit portfolios.” Risk, 17:S19-S24.
[10] Leadbetter, M. R., G. Lindgren, and H. Rootzén. (1983). Extremes and related properties of random sequences and processes. Springer, Berlin.
[11] Li, D. (2000). “On default correlation: A copula function approach.” The Journal of Fixed Income, 9:43-54.
[12] Lucas, A., P. Klaassen, P. Spreij, and S. Straetmans. (2001). “An analytic approach to credit risk of large corporate bond and loan portfolios.” Journal of Banking & Finance, 25:1635-1664.
[13] Nocedal, J., and M. Wright. (1999). Numerical Optimization. Springer-Verlag, New York.
[14] Sklar, A. (1959). Fonctions de répartition à n dimensions et leur marges. Publ. Int. Stat Univ., Paris, 8:229–231.
[15] Trück, S., and J. Peppel. (2003). Credit Risk Models in Practice – A Review. Physica Veriag, Heidelberg.
描述 碩士
國立政治大學
統計研究所
92354020
93
資料來源 http://thesis.lib.nccu.edu.tw/record/#G0923540202
資料類型 thesis
dc.contributor.advisor 劉惠美zh_TW
dc.contributor.author (Authors) 楊立民zh_TW
dc.creator (作者) 楊立民zh_TW
dc.date (日期) 2004en_US
dc.date.accessioned 17-Sep-2009 18:48:48 (UTC+8)-
dc.date.available 17-Sep-2009 18:48:48 (UTC+8)-
dc.date.issued (上傳時間) 17-Sep-2009 18:48:48 (UTC+8)-
dc.identifier (Other Identifiers) G0923540202en_US
dc.identifier.uri (URI) https://nccur.lib.nccu.edu.tw/handle/140.119/33920-
dc.description (描述) 碩士zh_TW
dc.description (描述) 國立政治大學zh_TW
dc.description (描述) 統計研究所zh_TW
dc.description (描述) 92354020zh_TW
dc.description (描述) 93zh_TW
dc.description.abstract (摘要)   由於整體金融環境的改變,資金的放款與融貸業務日益蓬勃,信用風險造成的呆帳問題成為銀行所承擔最大的風險來源之一,巴塞爾資本適足協定要求各銀行對其債權訂定風險權數,本文提出的同質性估計法即為內建評等法的應用。
  為探討投資組合在發生極大損失的尾端機率,我們從估計損失分配的尾巴衰退率著手,先以Glasserman於2004提出的同質法估計為基礎,並將獨特風險改變為t分配的假設下進行估計。此外,考慮到經濟現象的損失大多偏向厚尾分配,故導入Fréchet分配於獨特風險中,並藉以調整同質法進行估計。進一步我們使用蒙地卡羅模擬法來做為配適好壞比較的依據,模擬次數為100000次,以瞭解在常態分配、t分配及Fréchet分配的假設下尾端機率估計的優劣。
  結果發現,不同的獨特風險分配假設下,並沒有一致最佳的估計方法,在各群體同質性很高的投資組合中,t分配的估計是較為準確的,而且對於假設獨特風險在Fréchet分配時,不管何種投資組合,t分配同質法都能表現得不錯,相形之下,常態分配同質法的估計往往過於高估損失機率。另外,在損失設定在很小的水準時,不管何種同質估計法對損失機率都不太能估計得很準確。
zh_TW
dc.description.tableofcontents 第一章 緒論 1
第一節 研究背景與研究動機 1
第二節 研究目的與本文架構 2
第二章 文獻探討 3
第一節 風險值的介紹 3
第二節 信用風險模型 6
第三節 極端值理論 10
第三章 研究方法 14
第一節 模型架構-獨特風險服從學生t分配 15
第二節 同質性投資組合分析-使用牛頓線形法 24
第三節 利用Fréchet分配估計對同質法做調整 29
第四節 配適度衡量準則 31
第四章 模擬分析及比較 32
第一節 投資組合A 32
第二節 投資組合B 51
第三節 投資組合C 72
第四節 投資組合D 83
第五章 結論與建議 93
附 錄 94
參考文獻 102
zh_TW
dc.format.extent 73459 bytes-
dc.format.extent 102600 bytes-
dc.format.extent 142958 bytes-
dc.format.extent 176249 bytes-
dc.format.extent 447049 bytes-
dc.format.extent 354684 bytes-
dc.format.extent 4160856 bytes-
dc.format.extent 159669 bytes-
dc.format.extent 181710 bytes-
dc.format.extent 233982 bytes-
dc.format.extent 125308 bytes-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.format.mimetype application/pdf-
dc.language.iso en_US-
dc.source.uri (資料來源) http://thesis.lib.nccu.edu.tw/record/#G0923540202en_US
dc.subject (關鍵詞) 信用風險損失分配zh_TW
dc.subject (關鍵詞) 同質估計法zh_TW
dc.subject (關鍵詞) 蒙地卡羅法zh_TW
dc.title (題名) 信用風險尾巴機率之研究zh_TW
dc.type (資料類型) thesisen
dc.relation.reference (參考文獻) 中文部份zh_TW
dc.relation.reference (參考文獻) 1. 元大京華證券,2005,風險管理e學苑,http://riskmgmt.yuanta.com.tw/。zh_TW
dc.relation.reference (參考文獻) 2. 阮建豐,2002,「利用混合模型估計風險值的探討」,國立政治大學統計研究所碩士論文。zh_TW
dc.relation.reference (參考文獻) 3. 黃向義,2001,「極值理論應用於風險值估計」,國立臺北大學統計研究所碩士論文。zh_TW
dc.relation.reference (參考文獻) 4. 賴柏志,2003,「關聯結構在信用風險管理之運用」,金融聯合徵信中心,http://www.jcic.org.tw/。zh_TW
dc.relation.reference (參考文獻) 英文部份zh_TW
dc.relation.reference (參考文獻) [1] Bassi, F., P. Embrechts, and M. Kafetzaki. (1998). Risk management and quantile estimation. in Adler, R. J. Feldman, R. E. Taqqu, M. S. (Eds.). A Practical Guide to Heavy Tails, 111-130. Birkhäuser, Boston.zh_TW
dc.relation.reference (參考文獻) [2] Bluhm, C., L. Overbeck, and C. Wagner. (2002). An Introduction to Credit Risk Modeling. Chapmen & Hall/CRC, London.zh_TW
dc.relation.reference (參考文獻) [3] Dembo, A., and O. Zeitouni. (1998). Large Deviations Techniques and Applications, 2nd ed. Springer-Verlag, New York.zh_TW
dc.relation.reference (參考文獻) [4] Fisher, R. A., and L. H. C. Tippett. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings Cambridge Philosophical Society, 24:180-190.zh_TW
dc.relation.reference (參考文獻) [5] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer, New York.zh_TW
dc.relation.reference (參考文獻) [6] Glasserman, P. (2004). “Tail approximations for portfolio credit risk”, The Journal of Derivatives, 4:24-43.zh_TW
dc.relation.reference (參考文獻) [7] Heffernan, J., and J. Tawn. (2003). Extreme Value Theory. Powerpoint. Lancaster University.zh_TW
dc.relation.reference (參考文獻) [8] Jorion, P. (2000). Value at Risk, 2nd ed. McGrall-Hill, New York.zh_TW
dc.relation.reference (參考文獻) [9] Kalkbrenner, M., H. Lotter, and L. Overbeck. (2004). “Sensible and efficient capital allocation for credit portfolios.” Risk, 17:S19-S24.zh_TW
dc.relation.reference (參考文獻) [10] Leadbetter, M. R., G. Lindgren, and H. Rootzén. (1983). Extremes and related properties of random sequences and processes. Springer, Berlin.zh_TW
dc.relation.reference (參考文獻) [11] Li, D. (2000). “On default correlation: A copula function approach.” The Journal of Fixed Income, 9:43-54.zh_TW
dc.relation.reference (參考文獻) [12] Lucas, A., P. Klaassen, P. Spreij, and S. Straetmans. (2001). “An analytic approach to credit risk of large corporate bond and loan portfolios.” Journal of Banking & Finance, 25:1635-1664.zh_TW
dc.relation.reference (參考文獻) [13] Nocedal, J., and M. Wright. (1999). Numerical Optimization. Springer-Verlag, New York.zh_TW
dc.relation.reference (參考文獻) [14] Sklar, A. (1959). Fonctions de répartition à n dimensions et leur marges. Publ. Int. Stat Univ., Paris, 8:229–231.zh_TW
dc.relation.reference (參考文獻) [15] Trück, S., and J. Peppel. (2003). Credit Risk Models in Practice – A Review. Physica Veriag, Heidelberg.zh_TW